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Abstract 

Background:  Wheat yield is influenced by the number of ears per unit area, and manual counting has traditionally 
been used to estimate wheat yield. To realize rapid and accurate wheat ear counting, K-means clustering was used for 
the automatic segmentation of wheat ear images captured by hand-held devices. The segmented data set was con-
structed by creating four categories of image labels: non-wheat ear, one wheat ear, two wheat ears, and three wheat 
ears, which was then was sent into the convolution neural network (CNN) model for training and testing to reduce 
the complexity of the model.

Results:  The recognition accuracy of non-wheat, one wheat, two wheat ears, and three wheat ears were 99.8, 97.5, 
98.07, and 98.5%, respectively. The model R2 reached 0.96, the root mean square error (RMSE) was 10.84 ears, the 
macro F1-score and micro F1-score both achieved 98.47%, and the best performance was observed during late grain-
filling stage (R2 = 0.99, RMSE = 3.24 ears). The model could also be applied to the UAV platform (R2 = 0.97, RMSE = 9.47 
ears).

Conclusions:  The classification of segmented images as opposed to target recognition not only reduces the work-
load of manual annotation but also improves significantly the efficiency and accuracy of wheat ear counting, thus 
meeting the requirements of wheat yield estimation in the field environment.

Keywords:  Wheat ear counting, Crop yield, Deep learning, CNN, K-means, Segmentation, Recognitions

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Wheat is one of the most important food crops that play 
a significant role in national food security. The wheat 
grain-filling period is the key growth period that deter-
mines yield formation, and the number of ears per unit 
area is an important factor of yield [1–3]. Thus, it is of 
great significance to estimate wheat yield by rapidly 
determining the ear number. During production, the 
manual counting method is often used to estimate pro-
duction, which is time-consuming and labor-intensive. 

Conversely, machine vision, machine learning, and image 
processing technologies can be used to rapidly and accu-
rately identify wheat ear per unit area. This is of great 
significance to wheat yield estimation and provides tech-
nical support and a foundation for the acquisition of 
wheat plant phenotypic information.

The development of high spatial resolution com-
puter vision-based phenotype identification [4–6] has 
produced high-throughput phenotyping platforms [7]. 
Image processing technology has been used to iden-
tify the number of ears of wheat [8, 9], but the methods 
focus on texture features, color segmentation, morpho-
logical extraction, and other feature extraction methods. 
Cointault et  al. [10] used a color texture image analysis 
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method based on mixed space to realize the recognition 
and counting of wheat ear. Fernandez-Gallego et al. [11] 
used local maximum peak values to count ears based on 
RGB color images in field conditions [12]. The current 
recognition methods based on image processing tech-
nology require extensive artificial image feature extrac-
tion, which places high demand on the environment and 
technology.

In recent years, machine learning has been shown 
to have a significant advantage in the field of machine 
vision, such as in image segmentation and object rec-
ognition [13–15]. Zhu et  al.[16] used a support vector 
machine segmentation (SVM) model to realize wheat ear 
counting, and Li et al. [17] used a neural network based 
on texture features to detect ears, the accuracy of which 
exceeded 80%. Hasan et al. [18] used an in-depth learning 
method to detect and count wheat ears, achieving a high-
est accuracy of 94%. Madec et al. [19] used CNN to iden-
tify wheat ears from low-spatial-resolution RGB images. 
Machine learning methods provide automatic feature 
extraction and excellent parameter adjustment, which 
greatly reduce manual feature extraction and interpre-
tation. However, the use of machine learning to identify 
grains requires the manual extraction of the image fea-
ture building the data set. Thus, these methods are prone 
to some human error and also have the disadvantages of 
identification inaccuracy caused by the adhesion of mul-
tiple wheat ears. At the same time, a simple and rapid 
counting system for wheat ears is lacking, and the devel-
opment of such a system would have a significant impact 
on wheat production.

Image processing methods are influenced by the extrac-
tion of image features, lighting conditions, shadows, and 
complex backgrounds [20], and the requirements of the 
environment and technology are limited by the data 
set itself [21]. Although wheat ear recognition methods 
based on CNN are advantageous, image features (wheat 
ears) need to be manually extracted in order to construct 
the dataset [22]. To overcome the above issues, we pro-
pose the use of image processing technology to extract 
wheat ear features rapidly, combining this with CNN to 
reduce the workload of manual labeling and improve the 
recognition accuracy.

In this paper, we use mobile devices to rapidly acquire 
wheat ear images in the field environment and extract 
the contour features of the wheat ears automatically 
based on the K-means clustering algorithm, thus reduc-
ing the workload of the manual extraction of wheat ear 
features. On this basis, we constructed an image classi-
fication dataset with four types of labels: non-wheat ear, 
one wheat ear, two wheat ears, and three wheat ears. 
Ultimately, a CNN model was constructed to realize the 
rapid and accurate identification of wheat ears in the 

complex field environment as well as to provide technical 
support for the accurate yield estimation of wheat.

Materials and methods
Field experiments
Experiment 1 was conducted in Xuchang, China, at 
the Campus of Henan Agricultural University in 2018, 
2019 in the experimental farm (34°08′N, 113°48′E). The 
Xuchang site is in the center of China, with a typical 
temperate and monsoonal climate. The previous crop 
was soybean. The tested wheat varieties included AK58, 
XN509, YM49, and ZM27. The experimental plot was 
10 m long, 2 m wide, and with a row spacing of 20 cm. 
A split-plot design was adopted and was repeated three 
times. In order to facilitate sampling and field operation, 
a 1 m wide channel was set up between each plot. Nitro-
gen fertilization was applied as ammonium nitrate in the 
winter at rates of 120 kg ha−1 for every year, and water-
ing once in overwintering period and jointing period 
respectively.

Experiment 2 was conducted in Yuanyang, Xinxiang, 
China, at the Yuanyang Science and Education Park 
(35°6″N, 113°56″E) of Henan Agricultural University in 
2018. The Yuanyang site is in the center of China, with 
a warm temperate continental monsoon climate. The 
previous crop was maize. There were 10 wheat varieties 
tested, namely, SM159, XN20, XN511, YM11, ZM119, 
ZM136, ZM158, ZM318, ZM32, and ZM36. The area of 
the community was 25 × 5 m, and the row spacing was 
20 cm. Nitrogen fertilization was applied as ammonium 
nitrate in the winter at rates of 127.5 kg ha−1, and water-
ing once in overwintering period and jointing period 
respectively.

Image acquisition
Wheat ear image data were captured during the flower-
ing and filling period (Table  1). Image acquisition was 
conducted in a Redmi Note 7 mobile phone (Xiaomi, 
Beijing, China), HUAWEI nova 3i (HUAWEI, Shenzhen, 
China) and DJI Phantom 3 Pro (DJI, Shenzhen, China). 
The Redmi Note 7 mobile phone has 48 million + 5 mil-
lion pixels in the rear cameras, the HUAWEI nova 3i 
mobile phone has 24 million + 2 million pixels in the rear 
cameras, and the Phantom 3 Pro has a battery capacity 
of 23 min for each flight and can take auxiliary hovering 
pictures. Three devices are high quality with full color. 
Image acquisition was carried out on both sunny and 
cloudy days. The image acquisition mode was vertical 
shooting. The ground resolution was 0.18–1.0. One flight 
of 3  m altitudes was completed in Xuchang (Table  1), 
the purpose of which was to verify the portability of the 
research method on the unmanned aerial vehicle (UAV) 
platform. One data collection was in Yuanyang in order 
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to verify the applicability of the method in different wheat 
varieties. On May 13, 2020 in Xuchang, a 12 ×  30  cm 
white board was placed as the ground standard when the 
image was taken, and one square meter area was selected 
in the center of the shooting area for wheat ear manual 
measurement and counting, to verify the applicability of 
proposed method in field condition.

Image processing
Wheat ear images were processed with image processing 
technology and were clustered and segmented, following 
which they were sent to the CNN model for learning and 
recognition. The algorithm flow chart is shown in Fig. 1.

To accelerate image processing, the original image was 
reduced by 1400 × 1400 from the center of the acquired 
image and scaled to 700 × 700. Following enhancement 
by histogram equalization, the contours of the wheat 
ears were extracted by K-means clustering segmentation. 
The segmented images were divided into four categories: 
non-wheat ear, one wheat ear, two wheat ears, and three 
wheat ears. Image processing algorithm was developed 
in Python (3.7, Python Software Foundation) using the 
OpenCV library (4.2) [23].

Image denoising and enhancement
Due to the reflection of the wheat leaves under sun-
light, the instability of the camera during shooting, and 

the influence of the natural environment, some noise 
will appear in the images. In addition, the image may 
be interfered with by random signals during the trans-
mission process. It was thus necessary to enhance and 
denoise the wheat ear images.

The image was transformed into CIELAB [24], and 
the L channel with a threshold of 2 was used for adap-
tive histogram equalization to enhance the image (using 
Python with OpenCV library, the createCLAHE func-
tion with parameter clipLimit = 2.0, tileGridSize = (8, 
8)), and the size of kernel 3 was used to perform 
median filtering to remove noise (using Python with 
OpenCV library, medianBlur function with param-
eter ksize = 3). Figure  2 shows the original wheat ear 
image and the enhanced wheat ear image. The wheat 
ear image is mainly composed of the ear, leaf, stem, and 
soil, and the ear color characteristics are more obvious 
when the wheat is in the filling stage. During the fill-
ing stage, the wheat ear turns yellow gradually, showing 
obvious color differences with the leaf and stem, as well 
as the ground, but the difference between the wheat 
leaf color and stem color is small (Fig.  2). Enhancing 
the image increases the brightness of the wheat ears in 
the image, which makes the contrast between the wheat 
ear and the background of the stem and leaf more obvi-
ous, which is advantageous for the extraction of wheat 
ears’ features.

Table 1  Summary of the main image acquisition characteristics of the two experimental sites

The images collected by the mobile phones were taken by holding mobile phones or holding selfie sticks at an altitude of 1.5–2.2 m. The UAV images were taken at an 
altitude of 3 m

Sites Date Weather Plot Image size Camera Image Focal length 
(mm)

Resolution (mm)

Xuchang 06/05/2019 Sunny cloudy 12 4000 × 3000 Redmi Note 7 60 5 0.27–0.54

Xuchang 14/05/2019 Sunny cloudy 12 4000 × 3000 Redmi Note 7 60 5 0.27–0.54

Xuchang 14/05/2019 Sunny cloudy 12 4000 × 3000 DJI Phantom 3 Pro 20 4 1.00

Yuanyang 15/05/2019 Sunny cloudy 10 4000 × 3000 Redmi Note 7 490 5 0.27–0.54

Xuchang 16/05/2019 Sunny 12 4000 × 3000 Redmi Note 7 60 5 0.27–0.54

Xuchang 20/05/2019 Sunny 12 4000 × 3000 Redmi Note 7 324 5 0.27–0.54

Xuchang 13/05/2020 Sunny cloudy 12 4608 × 3456 HUAWEI nova 3i 48 4 0.18–0.26

Original image     Image enhancement    Image clustering       Image segmentation    Data set construction 

Non-wheat ear 

1 wheat ears 

2 wheat ears 

3 wheat ears 

Fig. 1  Flow charts of wheat ear image processing. The original image was enhanced using adaptive histogram equalization, then the original 
image was segmented into four types of data through K-means clustering segmentation: non-wheat ear, one wheat ear, two wheat ears, and three 
wheat ears
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Image segmentation and wheat ear contour extraction
The K-means algorithm is a clustering algorithm based 
on iterative solution [25–27]. It uses distance as the index 
of similarity, meaning that the closer the two data points 
are, the greater the similarity. The traditional method of 
extracting features by hand is time-consuming and labor-
intensive and can easily produce errors in the images of 
dense wheat ears. In this study, a K-means-based image 
segmentation algorithm was used for wheat ear segmen-
tation to replace the traditional manual feature extraction 
of wheat ear color features and thus reduce the error of 
manual extraction, which was realized in Python Scikit-
learn [28] library using the KMeans function.

After image enhancement, there were obvious differ-
ences between the color of the wheat ear and the back-
ground color of the stem, leaf, and transition colors. 
If these are directly clustered into two groups, it will 
lead to segmentation errors in the color transition area. 
Therefore, three clustering centers were selected to use 
K-means clustering to quantify the color of the wheat 
ear image. After clustering, the wheat ear image will only 
contain a specified number of categories. The process is 
as follows: the wheat ear image is clustered, three cluster-
ing centers are selected, the clustered wheat ear image is 
converted into a gray image, and the color of the wheat 
ear is assigned to black. A flow chart of this process is 
shown in Fig. 3.

According to the color characteristics of the wheat ear 
after clustering, the image of the wheat ear after clus-
tering is binarized (black for wheat ears, white for the 
background area, gray for the stalk and leaf ). As there is 
noise in the ear image after segmentation, some of the 

ears stick to each other. For the binary image, a morpho-
logical opening with anchor 6 ×  6 was used to remove 
background noise and the burr around the wheat ear, and 
then morphological closing with anchor 3 × 3 was used 
to fill in the holes in the wheat ear, as indicated in Fig. 4a, 
b. The black area is the contour of the wheat ear after 
morphological processing.

By comparing the binary image with the original image, 
the wheat ear image was obtained using the contour 

Fig. 2  Image denoising and enhancement. a Original image b enhanced image. The original image was transformed into CIELAB, and the L 
channel was enhanced using adaptive histogram equalization with a threshold of 2. Enhanced image increases the brightness of the wheat ears to 
distinguish the background, such as the stem and leaves

Fig. 3  Wheat ear image segmentation algorithm flow. Three 
segmentation categories are beneficial for the segmentation 
accuracy: soil background, stem and leaf, and wheat ear, which were 
realized in Python Scikit-learn library using the KMeans function
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feature of the wheat ear and the information of the center 
of mass, area, perimeter, and boundary frame of each 
black connected area, which were developed in OpenCV 
library using the findContours function with param-
eters contours = 1 and hierarchy = 5. After obtaining 
the boundary frame of each black connected region, the 
wheat ears were marked on the original image by a mask, 
and then the marked wheat ears were divided into small 
images and saved. A border was added to the original 
image to prevent the ears near the border from becoming 
indivisible. A complete wheat ear segmentation map was 
obtained as shown in Fig. 4c.

Data set construction
Seventy of 490 images of Xuchang on May 20, 2019 and 
50 of the 324 images of Yuanyang on May 15, 2019 were 
reserved for testing. The remaining 694 images were seg-
mented into 160,784 small images as a training set and 
a verification set. Other collected images were used to 
measure the generalization ability of the method. After 
batch segmentation, it was found that due to strong light, 
part of the wheat leaves had strong reflection, resulting 
in them being mistaken as wheat ears. Second, the wheat 
ear after segmentation was basically one wheat ear, two 
wheat ears, or three wheat ears, and more than three 
wheat ears in one image was rare. Therefore, to reduce 
complexity in the establishment of the CNN model, 
the recognition categories were output into four cat-
egories: non-wheat ear, one wheat ear, two wheat ears, 
and three wheat ears. Following the segmentation, the 
two types of images with more images were non-wheat 
ears and one wheat ear, whereas the images with more 
than three wheat ears, particularly three wheat ears, 
were less. Therefore, to maintain the equilibrium of the 
data set, four types of wheat ear were selected from the 

segmentation images. Four categories of labeled image 
data sets were selected, and the number of non-wheat 
ear, one wheat ear, two wheat ears, and three wheat ears 
were 1483, 4246, 1173, and 893, respectively. Some of 
these results are provided in Fig. 5.

To provide sufficient data for model training, 12,000 
augmented images of non-wheat ear, one wheat ear, 
two wheat ears, and three wheat ears were produced by 
randomly cutting, flipping, rotating, and adjusting the 
brightness of the original image [29–31]. The expanded 
data set was divided into a training and test set, and each 
class included 11,000 training sets and 1000 test sets.

CNN model construction and recognition
Deep learning allows the neural network to grasp data 
features by itself, providing a more abstract high-level 
representation by combining low-level features to 

Fig. 4  Wheat ear contours feature extraction diagrams. a Clustering image, b binarization image by removing background noise and the burr 
around, filling in the holes inside in the wheat ear, c masked segmentation image. The image segmentation and contour extraction were developed 
in the Python OpenCV library using the findContours function, then wheat ears are marked on the original image

Fig. 5  Illustration of the data set images. a Non-wheat ear, b one 
wheat ear, c two wheat ears, and d three wheat ears. The data set 
images of two and three ears of wheat were mostly the result of 
adhesion
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describe the high-level attribute categories or features 
of the identified objects [32–35]. A large amount of data 
was available following clustering segmentation, and the 
segmented image was composed of four types of images: 
non-wheat ear, one wheat ear, two wheat ears, and three 
wheat ears. The CNN model was established to train 
and recognize the four categories of segmented images. 
Through clustering segmentation, a large number of 
wheat ear images were obtained and could effectively 
scale the data without feature engineering. Furthermore, 
the algorithm exhibited strong adaptability and was easily 
convertible.

The CNN model was composed of five convolution lay-
ers, five pooling layers, 3 × 3 convolution layer convolu-
tion kernels to extract features, and two fully connected 
layers. The structure is indicated in Fig.  6, the active 
function is Rectified Linear Unit (ReLU), and the softmax 
cross entropy loss function is used to quantify the CNN 
method accurate. Following model training, the images 
of the test set were segmented after image enhancement, 
color reversal, and clustering. The trained CNN model 
was loaded, and the segmented photos were provided 
to the model for recognition and classification. Then the 
number of each classification was recorded, finally add-
ing all of the different quantities to obtain the number of 
ears.

Statistical analysis
The Xuchang site test data set was divided into three 
parts: random test, different shooting time, and UAV 
shooting using SPSS software (25.0, SPSS, Chicago, IBM, 
USA) (Table  2), and 120 images were used to evaluate 
the performance. Fifty images of 10 different cultivars 
in the Yuanyang site data set were used to evaluate the 
repeatability.

To evaluate the classification performance of the CNN 
model, the precision (P), recall (R), macro F1-score 
(F1,ma), and micro F1-score (F1,mi) were calculated to eval-
uate the performance of multi-label classification model 
[36, 37], which are defined as follows:

where TPi, is true positive, which denotes the number of 
images correctly classified as change type i; FPiis false posi-
tive, which denotes the number of images incorrectly clas-
sified as change type i; and FNiis the false negative for class 
i, which denotes the number of images of type i that are 
incorrectly classified as other types. Pi and Ri are respec-
tively precision and recall for class i, n is the number of 
classes (this study, n = 4), and Pmi and Rmi are respectively 
precision and recall for Micro-F1.

In addition, R2 and RMSE, the relative root means square 
error (RRMSE) [38], and bias were used to quantify the 
counting performance of the model:

(1)Pi =
TPi

TPi + FPi

(2)Ri =
TPi

TPi + FNi

(3)F1,ma =
2

n

n
∑

i=1

Pi × Ri

Pi + Ri

(4)F1,mi = 2×
Pmi × Rmi

Pmi + Rmi

Pmi =

∑

n

i=1 TPi
∑

n

i=1 TPi +
∑

n

i=1 FPi

Rmi =

∑

n

i=1 TPi
∑

n

i=1 TPi +
∑

n

i=1 FNi

(5)R
2
= 1−

∑

n

i=1(mi − ci)
2

∑

n

i=1

(

mi−
−

m

)2

(6)RMSE =

√

√

√

√

1

n

n
∑

i=1

(mi − ci)
2

Fig. 6  CNN model. C convolutional layer, P pooling layer, F fully connected layer



Page 7 of 13Xu et al. Plant Methods          (2020) 16:106 	

where n is the number of images, and mi and ci are 
the manual annotation and identifying counts for 
image i, respectively, and 

−

m is the average of the man-
ual annotation counts.

Results
The CNN framework was trained and tested in 
PyCharm (2019.3, PyCharm, Prague, JetBrains, Czech) 
using the TensorFlow framework (TensorFlow1.15, 
Google, California, USA) on a Windows 10 PC Intel 
Core i7 processor (3.6 GHz) with 16 GB RAM. In this 
paper, a 1400  ×  1400 image was cut from the origi-
nal image from the center position and then scaled 
to 700 × 700. After segmentation, the four categories 
images were uniformly scaled to 100 ×  100. On this 
basis, the performance evaluation of the CNN machine 
learning method could be compared to the manual 
annotation and counting of the image.

(7)RRMSE =
RMSE

−

m

× 100%

(8)Bias =
1

n

n
∑

i=1

(mi − ci)

Model accuracy evaluation
To assess the classification results, after 8000 epochs of 
training, we adopted indices of macro F1-score and micro 
F1-score calculated on a multiclass confusion matrix. The 
classification results obtained by the methods are shown 
in Fig. 7 and Table 3. Figure 7 lists the confusion matrix 
in detail, which calculates the statistics of the classified 

Table 2  Summary of the manual counting of ears of winter wheat at the Xuchang and Yuanyang experimental sites

The cultivar image of Yuanyang was acquired on May 15, 2019, whereas the UAV image of Xuchang was acquired on May 14, 2019

SD standard deviation, CV coefficient of variation

Sites Data set Samples size Min Mean Max Range SD CV (%)

Xuchang Test 60 166 250 357 191 43 17

May 6 10 173 239 309 136 47 20

May 14 10 137 195 232 95 30 15

May 16 10 251 291 326 75 26 9

May 20 10 194 233 275 81 29 13

All date 40 137 240 326 189 48 20

UAV 20 117 176 255 138 43 24

Yuanyang SM159 5 274 315 367 93 33 11

XN20 5 316 346 387 71 27 8

XN511 5 265 322 362 97 39 12

YM11 5 289 318 360 71 27 8

ZM119 5 219 254 271 52 23 9

ZM136 5 276 301 320 44 16 5

ZM158 5 220 250 285 65 27 11

ZM318 5 202 280 310 108 45 16

ZM32 5 265 338 378 113 44 13

ZM36 5 232 270 303 71 27 10

All cultivars 50 202 300 387 185 44 15

All 170 117 253 387 270 58 23

Fig. 7  The multiclass confusion matrix of the different classification 
results using the test data. The method achieved good results in the 
classification of each category 
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image number by comparing the actual label in the test 
data with the predicted types and indicates whether the 
model is confounding the different classes. In Table  3, 
the precision, recall, and F1-score of the four classes are 
calculated on the basis of the confusion matrix, which 
embodies the classification accuracy of each class. From 
the table, we notice that the macro F1-score and micro 
F1-score both achieved 98.47%. From this result, we can 
infer that the recognition accuracies of non-wheat ear, 
one wheat ear, two wheat ears, and three wheat ears were 
99.8, 97.5, 98.07, and 98.5%, respectively.

Evaluation of performance of wheat ear images
Test images were preprocessed and clustered, and then 
each image was segmented, saved, and sent to the CNN 
model for recognition and counting to test the generali-
zation ability of the model. The comparison between the 
detected ears of wheat images and the manual counting 
results is shown in Fig. 8.

The performances evaluated over the test data sets 
showed only a slight degradation in comparison with the 
test and different datasets, providing some confidence on 
the robustness of the K-means-CNN method (Fig. 8 and 
Table  4). The model-based identification of the wheat 
ears was in good agreement with the manual identifica-
tion (Fig. 8a and Table 4). The result demonstrated that 
the high R2 = 0.96 of the K-means-CNN counting was 
highly correlated with manual counting and demon-
strated low data dispersion (Table 4).

However, performances of identify degrade for the 
different dates of grain filling stage (Table  4). The bias 
between the identified and the manual ear values 
ranged from 0.1 ears (May 20) to 11.60 (May 14) ears for 
Xuchang (Table  4). The poorer performances observed 
on May 6 (R2 = 0.82, RMSE = 22.54) may be attributed 
to the early stage when the wheat ear is not yet mature. 
In these conditions, the contrast between the wheat ears 
with the stems and leaves is poor, whereas the character-
istics are more obvious and easily identifiable in the later 
stages, and thus the best performance was observed on 
May 20 (R2 = 0.99, RMSE = 3.24, Table  3). The results 
suggested that the images should be taken at the later 

grain-filling stage around May 20. Our results are in good 
agreement with those of earlier studies [11].

To further evaluate the robustness of the proposed 
method, 20 UAV images not involved in training were 
used for verification. The relationship between the 
K-means-CNN model and manual ear counting was posi-
tive and strong, with an R2 of 0.97 and an RMSE of 9.47 
ears. This result showed that the images collected by the 
UAVs and hand-held devices all achieved high recogni-
tion accuracy using the proposed method (Fig.  9). In 
addition, the UAV data set bias values were –5.00, indi-
cating a slight overestimation of the number of ears.

Repeatability across different cultivars
Fifty subsamples with 10 different cultivar extracts of the 
subsample were selected in the Yuanyang site to evalu-
ate the repeatability of the estimation when the images 
were taken under slightly different cultivation conditions. 
High consistency between the 10 cultivars was observed 
(Fig. 10), with the residuals showing a standard deviation 
of about 12.43 ears.

The performance of the algorithm was further tested 
using the 50 images. Manual counting was used as the 
validation data, as before. Table  5 provides the statisti-
cal summary results obtained for the Yuanyang plots. 
The results showed a decrease by up to 0.04 in R2 while 
maintaining a similar correlation, and the bias between 
the identified and the manual ear values ranged from 
− 15.40 ears (ZM32) to 18.80 (ZM158) ears for Yuanyang 
(Table  4). The R2 value remained close to the Xuchang 
values for all but the ZM119 and ZM136 images, where 
the correlation values shifted slightly from the original 
values. The best performance was observed in XN511 
(R2 = 0.99, RMSE = 8.97, Table  5), and the lowest was 
observed in ZM119 (R2 = 0.81, RMSE = 10.14, Table  5). 
This suggested that the genotypes of the different culti-
vars will slightly affect the identification results. These 
results suggest that more genotype images are needed to 
contribute to model training to achieve higher accuracy.

Evaluation of performances in field condition
Forty-eight subsamples of wheat ear images with ground 
standard were selected in the Xuchang site to evaluate 

Table 3  Quantitative comparison of the classification accuracy for different classes using the test data

The recognition accuracy of non-wheat ear, one wheat ear, two wheat ears, and three wheat ears all have higher precision

Class Precision (%) Recall (%) F1-score (%) Macro F1-score (%) Micro F1-score (%)

Non-wheat ear 99.80 98.42 99.11 98.47 98.47

1 wheat ear 97.50 97.70 97.60

2 wheat ears 98.07 97.98 98.03

3 wheat ears 98.50 99.80 99.14
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the accuracy and practicality of the proposed method. It 
can be concluded that 48 samples are highly correlated 
with measurement counts in the field condition (Fig. 11).

The performance of the method was further tested 
using 48 subsamples. One Square meter area was selected 
in the center of the image area for manual counting in the 
field condition, which was used as the test data. Figure 11 

a b

c d

Fig. 8  Comparison between the wheat ears identified using the model with the corresponding manual values by visually identifying the ears in the 
images. Data for the three experimental data sets are well identified. a Test images, b UAV images, c different date images, and d all test images in 
Xuchang

Table 4  Relationships between the identified and manual wheat ear counting for the three data sets

The K-means-CNN counting was highly correlated with manual counting

Sites Dataset Samples size Slope Intercept RMSE (ears) R2 RRMSE (%) Bias (ears)

Xuchang Test 60 0.97 8.53 0.03 0.97 0.01 1.40

May 6 10 0.88 41.25 22.54 0.82 9.43 6.90

May 14 10 0.82 47.97 16.10 0.93 8.26 11.60

May 16 10 0.85 46.10 10.30 0.84 3.54 2.90

May 20 10 0.91 21.79 3.24 0.99 1.39 0.10

All dates 40 0.88 34.68 14.87 0.92 6.21 7.10

UAV 20 0.87 18.52 9.47 0.97 5.40 -5.00

All 120 0.97 9.05 10.84 0.96 4.63 2.24
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shows the results obtained, with the residuals showing a 
standard deviation of about 23.96 ears/m2, the relation-
ship between the method and measurement ear counting 
was positive and strong, with an R2 of 0.91 and RRMSE 
of 4.04%. The results showed a decrease in R2, indicating 
a slight reduction the identification results in field con-
dition. The reason may be related to the small number 
of wheat ears hidden under the stems and leaves during 
field counting.

Discussion
The results showed that the number of wheat ears iden-
tified by K-means and CNN was consistent with the 
manual ear counting results (Fig. 8 and Table 4). The dif-
ference between the two methods (Fig. 8) indicated that 
the accuracy is poor in the earlier grain-filling stage. 
The results of Alkhudaydi et  al. [39] also suggested that 
this model performed well during the grain-filling stage. 
These results confirm that better-quality images can be 
obtained from the later grain-filling stage.

Our method is based on target localization. Add-
ing a later stage would probably have led to a marginal 
improvement, as the ears in the grain-filling stage are a 
relatively homogeneous yellow color. Furthermore, the 
images were grouped into three groups to avoid the dis-
carded region where the contrast between the ear and 
background is not great enough in the K-means segmen-
tation. The identification error caused by the adhesion of 
the wheat ear and background proposed by Fernandez-
Gallego et al. [11] was effectively reduced. In addition, the 
wheat ear images were divided into non-wheat ear, one 
wheat ear, two wheat ears, and three wheat ears, which 
could effectively reduce the identification inaccuracy 
caused by the adhesion of multiple wheat ears, which has 

Fig. 9  Image segmentation and wheat ear recognition. a 
Segmentation and recognition of the UAV image, b segmentation 
and recognition of the mobile phone image. The images collected by 
the UAV and hand-held device all achieved high recognition accuracy

Fig. 10  Comparison of wheat ear identification from the images of 
10 different cultivars extracted from the same subsample

Table 5  Relationships between the identified and manual counting of 10 cultivars

ZM119, ZM136, and ZM32 overestimated the number ears

Sites Data set Samples size Slope Intercept RMSE (ears) R2 RRMSE (%) Bias (ears)

Yuanyang SM159 5 0.61 127.37 12.47 0.98 3.96 3.60

XN20 5 0.81 67.88 6.91 0.96 2.00 3.00

XN511 5 0.92 32.27 8.97 0.99 2.79 8.00

YM11 5 0.71 92.03 7.29 0.98 2.30 0.40

ZM119 5 0.84 36.91 10.14 0.81 3.99 − 4.40

ZM136 5 0.96 0.33 11.67 0.89 3.87 − 10.60

ZM158 5 0.78 74.03 20.35 0.92 8.13 18.80

ZM318 5 0.94 18.50 5.64 0.98 1.91 1.40

ZM32 5 0.70 86.44 20.45 0.95 6.05 − 15.40

ZM36 5 0.60 110.48 10.24 0.97 3.79 2.00

All cultivars 50 0.85 45.09 12.43 0.92 4.15 0.68
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been a significant issue in traditional image processing 
methods [10].

Overall, the proposed K-means and CNN algorithm 
showed suitable performance in identifying wheat ears 
at early or later growth stages in all datasets (R2 = 0.96, 
RMSE = 10.84 ears, Table 3), and similar outcomes were 
presented by Zhou [40]. The result using K-means to 
segment the wheat ear features accurately and train the 
machine learning model not only improved the model 
training efficiency but also improved the recognition 
accuracy. This method was used to classify the wheat ear 
instead of using target recognition to reduce the com-
plexity of the algorithm, and together with the CNN 
model, could effectively and accurately identify and count 
the wheat ears.

Our work is useful for the development of a low-cost, 
rapid, and easy-to-implement method to identify wheat 
ears. We used images collected by the UAV platform 
to verify the training model of the mobile phone photo 
collection, which also achieved good results. However, 
determining the actual area represented in the photos 
still needs to be resolved. Current research mainly uses 
measures such as placing a reference substance as a 
ground standard [22] or fixing the shooting height [18], 
which reduces the practicability of the method. In the 
future, augmented reality (AR) technology could be used 
to solve this problem, which is one of our research aims.

It should be noted that different cultivars had a slight 
influence on the identification results. Although the 
training data of the CNN model were constructed on 
May 14, 2019 and May 20, 2019, and thus the sample 

size of the training data set was not large, the model still 
achieved good recognition of the images collected on the 
other dates. In our opinion, the best shooting date is at 
the late stage of grouting, when the wheat ears turn yel-
low and the stems and leaves are still green. In addition, 
we believe that the use of mobile devices to shoot images 
at the height of 1.5–2.2 m in sunny cloudy is a better way 
of shooting, as it matches the height of the person and 
facilitates the practical application of this method.

Conclusion
In this study, wheat ear images were collected using 
hand-held equipment, which is fast and convenient. 
Through K-means clustering segmentation, complete 
wheat ear images were automatically segmented, and 
automatic feature extraction of the wheat ear images was 
realized. The code can be found at https​://githu​b.com/
xuxin​468/earco​uting​.

The segmented images were divided into four types, 
and the CNN model was established to realize the rec-
ognition and counting of the wheat ear images. The 
correlation coefficient R2 was 0.96. The recognition accu-
racies of the non-wheat ear, one wheat ear, two wheat 
ears, and three wheat ears were 99.8, 97.5, 98.07, and 
98.5%, respectively. The results showed that the recogni-
tion accuracy of the CNN model could be improved by 
using image processing technology to accurately locate 
and segment wheat ears before training and recognizing, 
thus meeting the requirements of field-based wheat ear 
counting.

The present study has several improvements over pre-
vious studies: (1) K-means clustering was used to auto-
matically and accurately segment the wheat ear, thus 
reducing the traditional workload of manual labeling and 
the associated human errors. (2) The wheat ear adhesion 
problem was resolved by creating four types of labeled 
datasets, including the non-wheat ear, single wheat ear, 
two wheat ears, and three wheat ears, which transforms 
the task of wheat ear recognition into the task of wheat 
ear image classification. (3) K-means was used to seg-
ment the wheat ear features accurately, and as a result, 
the efficiency and accuracy of the machine learning 
model was significantly improved.

The wheat ear recognition model based on CNN dem-
onstrates strong generalization ability and robustness 
and can be applied to UAV platform as well. This paper 
combined automatic image processing and CNN meth-
ods, which is of great technical value for the recognition 
and counting of wheat ears in the field.

Our aim was to help reduce the cost of image acquisi-
tion and improve the application scope of this method. 
This method can be used to estimate wheat ear numbers 
and improve the efficiency of wheat yield estimation. At 

Fig. 11  Comparison between the wheat ears identified using the 
model with the corresponding values by manual counting in field 
condition. 48 samples are highly correlated with measurement 
counts in the field condition

https://github.com/xuxin468/earcouting
https://github.com/xuxin468/earcouting
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the same time, it can also provide breeders with a fast 
and automated high-throughput wheat ear counting 
system to improve breeding efficiency. Although this 
method is applied to the segmentation and counting of 
wheat ears, it can also be applied to the segmentation 
and counting of other plants. In future work, our aim is 
to use AR measurement technology, which can provide 
a ground standard for the images.
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