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Abstract 

Background:  The rising availability of assemblies of large genomes (e.g. bread and durum wheat, barley) and their 
annotations deliver the basis to graphically present genome organization of parents and progenies on a physical 
scale. Genetic maps are a very important tool for breeders but often represent distorted models of the actual chro‑
mosomes, e.g., in centromeric and telomeric regions. This biased picture might lead to imprecise assumptions and 
estimations about the size and complexity of genetic regions and the selection of suitable molecular markers for the 
incorporation of traits in breeding populations or near-isogenic lines (NILs). Some software packages allow the graphi‑
cal illustration of genotypic data, but to the best of our knowledge, suitable software packages that allow the com‑
parison of genotypic data on the physical and genetic scale are currently unavailable.

Results:  We developed a simple Java-based-software called GenoTypeMapper (GTM) for comparing genotypic data 
on genetic and physical maps and tested it for effectiveness on data of two NILs that carry QTL-regions for drought 
stress tolerance from wild emmer on chromosome 2BS and 7AS. Both NILs were more tolerant to drought stress than 
their recurrent parents but exhibited additional undesirable traits such as delayed heading time.

Conclusions:  In this article, we illustrate that the software easily allows users to display and identify additional 
chromosomal introgressions in both NILs originating from the wild emmer parent. The ability to detect and diminish 
linkage drag can be of particular interest for pre-breeding purposes and the developed software is a well-suited tool 
in this respect. The software is based on a simple allele-matching algorithm between the offspring and parents of a 
crossing scheme. Despite this simple approach, GTM seems to be the only software that allows us to analyse, illustrate 
and compare genotypic data of offspring of different crossing schemes with up to four parents in two different maps. 
So far, up to 500 individuals with a maximum number of 50,000 markers can be examined with the software. The main 
limitation that hampers the performance of the software is the number of markers that are examined in parallel. Since 
each individual must be analysed separately, a maximum of ten individuals can currently be displayed in a single run. 
On a computer with an Intel five processor of the 8th generation, GTM can reliably either analyse a single individual 
with up to 12,000 markers or ten individuals with up to 3,600 markers in less than five seconds. Future work aims to 
improve the performance of the software so that more complex crossing schemes with more parents and more mark‑
ers can be analysed.
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Background
High-throughput plant genotyping technologies enable 
the testing of a few thousands to hundreds of thousands 
of markers in large numbers of samples in parallel. Such 
technologies include next-generation sequencing (NGS) 
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and array-based technologies, such as the Diversity Array 
Technology (DArT) [1], genotyping by sequencing (GBS) 
[2], the Illumina Bead Array/ Infinium Technology [3, 4] 
or the Affymetrix Gene Chip/Axiom Technology [5, 6]. 
Predesigned Illumina Bead Arrays and Affymetrix chips 
do exist for numerous important organisms and crops, 
such as apples, barley, brassica, cherry, chickpea, cotton, 
cowpea, grape, lettuce, maize, oat, peach, pear, peanut, 
pepper, potato, rice, rose, rye, ryegrass, soybean, straw-
berry, sunflower, tomato and wheat [7].

Notably, only a fraction of this information can be 
included in a genetic map due to several limitations. The 
resolution of a genetic map depends on the number of 
progenies analysed, the number of recombination events 
observed between polymorphic markers [8, 9] and the 
number of markers along the chromosomes [10]. Mark-
ers that do not show recombination events are assigned 
to the same genetic position; hence, the distances of 
genetic and physical maps may differ significantly from 
each other, especially close to centromeric and telom-
eric regions [11–13]. Genetic maps often serve as tem-
plates for the localization of major genes and quantitative 
traits loci (QTLs) on chromosomes. The identification of 
such regions depends on differences in phenotypic data 
that can be assigned to recombination events observed 
between different markers [14]. Probability of meiosis 
and recombination events correlate with the number of 
individuals in a population. Therefore, the number of 
markers that are used to construct a genetic map can 
be adjusted to the size of the mapping population and 
the number of expected recombination events [14]. The 
biased picture of a genetic map might lead to imprecise 
assumptions and estimations about the size and complex-
ity of genetic regions and the selection of suitable molec-
ular markers for the incorporation of traits in breeding 
populations or near-isogenic lines (NILs). Furthermore, 
genotypic data that cannot be used for the construction 
of a genetic map, e.g., monomorphic, heterozygous or 
failed data in one of the parents of a biparental mapping 
population, are traditionally discarded at a very early 
stage of the mapping procedure.

The recently published physical pseudomolecules of 
cereals, such as einkorn (Triticum monoccum) (4.94 Gb.) 
[15], wild emmer wheat (T. turgidum ssp. dicoccoides) 
(12 Gb) [16], durum wheat (T. turgidum ssp. durum) [17] 
goat grass (Aegilops tauschii) (4.3 Gb.) [18], barley (Hor-
deum vulgare) (4.75  Gb.) [19] and bread wheat (T. aes-
tivum) (15.4–15.8 Gb) [20, 21] deliver a valuable tool to 
solve this distorted picture and to include missing geno-
typic information to finally gain a better understanding 
of the physical scale of the regions of interest. Software 
packages such as Graphical Genotypes (GGT) [22] and 
Flapjack [23] or complex genome browsers such as the 

Integrative genome viewer (IGV) [24] allow the graphi-
cal illustration of genotypic data, but do not allow the 
comparison of genotypic data of offspring of different 
crossing schemes in different maps. The same is true for 
software packages that focus on the detection and illus-
tration of specific genomic introgressions on the genetic 
or physical scale, like IView [25] or the Physical Intro-
gression Browser [26]. Tools such as the R-based Marey-
Map [27] allow the comparison of genetic and physical 
maps but do not allow analysis of genotypic data. These 
consequently cannot consider the distortions between 
physical and genetic maps and therefore miss the infor-
mation that can be obtained by integrating additional 
genotypic information from equivalent physical regions 
into the genetic map, i.e., heterozygous markers. We 
therefore developed a combined approach that allows 
graphical genotyping on the physical and genetic scale 
and implemented it in a small platform-independent Java 
application, named GenoTypeMapper (GTM). The soft-
ware was developed and tested under Windows 10 but 
should run on any operating system (OS) that has the 
Java virtual machine (JVM) installed.

GTM allows users to filter different allelic types (e.g., 
heterozygous alleles) to plot genotypic data in different 
ways to obtain a customized view of genomic and/ or 
genetic regions and their allelic composition.

Here, we present the software in detail followed by 
results obtained on SNP genotyping information of 
two NILs (NIL-U-2B-1, NIL-B-7A-2) that carry QTL-
regions for improved drought stress tolerance on chro-
mosome 2BS and 7AS from the drought tolerant wild 
emmer accession # G18-16 [28]. Both NILs were shown 
to be more tolerant to drought stress than their recurrent 
parents but show phenotypes that may stem from link-
age drag, e.g., an increased plant height or an increased 
number of days to heading (DPH) [28, 29]. We used 
GTM to perform genotypic analysis on the genetic and 
physical scales of both NILs and the respective recombi-
nant inbred lines (RILs) (see Additional file 1: Figure S1) 
[30–32].

Implementation
GTM was developed and tested under Windows 10 but 
should run on any OS that has the JVM installed. A sim-
ple JAR file of the program, a setup file for windows, test 
data (template files) and a small quick-start tutorial are 
provided on www.genot​ypema​pper.org. The test data 
includes the original genotypic data from the F2 plants, 
NILs and F2 pig individuals that are discussed in the 
article. Additionally, extra test data sets are provided 
on the website to test further options for GTM, e.g., the 

http://www.genotypemapper.org
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comparison of two genetic maps. More details about the 
data are also summarized in a small ReadMe file on the 
website.

Input data
Input data can be loaded in the form of a GTM-spe-
cific tab delimited text file with at least nine columns 
(Table 1).

The first two columns of the GTM input file con-
tain chromosome and marker names, and the third and 
fourth column contain physical and/or genetic positions 
of the markers.

Column five can contain logarithm of odds (LOD) 
information, and columns six and seven are dedicated 
to genotype information from the parents of a typical bi-
parental population, e.g., a Double Haploid (DH) or F2 
population (Fig.  1). Recurrent parents and individuals, 
which are used for the establishment of NILs (Fig. 1), can 
be specified in the eighth and ninth columns. Genotypic 
data of the remaining accessions can be added to the 
tenth and following columns. Please note that example 
input files are available on www.genot​ypema​pper.org.

User interface (UI)
After loading input data via the “File” menu, a small dia-
logue pops up. This dialogue allows the user to select the 
genotypes and chromosomes of interest. In default mode, 
a maximum of ten individuals and an arbitrary number 
of chromosomes can be selected. The alternative single 
chromosome mode is activated by selecting only a single 
genotype and chromosome. Subsequently, GTM param-
eters can be adapted in the “Analyse” menu via the menu 
items “Show maps and components”, “Parameters” and 
“Graphical genotyping”. The first menu item allows the 
user to select the information that shall be displayed, 
such as the genetic- and or physical map. Please note 
that some additional components, such as marker- and 
loci names, can only be displayed in the chromosome 
mode. “Parameters” allows the adaptation of the illustra-
tions by modifying variables such as the zooming factor 
or the spacing between the physical and genetic map. 
Illustrations can be enlarged up to ten or 30 times in the 
default mode or chromosome mode, respectively. In addi-
tion to this, the physical size of the same genome can be 
adapted relative to the genetic map of the chromosome 

by dividing the physical genome by a user defined fac-
tor. Finally, the last menu item, “Graphical Genotyping”, 
allows the analysis and interpretation of the data that are 
specified from the sixth to the last column of the input 
file to determine the origin of alleles in the respective 
individuals of interest (IOIs). Working scenarios in the 
respective modes are illustrated in Figs.  2 and 3. Basic 
information about the number of genotypes that will 
be subjected to the analysis and the number of available 
markers and chromosomes are summarized under the 
menu item “information” (Fig.  2). A small tutorial that 
guides the user through this process is implemented 
in the software in the “HELP” menu or available on the 
website www.genot​ypema​pper.org.

Allelic discrimination analysis
For each marker, the genotype of the IOI and the infor-
mation available for parents is compared to determine 
the origin of its allele. Depending on such a comparison, 
five, six, ten or eleven different cases might be deter-
mined by using genotypic data of either one, two, three 
or four different parents (Fig. 1). These cases are explored 
in more detail in Table 2.

Table 1  Standard input data for GTM

The input data format always requires nine columns. Mandatory information is written in bold, additional information in italics. Information that is not available 
should be indicated with “NA”. Please note that the chromosome, the marker name, and a physical and/or genetic position must be provided to the program. For more 
detailed information, see the text.

Chr Marker Genetic position Physical or genetic position Lod-value P1 P2 P3 P4

1A SNP_1 0.00 12,000 3.0 A T A A

Fig. 1  Crossing schemes which can be implemented in the 
background of the mapping software. Parental lines of the genotype 
analyzed (IOI) are abbreviated by „P “, numbers 1–4 show the possible 
number of parental lines. Eligible scope of applications can be double 
haploids (DH), F2-populations (F2), Back cross populations (BCFx) and 
near isogenic lines (NIL)

http://www.genotypemapper.org
http://www.genotypemapper.org
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If polymorphic genotype information from one or 
two parents of a biparental population is provided, 
the IOI alleles origin can either be dedicated to parent 
P1 (case 1_1) or parent P2 (case 1_2) (Fig. 1, Table 2). 
Genotype information of three or four parents, e.g., of 
a triple cross, allows the identification of IOI alleles 
that were derived from the recurrent parent P3 (case 
3_7) or from parents P2 /P3 (3_9) or P1/ P3 (3_10) 
(Fig.  1, Table  2). In addition to this, heterozygosity 
can be detected in parent P1 (case_ 1_5), parent P2 
(case_2_6), parent P3 (case_3_8), parent P4 (case 4_11) 
(Table  2). Failed or monomorphic data (case 1_3) are 
filtered out by default to omit mistakes in the allelic 
discrimination analysis (Table 2).

The colour of each case can be defined by the user 
to highlight either marker positions and/or marker 
intervals of adjacent markers that share the same 
allele information. No colour is added to intervals of 
adjacent markers with different allele information to 
omit imprecise representation of the genotypic data 
(Additional file  2: Figure S2). Markers that belong to 
a specific allele type of interest can be filtered out and 

displayed. The image or the markers can be shown on 
the screen and exported as a PNG image or as a tab 
delimited text file. The user might change the size and 
orientation of the image via the menu item “Layout” 
(Fig. 2).

Case study—data preparation
All available marker sequences of the 15K iSelect chip 
[33] were aligned to the wild emmer genome with a 
local version of the Basic Local Alignment Search Tool 
(BLAST) v2.10 [34]. Nucleotide BLAST (BLASTn) search 
was used with the following default parameters:

–	 Expectation threshold = 10
–	 Wordsize = 28
–	 Match/Mismatch score = 1, −2
–	 Gapcosts = linear
–	 Filtering of low complexity regions = Yes

Markers with BLASTn-hits on different chromosomes 
were subsequently compared with the durum consensus 

Fig. 2  Graphical user interface of GenoTypeMapper in default mode. In the default mode, multiple chromosomes of up to ten individuals can be 
displayed. The menu item “information” allows the display of the number of chromosomes, genotypes and markers, that were uploaded to the 
software
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Fig. 3  Graphical user interface of GenoTypeMapper in single chromosome mode. In this mode, markers and positions can be displayed. The 
menu item “Graphical genotyping” allows the user to highlight and analyse markers that were derived from a specific parent. For more detailed 
information, see the text

Table 2  Different allele types that  can be determined with  GTM relative to  the  number of  parents with  genotype 
information

a  N = (A, G, T, C), whereas H = (M, R, K, W, S, Y, K) nucleotide ambiguity code.
b  IOI = individual of interest.
c  Cases are coded with two numbers and separated by a baseline (x_y), that represents the number of analysed parents (x) and case_types (y). Each case_type is 
mentioned only once, but case types determined with fewer parents can also be detected with more parents. For more detailed information see the text and Fig. 1.

Parenta IOIb CASEc CASE-description

P1 P2 P3 P4

A – – – A 1_1 IOI—allele was derived from parent P1

T – – – A 1_2 IOI—allele was derived from parent P2

N – – f N 1_3 Analysis failed because of failed genotypic data

N – – – H 1_4 Allele in IOI is heterozygous

H – – – N 1_5 Allele in parent P1 is heterozygous

N H – – N 2_6 Allele in parent P2 is heterozygous

T T A – A 3_7 IOI—allele was derived from parent P3

N N H – N 3_8 Allele in recurrent parent P3 is heterozygous

A T T – T 3_9 IOI—allele was derived from parent P2 or P3

T A T – T 3_10 IOI—allele was derived from parent P1 or P3

N N N H N 4_11 Allele in parent P4 is heterozygous
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map [35] and discarded if they revealed multiple BLASTn 
hits on the consensus map chromosomes in a distance of 
more than one 1,000,000 base pairs (bp). A flow chart of 
this work scheme was added to the attachments (Addi-
tional file 3: Figure S3). The 15K iSelect data of the cor-
responding NILs (NIL-U-2B-1, NIL-B-7A-2) and their 
recurrent parents (BarNir, Uzan) and crossing parents 
(F7RIL12, F7RIL55 G18-16 and LDN) were used (Trait-
Genetics GmbH, Gatersleben, Germany). Genotypic data 
that did not fail or that were not monomorphic in these 
eight samples were regarded as putatively informative if 
the markers could be assigned to a physical or a genetic 
position (Additional file 3: Figure S3).

Results and discussion
All 12,908 15K iSelect marker sequences [33] were used 
for BLASTn search (Additional file  3: Figure S3). For 
12,445 of these, BLASTn-hits were obtained. A set of 
2,813 markers revealed hits to only one chromosome. 
Eighty-nine markers gave hits to no specific chromo-
some at all. Out of the remaining 9,632 markers with 
hits to more than one chromosome, 4,898 markers 
could be linked to the corresponding genetic chromo-
somes of the durum consensus map [35]. Finally, sets 
of 2,495 and 4,898 markers were screened to exclude 
those with multiple hits on the target chromosomes 
in a range of more than 1,000,000  bp, leading to a final 
set of 7,245 markers (Additional file 3: Figure S3, Addi-
tional file  4: Table  S1 and Additional file  5: Table  S2). 
Two-thousand-one-hundred-twenty of the 7,245 physi-
cally anchored iSelect markers were monomorphic or 
harboured failed genotypic data and were therefore 
regarded as non-informative. Of the remaining 5,125 
markers, 2,971 were polymorphic between G18-16 and 
LDN. Anchoring the QTL-flanking markers that were 
previously used to transfer the QTL-regions into the 
NILs [28] to the physical map of Zavitan [16] revealed 
that they span over the centromeric region on both chro-
mosomes (Additional file 6: Table S3). In line with these 
results, about two-third of the wild emmer chromosome 
2B and 7A were transferred from F7RIL55 and F7RIL12 
(Fig.  4) into NIL-U-2B-1 and NIL-B-7A-2, respectively 
(Fig.  5). Wild emmer fragments were also detected on 
chromosome 2A, 3A and 5A in NIL-U-2B-1 and 4B in 
NIL-B-7A-2 (Fig.  5). Although a remarkable reduction 
in the genetic background of the wild emmer parent in 
both NILs was observed at BC3F5 after the MAS proce-
dure (Additional file  1: Figure S1, Fig.  5), these regions 
might cause linkage drag. To pinpoint regions that are 
potentially involved in linkage drag, primer pairs of well-
described domestication genes [36] that are located on 
the NIL-U-2B-1 chromosome arms with introgressions 
from the wild emmer parent (Fig. 5) were aligned to the 

reference genome of wild emmer. It turned out that NIL-
U-2B-1 contains wild emmer alleles of the domestica-
tion genes PpdA1 (TRIDC2AG009040) [37] and PPdB1 
(TRIDC2BG010800) [38] on chromosomes 2AS and 2BS, 
respectively. In addition to this, a heterozygous version of 
the so called Lux (TRIDC3AG074490) gene, which was 
described to additively interact with PPdB1  [39], was 
identified at the very distal end of chromosome 3AL. 
Notably, NIL-U-2B-1 was also shown to suffer from 
delayed heading time [28]. Presence/absence analysis of 
the respective regions in future segmental RILs might 
allow the identification of the exact causative loci. The 
allelic origin of other popular domestication genes, such 
as VrnA1 [38] or Q on chromosome 5A [40] or the popu-
lar dwarfing gene RhtB1 [41], were also tested. However, 
none of these was transferred from G18-16 into the NILs. 

Conclusions
This paper describes the development of software, that 
easily allows the display and comparison of genotypic 
data on genetic and physical maps by including a maxi-
mum amount of marker information, which is usu-
ally removed at the very early stages of the mapping 
procedure.

We presented a case study elucidating the use of 
GTM by using genotypic information of NILs carrying 
introgressions of wild emmer wheat, aiming to improve 
drought resistance in wheat cultivars [28, 29]. Both NILs 
were shown to be more tolerant to drought than their 
recurrent parents but showed phenotypes that may stem 
from a linkage drag, e.g., an increased plant height or 
an increased number of days to heading (DPH) [28, 29]. 
GTM enabled the visualization of the genotypic and 
physical results of a MAS procedure, which started from 
wild emmer wheat into tetra- or hexaploid wheat culti-
vars (Additional file  1: Figure S1). It depicts the special 
relevance and usability of physical and genetic genotyp-
ing for pre-breeding purposes to handle linkage drag and 
heterozygosity transferred from crop wild relatives.

Marker information illustrated by GTM is the prod-
uct of the displayed genotypes, the chromosomes and 
the number of markers analysed. In the current version 
of the program, a maximum of ten genotypes can be dis-
played on the screen in the chromosome mode. If more 
than one genotype is analysed, the allelic discrimination 
analysis needs to be repeated for each individual. GTM 
uses multithreading to handle these situations efficiently.

To doublecheck GTM computational performance, 
artificial datasets with 3083, 6166, 9249 and 12,332 mark-
ers were created and used to explore GTM performance.

On a computer with an Intel five processor of the 8th 
generation, GTM can analyse a single genotype with 
3,083 polymorphic markers on 14 chromosomes in less 
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than 752 ms (ms) (Additional file 7: Figure S4). Ten indi-
viduals with the same amount of markers can be analysed 
in 1,429 ms, which is approximately twice as much of the 
time that is needed for a single individual (Additional 
file 7: Figure S4). The computation time increases linearly 

with the amount of analysed individuals. In addition to 
this, the number of markers has a significant impact on 
GTM computation time per individual and might ham-
per its performance if more than a single individual is 
analysed in parallel (Additional file 7: Figure S4). The tests 

Fig. 4  Genetic and physical genotyping of RIL55 and RIL12 with GTM. Both RILs resulted from a biparental cross of the drought-resistant wild 
emmer accession Gt18-16 and the drought-susceptible durum wheat accession Langdon. Information about the colouring of the respective alleles 
is illustrated in the figure. For more detailed information, see the text
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were run under the standard conditions of the 1.8.0_231 
JRE with a maximum heap space of 268,435,456 Byte.

We conclude that GTM can easily analyse up to ten 
genotypes on datasets with up to 6,000–7,000 markers in 
less than six seconds (Additional file 7: Figure S4). Ana-
lysing more markers with GTM is possible but requires 
more computation time. In such a case, we recommend 

analysing fewer genotypes and/or chromosomes in 
parallel.

Currently, genotypic data of 500 individuals with up to 
50,000 markers can be uploaded to the software.

GTM’s allelic discrimination analysis works accurate, 
but sometimes different allele information might appear 
at the same genetic position, e.g., if consensus marker 

Fig. 5  Genetic and physical genotyping of the near isogenic lines NIL-U-2B-1 and NIL-B-7A-2 with GTM. Recurrent parents were the hexaploid 
bread wheat accession BarNir for NIL-B-7A-2 and the tetraploid durum wheat accession Uzan for NIL-U-2B-1. Information about the colouring of the 
respective alleles is illustrated in the figure. For more detailed information, see the text
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positions are used. In those cases, adequate and reliable 
predictions about the correct corresponding allele type 
are theoretically not possible/difficult and require the 
user’s expertise (Additional file 2: Figure S2).

We illustrate how such an analysis might be performed 
in detail (Additional file 3: Figure S3) with two and four 
different parents (Figs. 4 and 5). One additional example 
that illustrates how genotyping analysis might be per-
formed if genotype information of only a single parent is 
available (Fig. 1 and Table 2) is given in the attachment 
for a NIL that carries an introgression harbouring the leaf 
rust resistance gene Lr1 [42] (Additional file 8: Figure S5). 
Markers in this example were anchored to genetic posi-
tions via the wheat consensus map [43]. Positions of the 
markers in the Chinese Spring genome are publicly avail-
able [44, 45].

In the case of this study, only 7,245, i.e., merely 60% of 
the 12,908 iSelect markers, could be assigned to reliable 
physical positions. This is very likely due to the follow-
ing reasons: (i) part of the iSelect markers are designed 
based on D genome sequences; (ii) markers might have 
been assigned to different chromosomes in the Zavitan 
genome than in the durum consensus map; (iii) iSelect 
markers deliver bad BLAST-hits that likely fall below fil-
tering criteria, and (iv) markers of gene families residing 
on several chromosomes and/or on homologous chro-
mosomes on the AA and BB genomes cannot be assigned 
to a clear physical position.

Please note that for many BeadArrays or Gene chips, 
physical positions on the reference genomes are provided 
on the Illumina website (www.illum​ina.com) (e.g., maize) 
or Affymetrix website (www.Affym​terix​.com) (e.g., straw-
berry, apple, wheat, cotton, soybean, maize). In addition 
to this, physical positions of diverse marker types can 
also be obtained from databases, such as GrainGenes 
[45]. In such cases, the identification of physical positions 
of the markers is not required. Anchoring of markers to 
physical position in the genome can also easily be accom-
plished with a simple BLASTN- search. In some cases, 
this approach might be sufficient [46].

GTM also offers the possibility to analyse single genetic 
or physical maps. In addition to this, two genetic maps 
can be compared. Respective test datasets are available 
on www.genot​ypema​pper.org. Please note that GTM 
can also be used for other organisms than plants. As an 
example, we genotyped two F2 pig individuals that were 
derived from a cross between a “Göttingen Minipig” boar 
and “Yorkshire” gilt [47]. The results were added to the 
supplement of this article (Additional file  9: Figure S6). 
We conclude that the software can be used for human 
and animal genetics as well.

Availability and requirements
Project name: GenoTypeMapper (GTM).

Project home: www.genot​ypema​pper.org
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java  Runtime Environment 

1.8.0_231 (or higher)
License: End use license agreements (EULA)
Any restrictions to use by non-academics: no

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1300​7-020-00665​-7.

Additional file 1: Figure S1. Establishment of near isogenic lines carrying 
wild emmer QTLs for drought stress tolerance. (1) The wild emmer acc. 
G18-16 was crossed with the cv. Langdon (LDN) to obtain a segregating 
F6 mapping population. A map with 197 microsatellites and 493 DArT 
markers on 690 loci was constructed to identify QTLs for drought stress 
tolerance associated traits [30, 31]. (2/3) Markers that flank the QTL-regions 
of interest were then used to introgress the QTLs into the background 
of elite wheat cultivars. The plants were subsequently backcrossed three 
times to diminish the genomic fraction of the donor parent. Finally, BC3F3 
and BC3F4 progenies were phenotyped under water-limited and well-
watered conditions together with their recurrent parents [28]. NIL-U-2B-1 
and NIL-B-7A-2 not only showed better tolerance than their recurrent elite 
parents but also exhibited negative traits [28]. (4) 15k iSelect genotypic 
data of F7 descendants of the original mapping population are used to 
reconstruct a new high-resolution genetic map [32]. Green and purple 
boxes represent male and female plants, respectively. 

Additional file 2: Figure S2. Interval- and marker-based colouring 
in GTM. (A) In a classical genetic mapping procedure, heterozygous & 
monomorphic markers of parents are discarded. The remaining molecular 
markers form linkage groups of the same allele types so that GTM can 
highlight intervals that are flanked by markers with the same allele infor‑
mation. Intervals that are flanked by markers with different allele types are 
not coloured because the exact position of recombination between both 
markers is unknown. (B) If genetic consensus marker positions are used, 
markers with different allele information can be assigned to the same 
genetic position. In those cases, colouring of intervals is not possible, and 
marker-based colouring might lead to inaccurate results (see Marker M1, 
M2, M3). Filtering of the allele types of interest might be the method of 
choice to analyse that kind of genotype, as illustrated in (C) and (D). 

Additional file 3: Figure S3. BLAST-scheme that illustrates the assign‑
ment of physical loci of 15k-iSelect markers in the Triticum turgidum ssp. 
dicoccoides genome. Numbers obtained in the analysis are coloured in 
orange. For more details, see text. 

Additional file 4: Table S1. 15k iSelect -markers that were assigned to 
physical or genetic loci. 

Additional file 5: Table S2. In total, 7,245 iSelect markers with physical 
and genetic positions. 

Additional file 6: Table S3. Genetic and physical positions of flanking 
microsatellite and DArT markers of QTL regions 2BS and 7AS. 

Additional file 7: Figure S4. GTM’s performance relative to the number 
of markers and genotypes that are analysed. 

Additional file 8: Figure S5. Allelic discrimination analysis with one 
parent in GenoTypeMapper. Wheat near isogenic line Tc-Lr1 with an 
introgression of the leaf rust resistance gene Lr1 in the background 
of the parent “Thatcher” on chromosome 5DL. Only genotype data of 
the Thatcher line was available, so allele analysis with one parent was 
performed (Figure 2, Table 2). Please notice that monomorphic markers 
between Thatcher and the second parent were not detected due to the 

http://www.illumina.com
http://www.Affymterix.com
http://www.genotypemapper.org
http://www.genotypemapper.org
https://doi.org/10.1186/s13007-020-00665-7
https://doi.org/10.1186/s13007-020-00665-7
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missing genotype information of one parent. Therefore, filtering and col‑
ouring of the introgressed markers was the method of choice to illustrate 
the introgressed regions. This analysis illustrates that introgressions of 
the unknown parent also occurred to other chromosomes. The physical 
genome shows that centromeric regions were introgressed from the 
resistant parent into the NIL. Please note: This test-dataset is quite large 
and comprises more than 30540 markers. 

Additional file 9: Figure S6. Physical genotyping of two F2 pigs: The F2 
boars resulted from a cross of a Minipig (MP) (boar) and a Yorkshire (YS) 
(gilt). In the parental generation seven purebred Yorkshire (YY) sows were 
mated to 14 Goettingen Minipig (MM) boars. Among the YM F1 animals, 
26 gilts and 13 boars were mated to produce 279 F2 animals. Genotypic 
data (60k iSelect data) for the animals were previously published and 
reused in this analysis [47]. The marker data for this illustration were 
obtained in two steps: First, consensus marker information from the 
parental YS boars and MP gilts was extracted. Then, markers that failed 
in YS or MP were removed. Information about the colouring of respec‑
tive alleles is illustrated in the figure. It should be pointed out, that the Y 
chromosome is not shown due to the fact that it has to be derived from 
the MP.
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