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Abstract 

Background:  Deeper roots help plants take up available resources in deep soil ensuring better growth and higher 
yields under conditions of drought. A large-scale semi-field root phenotyping facility was developed to allow a water 
availability gradient and detect potential interaction of genotype by water availability gradient. Genotyped winter 
wheat lines were grown as rows in four beds of this facility, where indirect genetic effects from neighbors could be 
important to trait variation. The objective was to explore the possibility of genomic prediction for grain-related traits 
and deep root traits collected via images taken in a minirhizotron tube under each row of winter wheat measured.

Results:  The analysis comprised four grain-related traits: grain yield, thousand-kernel weight, protein concentra‑
tion, and total nitrogen content measured on each half row that were harvested separately. Two root traits, total root 
length between 1.2 and 2 m depth and root length in four intervals on each tube were also analyzed. Two sets of 
models with or without the effects of neighbors from both sides of each row were applied. No interaction between 
genotypes and changing water availability were detected for any trait. Estimated genomic heritabilities ranged from 
0.263 to 0.680 for grain-related traits and from 0.030 to 0.055 for root traits. The coefficients of genetic variation were 
similar for grain-related and root traits. The prediction accuracy of breeding values ranged from 0.440 to 0.598 for 
grain-related traits and from 0.264 to 0.334 for root traits. Including neighbor effects in the model generally increased 
the estimated genomic heritabilities and accuracy of predicted breeding values for grain yield and nitrogen content.

Conclusions:  Similar relative amounts of additive genetic variance were found for both yield traits and root traits but 
no interaction between genotypes and water availability were detected. It is possible to obtain accurate genomic 
prediction of breeding values for grain-related traits and reasonably accurate predicted breeding values for deep root 
traits using records from the semi-field facility. Including neighbor effects increased the estimated additive genetic 
variance of grain-related traits and accuracy of predicting breeding values. High prediction accuracy can be obtained 
although heritability is low.
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Background
Wheat, one of the most important food crops, is widely 
grown across different regions in the world [1]. To meet 
the demand of a growing human population, an inten-
sification of agriculture, which allows greater yield to 
be obtained from existing farmland with sustainable 
inputs of water and fertilizer, is needed [2, 3]. Many of 
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the constraints on yield in agricultural systems have been 
found in the root system of crops [4]. However, the inves-
tigation of the root system is difficult because of the com-
plexity of soil environments compared with laboratory 
conditions [5]. To investigate the deep root system in a 
non-laboratory condition as well as to obtain direct and 
stable measurements, a semi-field root phenotyping facil-
ity has been constructed recently [6]. A semi-field system 
is defined as a closed environment presenting all features 
necessary for crop life cycle completion, within which the 
natural ecosystem is under control while still exposed to 
ambient environmental conditions [7]. Figure  1a shows 
one part of the semi-field root phenotyping facility 
including two experimental beds, among which one was 
equipped with minirhizotrons. This facility has a capacity 
of 150 rows (Fig. 1b) in each of eight experimental beds 
so that relatively large plant populations could be sown 
and studied. For practical purposes, every two independ-
ent experimental beds were built next to each other. The 
facility is designed for both direct phenotyping of root 
traits through minirhizotrons and allow testing different 
of genotypes based along a water stress gradient.

Plant breeding has been successful in increasing the 
yield of most major crops [8]. This has contributed to 
a steady increase in cereal production without a large 
increase in acreage devoted to the production [8]. This 
significant progress has been driven by the extensive 
research in developing and establishing new breeding 
technologies and rapid uptake of such new technolo-
gies by breeding programs [9]. A strategy suggested to 

improve breeding has been the utilization of molecular 
markers in breeding programs through marker-assisted 
selection (MAS) [10]. The use of genome-wide associa-
tion studies (GWAS) combined with subsequent MAS 
has been shown as an effective tool in breeding program 
for qualitative traits under simple Mendelian genetic 
control [11]. For complex polygenic quantitative traits, 
e.g. grain yield, the application of MAS did not provide 
considerable genetic improvement. Instead, the imple-
mentation of genomic selection (GS) has been studied 
and shown as a promising method to be applied in the 
breeding program for polygenic traits [12].

In GS, a large set of markers are simultaneously incor-
porated into a model in order to obtain genomic pre-
diction (GP) of genomic expected breeding values 
(GEBVs) [12]. The efficiency of a breeding program can 
be improved and the cost of resources can be reduced by 
applying GP to predict GEBVs of individuals for selec-
tion as early as possible [13]. The accuracy of GP in wheat 
has been investigated in several recent studies, in which 
different population sizes and various models/methods 
were compared [9, 14–17]. Many factors can affect the 
prediction accuracy in GP, for example, size of training 
data, relatedness between training and test individuals, 
cross-validation strategies, marker density, as well as the 
model/method used for prediction of GEBVs [18, 19].

One of the most popular statistical models used for 
prediction of GEBVs is genomic best linear unbiased pre-
diction (GBLUP), which integrates the genomic relation-
ship matrix (G) constructed from all available markers 

Fig. 1  Cross-section of two beds in semi-field facility and vertical view of one bed [6, 31]. a is cross-section of two beds; b is vertical view of one 
bed
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[20]. Based on the GBLUP model, various model exten-
sions have been proposed and investigated. For exam-
ple, in addition to additive genetic effects, non-additive 
genetic effects such as dominance and epistatic effects 
can also be included in the model [21]. Another exam-
ple is modeling of genotype-by-environment interactions 
[22].

Modeling of interaction between individuals is yet 
another kind of model extension. The interaction 
between individuals was demonstrated in animals in 
respect to social interactions. With animals, these inter-
actions can be social interaction in a group, while with 
plants they can be physical due to competition for lim-
ited recourses. A previous study showed that interaction 
among individuals could create substantial heritable vari-
ation [23]. The methods presented in this previous study 
[23] were applied to a population of layer chickens with 
high mortality due to pecking behavior and estimates of 
genetic parameters for survival days was obtained [24]. 
The results showed that two-thirds of the total heritable 
variation was hidden to classical analysis due to social 
interactions [24]. This interaction among individuals 
also been known as indirect genetic effects (IGEs), which 
arise whenever genetic effects expressed in one individ-
ual influence the phenotype of a social partner [25], have 
been shown as important to trait variation. For example, 
it has been shown that IGEs might lead to phenotypic 
and genotypic evolution moving in different directions 
[26].

In practice, micro-environments differ across a field, 
and neighboring individuals can have similarity in their 
phenotypic performance because of the sharing of micro-
environment [27]. Therefore, some studies investigated 
the spatial effects in linear mixed model by fitting the 
spatial effects using different strategies [27–29]. Another 
issue which should be considered when plants are grown 
in an individual row field trial is the influence from the 
neighboring individuals. This can be through competi-
tion for resources, such as water and nutrients from the 
soil, and light capture above ground [30]. The IGEs from 

neighbors can be substantial for plant growth. It was 
shown that the inclusion of such effects from neighbors 
could decrease error in estimation of genetic effects [30]. 
However, to our knowledge, the study of neighbor effects 
using genomic information is very rare.

The objectives of this study were to (1) investigate 
genetic variation in grain-related and deep root traits 
in winter wheat; (2) study genomic by water availability 
interaction; (3) quantify neighbor effects when lines were 
grown in adjacent rows; and (4) analyze the possibilities 
of predicting breeding values of new wheat lines based 
on genomic prediction from the semi-field root pheno-
typing facility.

Results
In this study, four grain-related traits: grain yield (GY), 
thousand-kernel weight (TKW), protein concentration 
(PC), and total nitrogen content (NC), and two root traits 
were total root length between 1.2 and 2 m depth (TRL) 
and root length in four intervals on each tube (IRL). 
Based on the grain-related and root data collected from 
a semi-field phenotyping system, variance components 
(VCs) for each trait were estimated and the accuracy 
in genomic prediction of breeding values (ACC) were 
assessed by cross-validation. Two sets of models, with 
or without the effects of neighbors on both sides of each 
row were applied. The first model (GM1) allocated the 
phenotypic variation into direct genetic and environmen-
tal components, while the second model (GM2) allocated 
the phenotypic variation into an indirect genetic compo-
nent from the neighbors on both sides in addition to the 
effects included in the first model.

Descriptive statistics
Table  1 gives the descriptive statistics of all the traits 
analyzed in this study. As shown in Table 1, the number 
of observations for grain-related traits were from 1043 
to 1045. Some records were missing compared with the 
potential of 1200 (four experimental beds, two harvest-
ing areas/bed and 150 rows/bed) records, due to failure 

Table 1  Descriptive statistics for all the traits

GY is grain yield, TKW is thousand-kernel weight, PC is protein concentration, NC is total nitrogen content, TRL is total root length between 1.2 and 2 m depth, IRL is 
root length in four intervals on each tube

Type Trait Unit No. of records Average S.D. Min Max

Grain-related GY t ha−1 1043 7.44 1.60 1.52 12.71

TKW g 1044 39.99 3.82 25.47 50.35

PC % 1045 11.49 0.93 9.41 15.50

NC kg N ha−1 1043 135.82 26.72 28.70 218.07

Root TRL cm 255 99.79 37.13 16.21 198.59

IRL cm 986 25.81 20.01 0.01 80.46
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in growth or seeding errors in these rows. The average 
of GY, TKW, PC and NC, respectively, were 7.44 t ha−1, 
39.99  g, 11.49% and 135.82  kg  N  ha−1. For root traits, 
there were 255 records for TRL and 986 records for IRL. 
The average of TRL was 99.79  cm, and the average for 
IRL was 25.81 cm.

Estimation of variance components
The models used separated total phenotypic variance 
into variance components (VCs) due to additive genetic 

effects, non-additive genetic effects, additive genetic 
effects of neighbors, non-additive genetic effects of 
neighbors, row effects, spatial effects over the facil-
ity separately for each wet and dry harvesting area, and 
finally error variance. The estimated VCs were expressed 
as relative variance components (RVCs), which were the 
proportion of each VC that contributed to the total phe-
notypic variance among lines. The RVCs for grain-related 
traits are shown in Fig. 2. For each grain-related trait, two 
different models with neighbor effects (GM2) or without 

Fig. 2  Estimated relative variance components for grain-related traits in different models and wet or dry parts. a is grain yield (GY); b is 
thousand-kernel weight (TKW); c is protein concentration (PC); and d is total nitrogen content (NC). g is additive genomic effects; l is line effects; 
gn is additive genomic effects for neighbors; ln is line effects for neighbors; r is row effects; s is spatial effects; e is residual effects. y-axis is relative 
variance components (RVC); x-axis is the model used and the area records obtained from; p values are for comparisons between wet and dry areas 
for each effect
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neighbor effects (GM1) were applied. The proportion of 
each VC was calculated for the wet and dry areas sepa-
rately due to the heterogeneous spatial variance in wet/
dry recording areas.

Averaged over wet and dry areas, the RVC of genomic 
effects (g) when using GM1 which is equivalent to esti-
mated narrow sense heritability ( ĥ2 ), were 0.414 for GY, 
0.263 for TKW, 0.350 for PC and 0.447 for NC. For PC, 
ĥ2 in the wet area was around 3.8% larger than in the dry 
area (p = 0.114). For other grain-related traits, ĥ2 were 
more similar between wet and dry areas. In GM2, inclu-
sion of neighbor effects increased the ĥ2 for GY and NC. 
Averaged across two areas, the ĥ2 increased 0.219 for GY 
and 0.233 for NC.

The RVC for line effects (l) were 0.391 for GY, 0.697 for 
TKW, 0.537 for PC, and 0.335 for NC, averaged across 
wet and dry areas by using GM1. For PC, the RVC for 
l in the wet area was 4.00% larger than in the dry area 
(p = 0.072). The RVC for l were similar between two areas 
in other grain-related traits. Significant change when 
using GM2 was also observed in the RVC of l for GY and 
NC. When including neighbor effects in the model, RVC 
for l decreased to 0.086 for GY and to 0.026 for NC.

The sum of RVCs for genomic effects (g) and line 
effects (l) is equivalent to estimated broad sense herit-
ability ( Ĥ2 ), were 0.805 for GY, 0.958 for TKW, 0.886 
for PC and 0.783 for NC. Similar to ĥ2 , Ĥ2 in the wet 
area was around 3.9% larger than in the dry area for PC 
(p = 0.027). For other grain-related traits, Ĥ2 were more 
similar between wet and dry areas. Whereas in GM2, 
including of neighbor effects did not increase the Ĥ2 for 
all grain-related traits, which were 0.718 for GY, 0.955 for 
TKW, 0.855 for PC, and 0.705 for NC averaged across 
two areas.

The RVC for row effects (r) were relatively small com-
pared with genomic effects (g) and line effects (l), the 
average of two areas using GM1 were 0.060 for GY, 0.006 
for TKW, 0.013 for PC, and 0.056 for NC. There was also 
a trend of decreasing the RVC of r in GY and NC when 
including neighbor effects in the model (GM2).

When using GM1, the RVCs due to spatial effects (s) 
were 0.027 for GY, 0.008 for TKW and 0.034 for PC in 
the wet area, compared with wet area, they were 0.032 
(GY, p = 0.677), 0.018 (TKW, p = 0.028) and 0.071 (PC, 
p = 0.014) in the dry area, i.e. the spatial variances were 
different in the wet and dry harvesting areas for TKW 
and PC. The RVC due to s for NC was same for both wet 
and dry areas. A tendency of a decrease in RVC of s was 
also observed in GY and NC when including neighbor 
effects in the model (GM2).

The RVC due to residuals (e) were quite similar and 
stable, compared with other effects, between wet and dry 
areas as well as different models. When using GM1, the 

RVCs for e were 0.106 for GY, 0.023 for TKW, 0.050 for 
PC and 0.128 for NC. The inclusion of neighbor effects 
did not change the RVC for e for TKW and PC, while for 
GY and NC the RVC of e decreased.

Consistent with the significant change of RVCs in 
GY and NC when using GM2, a higher proportion of 
genomic effects for neighbor (gn) and genomic effects for 
line (ln) was observed in these two traits compared with 
TKW and PC. The RVC of gn were 0.034 for GY and 0.013 
for NC, and the RVC of ln were 0.084 for GY and 0.110 
for NC. The neighbor effects were small in TKW and PC. 
The differences in RVCs of all the common effects (g, l, 
r, s, e) between wet and dry areas were similar between 
GM1 and GM2.

Estimated RVCs for each line in root traits are shown 
in Fig. 3. Due to model complexity, only the models with-
out neighbor effects (RM1 and RM2) were applied for 
root traits. For each minirhizotron tube, there was one 
TRL record while there were four repeated IRL records. 
In addition to the effects accounted in RM1 for TRL, 
RM2 was applied to IRL to account for the fixed depth 
interval effects and random row effects. Compared with 
grain-related traits, the ĥ2 were small in root traits. The 
ĥ2 were 0.030 for TRL and 0.055 for IRL, the RVCs of line 
effects (l) were 0.171 for TRL and 0.252 for IRL. To sum 
up RVCs for genomic effects (g) and line effects (l), the 
Ĥ2 were 0.201 for TRL and 0.306 for IRL. However, the 
RVCs for spatial effects (s) and environmental effects (e) 
were large in both root traits. The RVCs for s were 0.464 
for TRL and 0.177 for IRL, and the RVCs for e were 0.334 
for TLR and 0.481 for IRL. For IRL, the effects of row (r) 
accounted for 0.036 of the total phenotypic variances.

In addition to the estimation of VCs, coefficients of 
genetic variation (cv), calculated as the ratio between 
square root of variance explained by additive genomic 
effects (g) and the mean value of observations, were also 

Fig. 3  Estimated relative variance components for root traits. g is 
additive genomic effects; l is line effects; r is row effects; s is spatial 
effects; e is residual effects. y-axis is relative variance components 
(RVC); x-axis is trait; TRL is total root length between 1.2 and 2 m 
depth, IRL is root length in four intervals on each tube
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computed and the results are presented in Fig. 4. In order 
to compare grain-related and root traits, only the results 
from models without neighbor effects are reported here. 
For grain-related traits, the cv were 8.24% for GY, 3.81% 
for TKW, 2.49% for PC and 7.80% for NC. The cv for root 
traits were 3.88% for TRL and 4.20% for IRL. Even though 
the ĥ2 of root traits were low compared with grain-related 
traits, the cv of root traits were higher than for TKW and 
PC.

Genomic prediction and cross‑validation
Leave-one-line-out cross-validation (LOO-CV) was 
conducted for models with or without neighbor 
effects. In each round of the cross-validation, the phe-
notypic records of one line were left out as validation 
dataset while the rest were used as training dataset to 
estimate model parameter and to obtain the predic-
tions of genomic expected breeding values (GEBVs) 
for the left-out line. After all the validation rounds, the 
predictions of GEBVs for all lines were obtained. The 
accuracy of prediction of GEBVs (ACC) for each line 
in grain-related and root traits are presented in Fig.  5. 
This is the accuracy of predicting a genotyped line 
that does not have own phenotypic records but only 
genomic information. When using GM1, the ACC was 
0.535 for GY, 0.480 for TKW, 0.440 for PC, and 0.505 
for NC. Considering neighbor effects in the model sig-
nificantly increased the ACC of direct breeding values 
for GY, PC and NC, which were 0.598 (GY), 0.485 (PC) 
and 0.578 (NC) when using GM2. Compared with GY, 
PC and NC, the ACC of TKW, which was 0.467, did not 
increase when using GM2. When using models without 
neighbor effects, the ACC for TRL was 0.334, and for 
IRL ACC was 0.264.

The potential inflation of predictions for each line 
in grain-related and root traits are presented in Fig. 6. 

When using GM1, the regression coefficients were 
1.045 for GY, 1.122 for TKW, 0.788 for PC and 1.054 
for NC. When using GM2 by considering neighbor 
effects, the regression coefficients were 1.072 for GY, 
1.094 for TKW, 0.855 for PC and 1.078 for NC. The 
inflation of prediction from GM1 and GM2 were simi-
lar. For root traits, the regression coefficients were 
1.218 for TRL and 1.082 for IRL. The regression coef-
ficients for all the grain-related and root traits were 
not significantly different from unity, i.e. there were no 
significant inflation in the predicted genomic breeding 
values.

Fig. 4  Coefficient of genetic variation for grain-related and root traits. 
y-axis is coefficient of genetic variation; x-axis is trait; GY is grain yield, 
TKW is thousand-kernel weight, PC is protein concentration, NC is 
total nitrogen content, TRL is total root length between 1.2 and 2 m 
depth, IRL is root length in four intervals on each tube

Fig. 5  Accuracy of prediction for each line in grain-related and root 
traits. y-axis is accuracy of prediction; x-axis is trait; GY is grain yield, 
TKW is thousand-kernel weight, PC is protein concentration, NC is 
total nitrogen content, TRL is total root length between 1.2 and 2 m 
depth, IRL is root length in four intervals on each tube

Fig. 6  Inflation of prediction for each line in grain-related and 
root traits. y-axis is regression coefficient of yc on ĝ ; x-axis is trait; 
GY is grain yield, TKW is thousand-kernel weight, PC is protein 
concentration, NC is total nitrogen content, TRL is total root length 
between 1.2 and 2 m depth, IRL is root length in four intervals on 
each tube; horizontal dashed line is regression coefficient of 1, which 
is the situation of no inflation, horizontal solid line is regression 
coefficient of 0
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Discussion
In this study, traits related to grain yield and root length 
of winter wheat measured in a semi-field root pheno-
typing facility [6] were analyzed. Variance components 
were estimated and genomic predictions were explored 
by using models with or without effects of neighboring 
genotypes.

The models used in the current study did not include 
genomic by water availability area (wet and dry) inter-
action effects since preliminary investigation showed 
that the proportion of variance due to genomic by water 
availability were close to zero. Some previous studies 
also showed that there was no line by water availability 
area interaction [31, 32]. One of the reasons could be the 
design of the water availability gradient. The observations 
of grain-related traits were obtained for wet and dry areas 
by dividing the row into two equal sized areas that were 
harvested separately. The division of the water availabil-
ity gradient created two areas including a wet area with a 
short distance to water and a dry area with long distance 
to the sub-surface watering system. This gradient of water 
availability could reduce the variation and cause difficulty 
in detecting genomic by water availability since wet area 
had much less soil mass and thus less access to nutrients 
than the dry area. Other factors might influence the lack 
of subsurface irrigation response, and it has been specu-
lated that a lack of nutrients will lower growth potential 
when water is supplied to a nutrient poor subsoil, and do 
not provide water to the nutrient rich topsoil being dry 
at all locations across the water availability gradient [31]. 
Therefore, for the current study, genomic by water avail-
ability effects were excluded in the models.

Estimates of variance components and heritabilities
There were four grain-related and two root traits ana-
lyzed in this study. The proportion of total phenotypic 
variance accounted for by genomic effects (g), corre-
sponding to narrow sense heritability (h2), was estimated. 
Using different models, the estimates of h2 of GY ranged 
from 0.41 to 0.67. The estimates were higher than the 
h2 reported from some previous studies using pheno-
typic records only [33, 34]. One of the studies on win-
ter wheat GY reported h2 estimates, which ranged from 
0.26 to 0.75, for 12 F3 wheat populations [35]. The h2 
estimate of TKW was estimated as 0.26 from both mod-
els. The h2 of TKW reported from previous studies were 
similar or higher than in the current study, e.g. 0.32 [36] 
and 0.57 [37]. One study using genomic data obtained h2 
estimated as 0.52 [38], which is also higher than in the 
current study. The reason could be the inclusion of line 
effects (l) in the current models while in the previous 
study [38] l were not included due to lack of replication. 

Such models may lead to biased estimates of additive 
genetic variance due to non-additive genetic effects. The 
estimates of h2 were around 0.35 for PC using both mod-
els. Compared with 0.51 reported in a previous study 
[38], the lower estimates in the current study can also be 
caused by fitting of l as discussed earlier. Estimated h2 for 
NC range from 0.45 to 0.72 using different models in the 
current study. One previous study showed that the broad 
sense heritability (H2) of NC as 0.31 in which 31% of the 
genetic variance was contributed by genotype and 66% 
was contributed by genotype by year interaction effects 
[39].

The estimates of relative variance components (RVCs) 
for line effects (l) varied from 0.34 to 0.70 for grain-
related traits when using GM1, and from 0.03 to 0.70 
when using GM2. The variances of l include the part 
of the genetic variance, which cannot be explained by 
genomic markers as well as non-additive genetic effects. 
The effects due to common area and origin of the seeds 
used when establishing the experiment could also be 
included into the variances of l. Decreasing RVCs for l 
when including neighbor effects in the model, for GY and 
NC, also suggested that the variances of l were affected 
by variances from other sources e.g. neighbors. In the 
ideal randomization of the experiment, each line will not 
have the same neighbor twice, to prevent the variance of 
l including variances from neighbors, but in the current 
study, the randomization could be one of the reasons for 
this issue. Some preliminary studies were done by com-
paring models including l or not, from which the results 
suggested that the exclusion of l can create more infla-
tion in genomic predictions (results not shown) indicat-
ing poorer fit for such a model. Therefore, the models 
reported in the current study always considered the 
effects of l. The sum of RVCs for genomic effects (g) and 
line effects (l), the estimates of broad sense heritabili-
ties (H2) were obtained, which varied from 0.78 to 0.96 
for grain-related traits when using GM1, and from 0.71 
to 0.95 when using GM2. The estimate of H2 represents 
the total genetic variation in a trait, except for the addi-
tive genetic variances explained by genomic informa-
tion, it can also include the additive genetic variances not 
explained by markers and the non-additive genetic vari-
ances. When using GM1, the estimates of H2 were much 
larger than h2 and the differences ranged from 1.7 to 3.7 
times but when using GM2, the ratio between H2 and h2 
decreased to a range of 1.0 to 3.7. The high level of H2 
suggested that the grain-related traits were under a high 
degree of genetic determination.

Spatial effects (s) were modeled in this study and the 
estimates of RVCs for spatial effects ranged from 0.01 
to 0.07 for grain-related traits with both wet and dry 
areas and in both GM1 and GM2. Modeling neighbor 
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effects did not affect the proportion of variances caused 
by s. The modeling of s assumed a heterogeneous vari-
ance for the two water availability areas separately, 
since preliminary results showed that the pattern and 
the degree of s were different when analyzing the data 
within each water availability area. Spatial effects were 
investigated by other studies in different ways. For 
example, considerable spatial variation was found in 
wheat data [28]. In their study, spatial variation was 
corrected by introduce of a covariable, which was cal-
culated as the value of phenotypic in each plot minus 
mean phenotypic value of neighboring plots. This intro-
duces a regression of a function of the data that might 
lead to underestimation of total phenotypic variances. 
In the current study, this was avoided by modeling the 
spatial effects as a running sum of random effects due 
to rows surrounding each plot. Another discovery from 
the current study was that a more pronounced spatial 
variation was observed under dry areas, and led to a 
lower h2 than the wet areas.

Neighbor effects were considered by applying GM2 and 
both genomic effects for neighbors (gn) and line effects 
for neighbors (ln) were modeled. The estimates of RVCs 
for gn ranged from 0.003 to 0.042, and ranged from 0 
to 0.110 for ln. Modeling of neighbor effects led to sig-
nificant change of variance structures for both GY and 
NC, whereas the changes in TKW and PC were small. 
For both GY and NC, the RVCs accounted by genomic 
effects (g) increased considerably but the line effects 
(l) decreased in the same amount. This indicates that 
if neighbor effects are excluded from the model a large 
part of these effects are picked up by the effects of l. In a 
study for cassava data [40], neighbor effects were investi-
gated as competitive ability. From their simulation study, 
accuracy in estimating genotypic effects increased when 
including competitive effects in the model. Through 
their analysis for nine trials and four traits, significant 
competition effects were observed for 12 of the 36 com-
binations [40]. In plants, genotype response to a studied 
specific stress can be complicated by competition effects 
from neighbors [30]. The neighbor effects reported in 
the current study were a type of indirect genetic effects, 
which are mostly known as social genetic effects in ani-
mal breeding. The social genetic effects can be positive, 
for which mothering behavior is one example, or negative 
such as competition and aggression. A previous study 
reviewed the social genetic effects in animal breeding, 
and it showed that in most of the animal populations, 
there are substantial social (indirect) genetic effects [41]. 
In animals, the social genetic effects come from the n-
1 other individuals in a group of n individuals, and the 
magnitude of social effects may depend on group size 
[41]. In the current study, since the lines were planted 

in rows, the indirect genetic effects were modeled as the 
neighbor effects from both sides of the row studied.

For the two root traits analyzed in this study, the esti-
mates of h2 ranged from 0.03 to 0.05, whereas the pro-
portion of other effects were generally larger than h2, 
e.g. the effects of line accounted for 0.17 to 0.25 of total 
phenotypic variances. Though h2 estimates for root traits 
were low compared with grain-related traits analyzed 
in this study, relatively, there were the same amount 
of genetic variation in the root traits. The coefficients 
of genetic variation (cv) of root traits were even higher 
than TKW and PC, which suggested that the amounts 
of genetic variation for root traits were comparable with 
genetic variation for the yield related traits. However, the 
root measurements were dominated by other effects e.g. 
spatial effects and measurement errors, which caused 
the limited h2 obtained for root traits using the current 
phenotyping methods for root length. The sum of RVCs 
for additive genetic effects (g) and line effects (l) shows 
the broad sense heritabilities (H2), which varied from 
0.20 to 0.31 for root traits. The estimates of H2 were 5.6 
to 6.8 times larger than h2 and the differences between 
H2 and h2 in root traits were even larger than in grain-
related traits. The degree of H2 suggest that the root traits 
are under a considerable degree of genetic determination 
even though only a small proportion can be explained by 
genomic information. In addition, the current number 
of records also limited model complexity for these two 
traits. To reduce environmental noise in future experi-
ments the number of root imaging campaigns should be 
increased and practices to reduce spatial effects within 
the facility should be implemented.

The genotype by environment interaction caused by 
water availability was investigated in the current study, 
but no interaction was found. This interaction might be 
better investigated by changing the strategy of harvest-
ing, for example harvest the plants in smaller unit instead 
of half row each time, which allow for more observations 
to be obtained along with the water gradient. Models that 
better fit the observations could be expected when the 
plants been harvested in smaller blocks. Large environ-
mental variances were observed in root traits and led to 
the relatively small genetic RVC. To solve this problem 
and reduce the influence from non-genetic effects, the 
precision of the root imaging should be increased.

Genomic prediction and validation
Both accuracy for prediction of GEBVs (ACC) and infla-
tion of predictions were investigated in this study for all 
grain-related and root traits, and the results from models 
with or without neighbor effects were compared.

The ACC were measured as the correlation between 
corrected phenotypic values (yc) and GEBVs and then 
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scaled by square root of heritability. This corresponds 
to the correlation between predicted and true breed-
ing values [42]. The ACC ranged from 0.440 to 0.535 for 
the four grain-related traits when using GM1, and from 
0.467 to 0.598 when using GM2 including neighbor 
effects. The ACC showing the accuracy of predicting the 
underlying true additive genetic value, clearly shows the 
power of GP utilizing information from related individu-
als to predict the additive genetic value of specific lines. 
Inclusion of neighbor effects significantly improved the 
ACC for GY and NC. The increase in ACC for GY and 
NC were consistent with the marked change in the VCs 
pattern when including neighbor effects. Improvement 
of ACC when modeling neighbor effects were also found 
in the previously mentioned study for cassava where up 
to 25% increase in accuracy was observed [40]. The ACC 
obtained in this experiment was expected to be relatively 
low due to the small size of the population used to train 
the models.

In a previous study, it was reported that predictive abil-
ity (PA), which was the correlation between corrected 
phenotypic values (yc) and GEBVs, for TKW ranged 
from around 0.26 to 0.50 (corresponding as 0.36 to 0.69 
in ACC) by using two different validation schemes [38]. 
In this previous study, tenfold cross-validation, where the 
whole population was randomly divided into 10 random 
groups, gave higher PA than the leave-set-out cross-vali-
dation (LSO-CV), where each set was defined as one of 
the breeding cycles included in the study. Relatively larger 
PA compared with the current study could be explained 
by the materials used for the previous study was 1152 F6 
winter wheat lines from four different breeding cycles, 
which was much larger than in the current study, i.e. the 
increased accuracy can be explained by the larger train-
ing population. Effect from size of training dataset on the 
genomic prediction accuracy was investigated in the pre-
vious studies [16, 17]. For example, in the study for 309 
spring barley lines, it was concluded that using less than 
200 lines in the training set could result in low PA [16]. 
Another study explored a total of 988 advanced wheat 
breeding lines for yield, lodging, and starch content, and 
the results showed that training population of around 
700 lines were enough to yield the highest observed pre-
dictive abilities [17]. In the current study, only 84 lines 
were involved in the cross-validation procedure. Consid-
ering this, the degree of PA was reasonable, but higher 
PA could be expected by increasing the number of lines 
included in the experiment.

Compared with TKW, the ACC obtained for PC were a 
bit higher. The PA for PC was also investigated in previ-
ous study [38]. The authors reported that in the tenfold 
cross-validation scheme, the PA for PC were also bit 
higher than for TKW, however, the PA for PC obtained 

from the LSO-CV scheme were lower than TKW. The PA 
of PC reported from another two studies were above 0.6 
by using models integrating genomic information, which 
merged the merits of genomic selection with phenotypic 
selection in preliminary GY trials [43, 44].

The ACC of NC were very close to the results for GY, 
and were 0.505 using GM1 and 0.578 using GM2. One 
of the reasons could be that the NC was computed from 
grain GY and grain PC concentration. NC is required 
to maintain active photosynthesis in the canopy to sup-
port GY and PC [45]. Grain NC is a reflection of nitrogen 
use efficiency, which could increase GY at a given level 
of nitrogen fertilizer [39]. The moderate ACC obtained 
for NC can ensure a reasonable genetic progress when 
breeding for grain NC and facilitate the breeding for 
nitrogen use efficiency.

For root traits in the present study, the ACC were 0.264 
to 0.334, which was consistent with the lower estimates 
of VC due to additive genetic effects. Though the ACC 
were lower than for grain-related traits, it was clearly 
shown that reasonable accuracies could be obtained for 
the studied root traits in the current phenotyping facility.

The accuracy obtained for genomic predictions of 
additive genetic effects were as expected for both grain-
related and root traits since a relative limited train-
ing population were used in this study. Previous studies 
clearly showed that increasing the training population 
significantly improve the prediction accuracy [16, 17].

Perspectives in practical plant breeding
Crops with deep roots have the ability to access 
more water and nutrients in the soil. Continuing cli-
mate change is expected to increase the frequency of 
periods of limited water supply, so that crops often 
would experience drought during growth [46]. With 
deeper roots, plants can uptake potential resources in 
deeper soil to ensure the plants having better growth 
and higher yields. Therefore, breeding of plants with 
deeper roots has the potential to ensure greater resil-
ience towards drought in future crops. The semi-field 
facility combined with genomic prediction of deep 
root traits presented in the current study provided the 
opportunity to investigate the possibility of breeding 
for deeper root and better production. This facility can 
overcome problems caused by the difference between 
field conditions and laboratory conditions, and root 
growth can be observed while the plant growing in 
the soil. The results from the current study clearly 
show the possibility of genomic prediction in grain-
related and deep root traits. Selection of lines based 
on genomic prediction can shorten the breeding cycle 
and decrease the cost in breeding programs. The mod-
els applied in the current study provide the possibility 
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to investigate the indirect genetic effects through 
accounting for the effects from neighbor lines. This is 
important for the strategy where crops been planted in 
rows. The genetic correlation between direct genetic 
effects and indirect genetic effects could be investi-
gated in a larger experimental design in the future. In 
the current study, we assumed that direct and indi-
rect genetic effect were independent due to the lim-
ited amount of lines included in the experiment. With 
genomic information and appropriate methods/mod-
els, it is possible to select lines with better yield and 
drought resistance before being planted in the field.

Conclusions
In this study, genomic prediction was carried out for 
grain-related and root traits of winter wheat measured 
in a semi-field root phenotyping facility. Phenotypic 
and genotypic data were analyzed for 84 winter wheat 
lines. Two sets of models were used in order to study 
consequences of including neighbor effects in the 
model. We report estimated variance components and 
performance of genomic prediction using a leave-one-
line-out cross validation strategy.

Results showed that the grain-related traits, GY, 
TKW, PC, and NC had high to moderate narrow sense 
heritabilities. For root traits, heritabilities were low. 
However, the relative amount of additive genetic vari-
ation for deep root traits were of similar magnitude as 
for the grain-related traits but the low heritabilities 
were caused by very large environmental variance due 
to spatial effects and measurement errors.

In no case did we find any genotype by water avail-
ability interaction, which could be due to the water 
availability design in this study, which was a gradient 
and this might weaken the power to detect the geno-
type by water availability interaction.

For the above ground grain-related traits, we found 
effects of neighbors. The effects were generally small, 
but including neighbor effects increased the estimated 
additive genetic variance of the traits and increased 
accuracy of predicting breeding values for lines with-
out own phenotypic records.

For both grain-related and root traits it was possi-
ble to obtain genomic predictions of additive genetic 
effects with an accuracy as expected based on the lim-
ited training population available.

Especially the root traits had large environmental 
variance due to large spatial effects and measurement 
error. More accuracy in the methods for phenotyp-
ing deep root length are needed to obtain accurate 
genomic predictions.

Methods
Plant material
For this study, 84 winter wheat (Triticum aestivum L.) 
lines with 15  K SNP genotypic data (Additional file  1: 
Table S1) were selected. The lines included high yielding 
northern, and central European varieties and advanced 
breeding lines from Sejet Plant Breeding and Nordic 
Seed. These winter wheat lines were sown in a semi-
field root phenotyping facility [6] having a capacity of 
150 rows per experimental bed. The novel phenotyping 
facility was named “RadiMax” and developed in order to 
study the root growth and soil resource acquisition under 
semi-field conditions. In total, the facility covers 1600 m2 
for all the beds constructed. The facility allows roots to 
be observed in the 0.7–2.8 m soil depth interval through 
the minirhizotrons using a multispectral imaging system. 
A total of four experimental beds were used for the study 
of winter wheat. The beds were constructed in pairs with 
that were operated independently with 150 rows in the 
north side and 150 rows in the south side of the construc-
tion. Along each row, a water stress gradient was created 
by a multi-depth sub-irrigation system and movable rain-
out shelters. Figure 1a shows a part of the semi-field root 
phenotyping facility including two experimental beds, of 
which one was equipped with minirhizotrons. The bot-
tom of facility is sloped allowing for the sub-irrigation 
system to be applied and this induced the water gradi-
ent. Among the four experimental beds for winter wheat, 
two were equipped with minirhizotron along the sloped 
bottom. In each of the four beds, there were an equal 
number of rows (150, Fig. 1b). The experiment had four 
replicates with one replicate in each experimental bed, so 
there were 600 experimental rows in total. For practical 
reasons harvesting were carried out in two areas of each 
row due to limitations in the harvesting tools. This har-
vest strategy split each experimental bed into two areas 
from the middle. A wet area with short distance to the 
water supply and a dry area with a longer distance to the 
water supply as shown in Fig. 1. Therefore, for the grain-
related traits, potentially, there could be 1200 records 
(four beds, two harvesting area for each bed, 150 rows for 
each bed) available for analysis.

Four grain-related traits (Additional file  1: Table  S2) 
were analyzed in this study: grain yield (GY), thousand-
kernel weight (TKW), protein concentration (PC) and 
total nitrogen content (NC). For these traits, each row 
was split into wet and dry areas and harvested separately. 
Therefore, potentially, 1200 observations were available, 
with four beds, 150 rows within each bed, and within 
each row, a wet and a dry area. GY was calculated based 
on the respective area of each sample and the dry grain 
weight and expressed as t/ha. PC was determined using 
near-infrared spectroscopy (Intratec grain analyzer, Foss, 
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Hilleroed, Denmark) and expressed as percentage of GY. 
NC was computed from GY and PC as NC =

GY×PC
6.25

 
(ISO 16634-2:2016 2016). The TKW was determined as 
a measure for kernel size [38]. A detailed description of 
grain-related data can also be found in a previous study 
focusing on deep root phenotyping [31].

Root length from minirhizotron imaging
Half of the experimental beds were equipped with 
minirhizotron tubes, and two root traits were analyzed in 
this study. Root imaging was done by using a multispec-
tral imaging system, in which a portable trolley system 
and four multispectral camera systems were used to allow 
for multivariate image analysis using five wavebands [32]. 
When taking the image, the portable trolley carried four 
cameras moved through facility, with a step size of four 
rows in each movement. Then the side by side cameras 
were dropped into four adjacent minirhizotron tubes 
(one camera in each tube) and images of the root were 
taken along the tube with 5 cm intervals. The root images 
were made along the upwards facing side of the minirhi-
zotrons, therefore enable photography of roots covering a 
soil depth interval of 0.7 m to 2.7 m [6]. The subsequent 
image analysis delivered an estimate of living root length 
in each image using the U-Net Neural Network (CNN) 
architecture to provide automated image segmentation of 
root structures [47]. A detailed description of the image 
analysis strategy can be found in a previous study [31]. 
On average, there were 56 images (4 × 5  cm) used for 
each minirhizotron tube after editing. The root data were 
based on root imaging made on 18th June 2018, where 
21,057 root images were recorded by four cameras from 
the 300 minirhizotrons. The imaging of roots was done at 
late flowering early grain filling since it is widely accepted 
that the cereal root system reaches the maximum exten-
sion after anthesis and limited root development gave 
been observed during grain filling [48]. Total root length 
between 1.2 and 2.0 m soil depth (TRL, Additional file 1: 
Table S3) was expressed as the total length of living roots 
found in all the images taken from each minirhizotron 
tube. Root length in four intervals on each tube (IRL, 
Additional file  1: Table  S4) was expressed as the total 
length of living roots found in all the images taken from 
each depth interval in each minirhizotron tube. The root 
data were edited as follows before the genetic analysis:

1.	 Remove records with failure in getting observation of 
root in individual image.

2.	 Divide depth into 8 depth intervals and remove 
records from above 1.2 m or below 2.0 m soil depth.

3.	 For each interval, remove records out of mean ± 3sd.

4.	 remove records from lines without genomic informa-
tion.

The number of records kept in each step can be found 
in Additional file 2: Table S5 and the detail depth interval 
can be found in Additional file 2: Table S6. After editing by 
rules from step 1 to 4, 14,270 records (images) were kept 
for further analysis, i.e. to calculate root length from inter-
vals in each tube and root length for each tube.

Statistical models and methods
Two sets of models, with or without the effects of neigh-
bors from both sides of each row were applied to each trait 
in this study. These models were designed to analyze the 
causes of phenotypic variation and decompose the pheno-
typic variances into different components. The first model 
(GM1) allocated the phenotypic variances into direct 
genetic and environmental components, while the second 
model (GM2) allocated the phenotypic variance into an 
indirect genetic component of neighbors in addition to the 
first model. In these two models, the direct genetic com-
ponents included both genomic and non-genomic effects 
of the lines own genotype, the indirect genetic compo-
nents included both genomic and non-genomic effects of 
the neighbor lines on both sides of the proband, and the 
environmental components included the non-genetic parts 
caused by repeated records on each row, the spatial effects 
over the facility, and residual error.

Spatial effects were included in both models to account 
differences in measures over the facility due to factors such 
as soil compaction. As shown in Fig. 1b, modeling of spa-
tial effects was realized by identifying the location for each 
sample. Then the combination of the location for a sample 
together with the locations for 5 neighbors from each side 
of this sample was treated as the spatial effect. The total 
spatial effects on a row was thus the sum of the joint effects 
of 11 row locations. When modeling the spatial effects, first 
the location of one record was treated as the centre point 
and marked as 0 on the coordinate axis, the 5 locations on 
the left side were marked as − 1 to − 5, and the 5 locations 
on the right side were marked as 1 to 5. Then the 11 loca-
tions from − 5 to 5 were combined and treated as the spa-
tial effects for the record at the centre point. Border effects 
at the ends of the beds were handled by including virtual 
rows outside the facility. This also have the advantage of 
properly accounting for possible border effects towards the 
ends of each bed. The effects of neighbors were the effects 
of the two nearest neighbor lines of each sample, one from 
the west side and one from the east side.

Specially, for grain-related data, the following models 
were applied:
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In GM1, y referred to the vector of phenotypes, which 
were the records collected from the field or lab, for one 
trait, the length of y was equal to the number of records 
for each trait (1043 for GY; 1044 for TKW; 1045 for PC; 
1043 for NC); b was the vector of fixed effects of interac-
tion between experimental bed and dry/wet harvesting 
area to correct for the differences might be caused by 
experimental bed and area, the length of b was 8 (4 beds 
× 2 areas); g was a vector of genomic effects for each line 
which was the direct genetic effects could be explained 
by genomic marker information, the length of g was 84; l 
was the vector of line effects for differences between lines 
not explained by genomic markers, the length of l was 84; 
r was the vector of row effects to account for the repeated 
records in each row (one record for wet and one record 
for dry area), the length was 600 (150 rows × 4 beds); s1i 
and s2i were the vectors of spatial effects, which 
accounted for the environmental effects induced by the 
location of plants, for area 1 (wet) and 2 (dry), respec-
tively, the length of s1i and s2i were 310 (150 rows × 2 
beds + 5 virtual rows on the east boarder + 5 virtual rows 
on the west boarder); X, Zl, Zr, Zs1i , Zs2i were the corre-
sponding designed matrices of conformable size allocat-
ing phenotypic records to b, g, l, r, s1i , s2i , and e was a 
vector of residual terms with the same length as y, all the 
incidence matrices had same number of rows which were 
equal to the length of y for each trait, and the number of 
columns for each incidence matrix was same with the 
length of their corresponding vector of effects. In GM2, 
in addition to effects in GM1, effects of neighbors were 
modeled and gn was the vector of genomic effects for 
each neighbor line, which was the indirect genetic effects 
could be explained by genomic marker information, the 
length of gn was 84; ln was the vector of line effects for 
each neighbor line, which was the indirect genetic effects 
for differences between lines not explained by genomic 
markers, the length of ln was 84; Zne was the correspond-
ing conformable design matrix allocating phenotypic 
records to gn and ln of the neighbor from the east side, 
Znw was the corresponding conformable design matrix 
allocating phenotypic records to gn and ln of the neighbor 
from the west side. In these models, g, l, gn, ln, r, s1i , s2i 
and e were random parameters with assumptions 
g ∼ N

(
0,Gσ 2

g

)
 , l ∼ N

(
0, Iσ 2

l

)
 , gn ∼ N

(
0,Gσ 2

gn

)
 , 

(GM1)

y = Xb + Zlg + Zll + Zrr +

11∑

i=1

Zs1i s1i +

11∑

i=1

Zs2i s2i + e,

(GM2)y = Xb+Zlg+Zll+(Zne+Znw )gn+(Zne+Znw )ln+Zrr+

11∑

i=1

Zs1i s1i+

11∑

i=1

Zs2i s2i+e,

ln ∼ N
(
0, Iσ 2

ln

)
 , r ∼ N

(
0, Iσ 2

r

)
 , s1i ∼ N

(
0, Iσ 2

s1i

)
 , 

s2i ∼ N
(
0, Iσ 2

s2i

)
 , e ∼ N

(
0, Iσ 2

e

)
 , and the random effects 

were assumed to be independent of each other. G 

denoted the genomic additive relationship matrix built 
following the VanRaden method 1 [20], and I denoted an 
identity matrix.

There were two root traits, TRL and IRL, analyzed in 
this study. For each minirhizotron tube, there was one 
TRL record while there were four IRL records since 
the IRL was recorded for each depth interval along the 
minirhizotron tube. Therefore, two different models were 
applied to these two traits.

For TRL data, the following model was applied:

where b1 was the vector of fixed effects of experimen-
tal bed to correct for differences that might be caused 
by bed, the length of b1 was 2 because only two beds 
had minirhizotrons; b2 was the vector of fixed effects 
of camera to correct for the difference caused by imag-
ing camera, the length of b2 was 4 (4 cameras); s was the 
vector of spatial effects accounted for the environmental 
effects induced by the location of plants, the length of s 
was 310 (150 rows × 2 beds + 5 virtual rows on the east 
boarder + 5 virtual rows on the west boarder); X1, X2, Zsi 
were the corresponding conformable design matrixes 
allocating phenotypic records to b1, b2 and s. In these 
models, si was random parameter with si ∼ N

(
0, Iσ 2

si

)
 

and was assumed independent from other effects. y, g, l, 
e, Zl, G and I were same as in GM1.

In addition, for IRL data, the following model for 
repeated records was applied:

where b3 was the vector of fixed effects of depth inter-
val to correct for the difference might be caused by soil 
depth, the length of b3 was 4 (4 intervals); X3 was the 
corresponding designed matrix allocating phenotypic 
records to b3, X3 had same number of rows which were 
equal to the length of y, and the number of columns was 
same with the length of b3. y, g, l, r, e, Zl, Zr, G and I were 
same as in GM1. b1, b2, si, X1, X2 and Zsi were same as in 
RM1.

(RM1)

y = X1b1 + X2b2 + Zlg + Zll +

11∑

i=1

Zsi si + e,

(RM2)

y = X1b1 + X2b2 + X3b3 + Zlg + Zll + Zrr +

11∑

i=1

Zsi si + e,
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Compared with RM1 for TRL, RM2 for IRL included 
b3 to account and correct for the effect of depth inter-
val along each minirhizotron tube. Besides, because of 
repeated records for IRL compared with TRL, RM2 also 
included r to account for the random row effects due to 
the repeated records on each row.

The models applied in this study were developed based 
on preliminary investigations. First, genomic by water 
gradient effects were investigated and the variance of 
genomic by water gradient effects were all not signifi-
cantly different from 0. Secondly, spatial effects were 
investigated in each wet or dry area separately, and the 
results showed that the variances of spatial effects were 
different in the two divisions of the water gradient. 
Thirdly, neighbor effects were first modeled as different 
effects of varieties east or west of the proband. Initial 
results showed that the correlation of neighbor effects 
from two sides was close to 1 and therefore could be 
combined into one effect with common variance. Finally, 
the neighbor effects were also modeled for root traits but 
it was difficult to carry out prediction using such complex 
model on these traits due to the few rows with minirhi-
zotron tubes. Therefore, the simplified models described 
above were applied and compared in this study.

Estimation of variance components
All models were analyzed by the restricted maximum 
likelihood method (REML) using the DMU software 
package [49]. Relative variance component (RVC), which 
was the percentage of each weighted VC accounted for 
the total phenotypic variance for each line, was com-
puted. The phenotypic variance of line means was calcu-
lated as the sum of weighted variance components:

where G was the average diagonal of the G matrix, nr was 
the average number of rows for each line, nsi and ns were 
the average numbers of replicates for each line, and i was 
1 (wet) or 2 (dry), and ne was average number of repli-
cates across all fields for each line. For the grain-related 
traits which having two areas (wet and dry), the pheno-
typic variance was calculated for each area separately due 
to the difference in spatial variance in the two area levels. 

σ 2
PiBM1

= Gσ 2
g + σ 2

l + σ 2
r /nr + 11σ 2

si
/nsi + σ 2

e /ne,

σ 2
PiBM2

= Gσ 2
g + σ 2

l + 2Gσ 2
gn
+ 2σ 2

ln

+ σ 2
r /nr + 11σ 2

si
/nsi + σ 2

e /ne,

σ 2
PRM1

= Gσ 2
g + σ 2

l + 11σ 2
s /ns + σ 2

e /ne,

σ 2
PRM2

= Gσ 2
g + σ 2

l + σ 2
r /nr + 11σ 2

s /ns + σ 2
e /ne,

The RVC of g was equivalent to estimated narrow sense 
heritability ( ĥ2 ) in this study, which was the narrow sense 
heritability (h2) of a line mean and thus was a function of 
the experimental design (number of replicates etc.) as is 
commonly done in the plant breeding community.

In addition, the coefficient of genomic variation (cv) 
was calculated for each trait, according to: cv =

σg
x  , in 

which σg was the square root of genomic variance and x 
was the average of observations for each trait.

Genomic prediction and cross‑validation
To estimate the accuracy of genomic breeding values 
(GEBVs), a leave-one-line-out cross-validation (LOO-
CV) strategy was applied. In each LOO-CV round, the 
phenotypes of one line were masked and then all other 
lines were used to train the prediction model and to 
predict the line with phenotypes masked and this was 
continued until all lines were predicted.

Before LOO-CV, the whole dataset was used to esti-
mate VCs and fixed effects. Corrected phenotypes (yc) 
were computed by subtracting the estimates of the 
fixed effects. Accuracy of prediction (ACC) was meas-
ured as correlation between average yc and GEBVs, and 
then scaled by square root of ĥ2 ( 

√
cor

(
yc, ĝ

)2
/ĥ2) ) [42], 

where yc was the average yc for each line. This scaling 
yields an estimate of the correlation between GEBV 
and underlying true breeding values for lines that only 
have genomic information but no own phenotypic 
record. Furthermore, to assess inflation of GEBVs, the 
regression coefficient of yc on ĝ  was calculated, where a 
regression of unity indicates no inflation.
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