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Abstract 

Background:  Tomato gray leaf spot is a worldwide disease, especially in warm and humid areas. The continuous 
expansion of greenhouse tomato cultivation area and the frequent introduction of foreign varieties in recent years 
have increased the severity of the epidemic hazards of this disease in some tomato planting bases annually. This 
disease is a newly developed one. Thus, farmers generally lack prevention and control experience and measures in 
production; the disease is often misdiagnosed or not prevented and controlled timely; this condition results in tomato 
production reduction or crop failure, which causes severe economic losses to farmers. Therefore, tomato gray leaf spot 
disease should be identified in the early stage, which will be important in avoiding or reducing the economic loss 
caused by the disease. The advent of the era of big data has facilitated the use of machine learning method in disease 
identification. Therefore, deep learning method is proposed to realise the early recognition of tomato gray leaf spot. 
Tomato growers need to develop the app of image detection mobile terminal of tomato gray leaf spot disease to 
realise real-time detection of this disease.

Results:  This study proposes an early recognition method of tomato leaf spot based on MobileNetv2-YOLOv3 model 
to achieve a good balance between the accuracy and real-time detection of tomato gray leaf spot. This method 
improves the accuracy of the regression box of tomato gray leaf spot recognition by introducing the GIoU bound-
ing box regression loss function. A MobileNetv2-YOLOv3 lightweight network model, which uses MobileNetv2 as 
the backbone network of the model, is proposed to facilitate the migration to the mobile terminal. The pre-training 
method combining mixup training and transfer learning is used to improve the generalisation ability of the model. 
The images captured under four different conditions are statistically analysed. The recognition effect of the models 
is evaluated by the F1 score and the AP value, and the experiment is compared with Faster-RCNN and SSD models. 
Experimental results show that the recognition effect of the proposed model is significantly improved. In the test 
dataset of images captured under the background of sufficient light without leaf shelter, the F1 score and AP value 
are 94.13% and 92.53%, and the average IOU value is 89.92%. In all the test sets, the F1 score and AP value are 93.24% 
and 91.32%, and the average IOU value is 86.98%. The object detection speed can reach 246 frames/s on GPU, the 
extrapolation speed for a single 416 × 416 picture is 16.9 ms, the detection speed on CPU can reach 22 frames/s, the 
extrapolation speed is 80.9 ms and the memory occupied by the model is 28 MB.

Conclusions:  The proposed recognition method has the advantages of low memory consumption, high recognition 
accuracy and fast recognition speed. This method is a new solution for the early prediction of tomato leaf spot and a 
new idea for the intelligent diagnosis of tomato leaf spot.
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Background
Tomato is an important economic crop in the world. It is 
easily affected by many kinds of diseases, and this condi-
tion severely affects the quality and yield of tomato and 
causes huge economic losses. Tomato gray leaf spot is a 
common disease in tomato planting; this disease not only 
damages the leaves but also destroys the photosynthesis 
of the leaves, affects the growth of tomato and reduces 
the yield. In recent years, tomato gray leaf spot has been 
a severe outbreak in domestic tomato production base. 
The tomato gray leaf spot disease is difficult to control. 
The infection process of tomato gray leaf spot pathogen 
can be divided into four stages: contact, invasion, latency 
and onset periods. Contact period refers to the period 
during which pathogens contact with host plants; inva-
sion period refers to the period during which pathogens 
invade the host and establish a parasitic relationship with 
it; latency period refers to the period during which path-
ogens start to show obvious symptoms from establishing 
a parasitic relationship with the host, during which path-
ogens absorb nutrients, spread and propagate in the host, 
and the symptom is mild; once the appropriate environ-
ment is encountered, the disease enters the onset stage 
and spread rapidly, and the symptom becomes severe. 
Therefore, if early detection of tomato gray leaf spot dis-
ease can be achieved before the large-scale epidemic, 
then prevention and control programmes can be formu-
lated as early as possible. Appropriate prevention and 
control measures should be taken, and passive preven-
tion and control should be changed to active prevention 
and control in advance. The prevention and control effect 
will be greatly improved, and the loss will also be mini-
mised. Early detection of diseases can also reduce the 
use of pesticides and environmental pollution and ensure 
tomato quality safety and human health. Therefore, the 
early recognition of tomato gray leaf spot is an excellent 
way to inhibit the rapid development of the disease and 
even avoid the disease. Traditional methods of disease 
detection cannot meet the needs of large-scale plant-
ing, and the plants often miss the best control period 
because of low diagnosis efficiency and rapid spread of 
disease [1, 2]. The application of image processing tech-
nology in crop disease detection at home and abroad has 
achieved good results. Image processing technology can 
quickly and accurately distinguish the types of diseases 
according to the characteristics of diseases. In this way, 
the disease prevention strategies can be adopted timely 
and measures can be taken to prevent further expansion 
of diseases.

In the past, people used to judge the class of tomato 
disease subjectively through experience, but the ability to 
distinguish amongst multiple diseases is limited and the 
process is time consuming.

The machine learning image processing technology 
is developing rapidly and is widely used in all aspects, 
including the agricultural field. Applying machine learn-
ing and image processing technology to crop disease 
recognition has incomparable advantages over tradi-
tional manual diagnosis and recognition methods [3]. 
People only need to collect a small number of disease 
image samples. The process involves the following steps: 
firstly, the dataset is pre-processed; secondly, the fea-
ture extraction algorithm is used to extract the features 
of the disease area in the image; lastly, the obtained fea-
ture information is sent to the classifier for training and 
the model parameters are obtained. The generated model 
can be used to detect the disease category. Training with 
a large number of datasets is time consuming due to the 
lack of datasets and the poor generalisation ability of 
the model. Moreover, the development of agricultural 
modernisation towards the direction of intelligence has 
highlighted the shortcomings of these traditional image 
detection methods.

The development of new technology has enabled not 
only discovering the characteristics of things artificially 
but also collecting a large number of data, designing 
algorithms and programming, mining laws from data 
and building models by using advanced computer hard-
ware facilities. Deep learning is a representative branch 
of artificial intelligence. Although this concept was only 
introduced in 2012, various network models have been 
produced after its development [4–10]. At present, deep 
learning is widely used in various fields, especially in 
computer vision. It efficiently solves the tasks of image 
classification, object detection and semantic segmenta-
tion. Compared with the traditional pattern detection 
method, the disease detection method based on the deep 
convolutional network (CNN) abandons the sophisti-
cated image pre-processing and feature extraction opera-
tions and uses the end-to-end structure to simplify the 
detection process. CNN can be used to train the model 
prediction results, which not only can save time and 
workforce but also can make a real-time judgment, as 
long as a large number of crop disease image datasets 
can be obtained. This way greatly reduces the great losses 
caused by the disease.

In recent years, object detection based on deep learn-
ing has rapidly developed. Researchers have proposed 
increasingly sophisticated network structure to improve 
the accuracy of object detection, including RCNN [11] 
(Region-Convolutional Neural Network), SPP-Net [12] 
(Spatial Pyramid Pooling-Networks) and Faster-RCNN 
[13]. These object detection networks can achieve high 
accuracy but can only achieve a frame rate below 1 
frame/s due to the limited computing power and mem-
ory resources of the embedded platform.
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In the aspect of deep neural networks for mobile 
object detection, researchers have proposed some min-
iaturised deep neural networks. For example, SSD [14] 
(Single Shot MultiBox Detector) and YOLO [15] (You 
Only Look Once) have been introduced to improve the 
detection speed. They use high-performance GPU to 
achieve the effect of real-time object detection. How-
ever, the speed of object detection will decrease obvi-
ously when these models are applied to the embedded 
platform. The reason is that the performance of the 
GPU of the embedded platform is far less than that of 
PC, and the performance of the former is at least 1/10 
lower than that of the latter. At present, some scholars 
are improving and designing lightweight convolutional 
models, such as MobileNet [16] and SqueezeNet [17], 
according to the application requirements of mobile 
and embedded devices. However, their practical appli-
cation is rarely reported.

In the study of plant diseases, the traditional 
machine learning technology has a good application 
effect, and deep learning is a major step to promote 
this study. Its powerful learning ability improves the 
performance and precision of neural networks. It is a 
recently popular technology for visual image analysis. 
The application of deep learning technology in plant 
disease recognition has become a major research task 
in this field. Current research on plant diseases and 
insect pests based on deep learning involves various 
crops, including different vegetables, fruits and food 
crops. The tasks completed include classification and 
detection of diseases and insect pests. At present, 
few public datasets on plant diseases and pests are 
available. Researchers usually find the best solution 
by comparing different training and test dataset pro-
portions and network models. However, gaps exist in 
complexity between these susceptible images and real 
field scenarios. Solving the problem of real-time field 
pest detection based on mobile devices can still be 
developed.

This study aims to achieve a proper balance between 
the accuracy of object detection and real-time per-
formance (that is, reduce the size of the model whilst 
ensuring the computing power of the embedded plat-
form to meet the computing demand of the model). 
Thus, this study introduces a small network architec-
ture with small computing power demand and stable 
object detection effect, that is, MobileNetv2-YOLOv3, 
on the basis of the latest research results of CNN the-
ory and the characteristics of the tomato grey leaf spot 
image. The proposed network improves the detection 
speed whilst improving the detection accuracy and 
ensures the detection accuracy of the model whilst 
minimising the volume of the network model.

Related Work
Existing image recognition methods of plant disease 
identification
Traditional plant disease identification method based on 
computer vision technology usually needs to extract the 
texture, shape, vein, colour and other features of the dis-
ease spots. This method has low recognition efficiency 
because it depends on rich expert knowledge in the field 
of agricultural diseases. With the rapid development of 
artificial intelligence technology in recent years, many 
researchers have conducted relevant research based on 
deep learning technology to improve the accuracy of 
plant disease identification. The existing analysis meth-
ods of plant diseases are mainly disease classification.

Mohanty et  al. [18] used GoogleNet and AlexNet to 
classify and recognise 54,306 diseased and healthy plant 
leaf images in the PlantVillage dataset and draw a conclu-
sion that the average classification effect of GoogleNet 
is slightly better than that of AlexNet. The accuracy of 
the trained deep convolutional neural network model 
on the test set is up to 99.35%. The method of training 
deep learning model on a growing and publicly available 
image dataset is a clear way to identify plant diseases in 
horticultural crops assisted by intelligent mobile phones. 
Amara et al. [19] identified disease types of 60 × 60 col-
oured banana leaves based on LeNet. Deep learning also 
plays a major role in the detection of plant disease sever-
ity. Wang et al. [20] trained a series of deep convolutional 
neural networks to diagnose the severity of diseases by 
using the apple black rot images in the PlantVillage data-
set. The performances of shallow networks trained from 
scratch and deep models tuned by transfer learning were 
also evaluated. The best model is deep VGG16 trained by 
transfer learning, and the overall accuracy in the test set 
is 90.4%. Ferentinos et al. [21] used an open database con-
taining 87,848 images to identify 58 kinds of diseases of 
25 different plants based on deep learning, and the best 
performance reaches 99.53% in terms of accuracy rate. 
Barbedo (2019) [22] studied plant disease identification 
from individual lesions and spots using the GoogLeNet 
architecture, and the obtained accuracy ranges from 75% 
to 100% for each crop. This variation is caused by differ-
ences in the number of images, the number of diseases, 
conditions and the levels of difficulty.

Convolutional neural networks (CNNs) usually require 
a large number of samples for training. However, col-
lecting training data required by models is difficult and 
costly in many applications [23]. Therefore, the research 
on data expansion is particularly important. In previous 
studies, many researchers have combined deep learn-
ing with transfer learning under the condition of limited 
datasets [24], and a tool for plant disease recognition and 
classification has been developed using image processing 
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unit (GPU). Srdjan [25] proposed an evaluation method 
of deep learning model to identify 14 different classes of 
plant diseases, including 13 classes of disease and healthy 
plant leaf images. The dataset size is 30,880 images and 
the average accuracy reaches 96.3% for this method com-
bined with the transfer learning method. Liu et  al. [26] 
enhanced the training dataset by rotating, mirroring 
and adding Gaussian noise, brightness adjustment and 
contrast adjustment. This method increases the size of 
the training set by 12 times and reduces the over-fitting 
problem.

In addition to the expansion of data volume, improve-
ments in deep-learning algorithms are critical to the dis-
ease recognition results. Too et  al. [27] researched on a 
deep network architecture and used images from the 
PlantVillage dataset to form data sizes of 34,727 training 
set samples, 8702 validation set samples and 10,876 test 
set samples. The comparative test verified that DenseN-
ets needs fewer parameters and reasonable calculation 
time to achieve the most advanced performance com-
pared with VGG and ResNet. The test accuracy achieves 
99.75%. Picon et al. [28] adopted an improved algorithm 
based on deep residual neural network to deal with the 
detection of various plant diseases under actual acquisi-
tion conditions, amongst which different adaptations for 
early disease detection have been proposed. The results 
obtained showed that the AuC index of all analysed dis-
eases is higher than 0.80. Selvaraj et  al. [29] retrained 
three different CNN architectures using the transfer 
learning method. By using pre-trained disease recogni-
tion models, deep transfer learning was performed to 
generate networks that could make accurate predictions. 
Zhong et al. [30] proposed three methods of regression, 
multilabel classification and focus loss function based on 
DenseNet-121 CNN to identify apple leaf diseases. The 
proposed methods achieve 93.51, 93.31 and 93.71% accu-
racy on the test set.

The disease recognition methods in the above-men-
tioned research are different from disease detection, 
which cannot automatically locate the disease area from 
the image and needs to extract the disease area manu-
ally for recognition. Deep learning can also be applied 
to plant disease identification. However, the current 
research in this field is still at an early stage, especially in 
practical application, due to the continuous improvement 
of the requirements for plant disease and pest identifica-
tion under sophisticated background, such as high recog-
nition accuracy, short calculation time, improved system 
robustness and strong generalisation ability.

Research progress of tomato disease image recognition
In tomato disease image classification, Durmus et  al. 
[31] classified and recognised 10 kinds of tomato 

diseases in the PlantVillage dataset by using AlexNet 
and SqueezeNet model. The experiment found that the 
classification accuracy of AlexNet is slightly higher than 
that of SqueezeNet, but the size of the model and the 
time taken are doubled. Brahimi et al. [32] found that the 
performance of the CNN is better than that of the shal-
low convolutional network, and the performance of the 
model can be improved by initialising the model param-
eters with pre-training weights. On this basis, nine kinds 
of tomato diseases are identified. By fine-tuning the 
AlexNet and GoogLeNet model, the accuracy reaches 
99.18%. Aravind et  al. [33] used AlexNet and VGG16 
combined with transfer learning to identify seven kinds 
of tomato diseases; the experiment showed that the accu-
racies are 97.29 and 97.49%. Although transfer learning 
can make the model converge quickly and achieve better 
recognition effect, it is limited by the original network 
structure. The original AlexNet and VGG16 models have 
a sophisticated structure and many parameters, which 
greatly limit the practical application and deployment 
of the model. Karthik et  al. [34] proposed an attention-
based deep residual network to detect the infection type 
of tomato leaves. The experiment used the PlantVil-
lage dataset, amongst which 95,999 images were used as 
training models and 24,001 images were used for valida-
tion. The dataset included three diseases, namely, early 
blight, late blight and leaf mold. The experimental results 
showed that the proposed attention-based residual net-
work can utilise the features of CNN learning at various 
processing levels and achieves 98% overall accuracy on 
the validation set in five-fold cross-validation.

In tomato disease object detection, Fuentes et al. (2017) 
[35] proposed a method based on deep learning to detect 
diseases and pests of tomato plant images captured by 
various resolution camera devices. Three kinds of object 
detectors of CNN were used, and they were called ‘deep 
learning meta-architectures’. These meta-architectures 
were combined with ‘deep feature extractor’ to show 
the performance of deep meta-architecture and feature 
extractor. The method of local and global class annota-
tion and data expansion was used to improve the accu-
racy of training and reduce the number of false-positives. 
The end-to-end training and testing were conducted 
on the large-scale tomato disease dataset. The experi-
mental results showed that the system can effectively 
identify nine different types of pests and diseases and 
can deal with sophisticated scenes from the surround-
ing areas of plants. Fuentes et  al. (2018)   [36] proposed 
an improved algorithm of tomato disease and insect pest 
detection aiming at the problem of false alarm and clas-
sification imbalance of tomato diseases and insect pests. 
The framework is mainly composed of three units: (1) 
main diagnosis unit (bounding box generator), which 
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generates bounding box, and the bounding box contains 
the region and category of diseases and insect pests; (2) 
auxiliary diagnosis unit (CNN filter bank), which trains 
each independent CNN to filter the samples of error 
classification; (3) integration unit, which combines the 
information of independent diagnosis unit and auxiliary 
diagnosis unit whilst maintaining the true positive sam-
ples to eliminate the false positives. The experiments 
showed that the recognition rate of this method is 
approximately 96%. Fuentes et  al. (2019) [37] proposed 
a method that not only can effectively detect and locate 
plant anomalies but also can produce diagnostic results, 
display abnormal locations and describe sentence symp-
toms as output. In the newly established dataset of 
tomato plant anomaly description, the average accuracy 
is 92.5%. Zhang et al. [38] proposed an improved Faster-
RCNN method to detect healthy tomato leaves and four 
diseases. Firstly, the deep residual network was used 
instead of VGG16 for image feature extraction to obtain 
deep disease features. Secondly, the boundary boxes 
were clustered using a k-means clustering algorithm. 
The anchor was set on the basis of the clustering results. 
Lastly, k-means experiments were performed on three 
different feature extraction networks. The experimen-
tal results showed that the improved detection method 
for crop leaf diseases achieves 2.71% higher recognition 
accuracy than the original Faster-RCNN method. How-
ever, in the literature, Faster-RCNN was used to detect 
objects, which needs to be done in two steps: the region 
recommendation was extracted firstly and then detected. 
The prevailing YOLO can directly generate coordinates 
and probabilities for each category through expressions. 
Therefore, the real-time performance of existing research 
needs to be improved.

Existing problems and development trend of current 
research

1.	 Previous research has only focused on the applica-
tion of the deep neural convolutional network of 
each variety to coarse-grained disease identification 
and ignored the early detection of the diseases. In the 
actual production, the early and late-stage images of 
the same disease have different characteristics. If the 
disease is identified accurately in the early stage of 
disease occurrence and corresponding control meas-
ures are taken, the loss caused by the disease can be 
greatly reduced. However, the location of early stage 
disease is relatively hidden, and the area of infec-
tion is also small, which occupies a low proportion 
of pixels in the whole image. Therefore, the problem 
of using the CNN to extract early tomato disease fea-

tures and identify fine-grained disease remains to be 
solved.

2.	 Different areas of tomato diseases show differ-
ent image characteristics: some of them are flaky, 
whereas others have a punctate pattern. The charac-
teristics of the same disease will change in different 
stages; some gradually progress from point to pieces. 
In the early stage of the disease, the lesion is relatively 
small and occupies a small area in the whole image. 
Therefore, tomato diseases areas have the charac-
teristics of irregular and small size, which make the 
object detection process difficult. For the images of 
tomato diseases collected in the real natural envi-
ronment, the background part (such as weeds and 
ground) is similar to the tomato disease area to a 
certain extent, and the existing object detection algo-
rithm will cause a lot of false detection, which will 
result in reduced accuracy.

3.	 The speed of real-time computing on the mobile ter-
minal is difficult to achieve, which is unsuitable for 
scenes with strong real-time requirements, such as 
intelligent mobile phones.

4.	 In the previous research, influencing factors on the 
accuracy of deep learning models applied to plant 
pathology are rarely involved. Barbedo, J.G.A. (2018) 
[39] argued that many factors may affect the accuracy 
of deep learning models applied to plant pathology. 
The robustness of the proposed model to different 
kinds of conditions that are commonly found in prac-
tice should be determined.

In view of the above-mentioned problems, this study 
proposes a real-time detection method for tomato gray 
leaf spot under sophisticated background. This method 
can effectively extract the early stage of tomato gray leaf 
spot characteristics, train and test the images of tomato 
gray leaf spot and achieve the purpose of real-time and 
accurate positioning of tomato gray leaf spot area. Thus, 
the proposed method can provide a technical support 
for the mobile-oriented intelligent diagnosis system of 
tomato leaf spot disease.

Materials and methods
Dataset used in the research
The experience and suggestions of agricultural experts 
indicate that the pathogen of tomato gray leaf spot takes 
about 24 h to propagate from a large number to invade the 
host under suitable meteorological conditions. If the mete-
orological conditions remain within the range suitable for 
the growth and breeding of the pathogen after the inva-
sion and the duration is close to or greater than the incu-
bation period of the pathogen, then the tomato gray leaf 
spot will further develop and various lesions may appear 
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in about 3  days. Therefore, early detection in this study 
means that the symptoms of tomato gray leaf spot can be 
considered early up to 3 days after the initial infection. The 
dataset must be images of the disease in its early stage in 
a real environment to realise the early detection of tomato 
grey leaf spot images. The gathering place of tomato gray 
leaf spot images is the Shouguang tomato planting base 
in Shandong Province in China. The images are captured 
using a variety of equipment, such as a digital camera and 
a smart mobile phone, under natural light; 2166 copies of 
original images are collected, including cloudy, sunny and 
rainy days, to cover all lighting conditions. To ensure the 
diversity of tomato gray leaf spot image dataset, 219 tomato 
gray leaf spot images are obtained through a web crawler, 
and the number of images in the dataset is 2385.

The aforementioned dataset is annotated using the Labe-
lImg tool. Considering the corresponding relationship 
between labels and data and ensuring uniform distribution 
of the dataset, the dataset is randomly divided into train-
ing, verification and test datasets according to the propor-
tion of 70, 10 and 20% by Matlab. The final dataset is stored 
in the format of the PASCAL VOC dataset. In accordance 
with the diagnostic criteria and recommendations of agri-
cultural experts, the test dataset is divided into four parts: 
sufficient light (sunny days) without leaf shelter, sufficient 
light (sunny days) with leaf shelter, insufficient light (cloudy 
days) without leaf shelter and insufficient light (cloudy 
days) with leaf shelter. The final dataset is shown in Table 1.

Principle of MobileNetv2‑YOLOv3 model
Principle of YOLOv3 model
The Yolo algorithm was proposed by Redmon et al. [15] 
in 2016. The object detection task in this algorithm is 
transformed into a regression problem, which greatly 
accelerates the detection speed. YOLOv3 [40] is pro-
posed based on YOLOv2 [41], the detection speed of 
YOLOv2 is maintained and the detection accuracy is 
greatly improved. YOLOv3 uses the idea of the resid-
ual neural network [42]. The introduction of multiple 
residual network modules and the use of multiscale 
prediction improve the shortcomings of YOLOv2 net-
work in small object recognition. This algorithm is one 
of the best algorithms in object detection because of 
the high accuracy and timeliness of its detection. This 
model uses several 3 × 3 and 1 × 1 convolution layers 
with good performance, and some residual network 

structures are also used in the subsequent multiscale 
prediction. This model has 53 convolution layers and 
can also be called Darknet-53.

The loss function of the object detection network of 
YOLOv3 is shown in Formula (1). 

.
In the above-mentioned formula, i represents the i 
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Table 1  Datasets and size

Dataset Training set Validation set Test set Total number

Number of images 1669 477 239 2385

Number of annotated samples 9847 2814 1410 14,071
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Bounding regression loss function based on GIoU
IoU is the degree of coincidence between the predic-
tion and marked bounding boxes in the original image. 
The bounding box regression IoU value is often used as 
the evaluation index in object detection. However, most 
detection frameworks do not combine this value to opti-
mise the loss function. IoU can be back propagated and 
optimised directly as an objective function. Consider-
ing the choice between the optimisation measure and 
the use of alternative loss functions, the best choice is to 
optimise the measure. Traditional IoU as a loss function 
has two disadvantages: if the two objects do not overlap, 
then the IoU value will be 0, and the gradient will be 0, 
which cannot be optimised; if two objects overlap in dif-
ferent directions and the intersection level is the same, 
then their IoU will be exactly the same. IoU cannot accu-
rately reflect the degree of coincidence between two 
objects. Figure 1 shows that using three different meth-
ods to overlap two rectangles can achieve the same IoU 
value, but their coincidence degree differs. The regression 
effect of the leftmost graph is the best, and the regression 
effect of the rightmost graph is the worst. The predic-
tion bounding box of the rightmost graph is the rota-
tion candidate bounding box [43]. Therefore, the value of 
the IoU function does not reflect the overlap of the two 
objects. In the detection of tomato gray leaf spot, the 
accuracy of regression box directly determines the suc-
cess rate of detection. Therefore, the shortcomings of IoU 
are solved by introducing GIoU. IoU value range is [0,1], 
whilst GIoU has a symmetric interval and a value range 
of [− 1,1]; the maximum value of 1 is taken when the two 
coincide, and the minimum value of −1 is taken when 
the two do not intersect and are infinitely far away. Con-
sequently, GIoU is a good distance measurement index. 
Unlike IoU, which only focuses on overlapping areas, 
GIoU focuses not only on overlapping areas but also on 
other non-overlapping areas, which can better reflect the 
coincidence degree of the two. GIoU loss can replace the 

loss function of bounding box regression in most object 
detection algorithms, as shown in Formulas (2)–(5). 

In the above formula, A and B are any two rectangu-
lar boxes, C is the smallest circumscribed rectangle sur-
rounding A and B and S is the space of A and B.

Network design of MobileNetv2‑YOLOv3
Traditional YOLOv3 uses the self-defined backbone net-
work Darknet-53, the model calculation is sophisticated, 
and the storage space requirements are high. The calcula-
tion speed of a 416 × 416 image on GPU is 30 ms, and the 
calculation speed on CPU is 255.8  ms. This study pro-
poses a lightweight neural network model for real-time 
object detection called MobileNetv2-YOLOv3 network, 
which is designed on the basis of traditional YOLOv3. 
The inferential speed of GPU is 16.9  ms, and the infer-
ential speed of CPU is 80.9 ms. MobileNet [16] is a light-
weight neural network based on mobile terminal. This 
study uses MobileNetv2 [44] as the backbone network of 
MobileNetv2-YOLOv3. The proposed model combines 
the anti-residual module with the depth-wise separable 
convolution. Firstly, the number of channels is increased 
by 1 × 1 convolution; secondly, the depth-wise convolu-
tion is performed by 3 × 3 convolution; lastly, the dimen-
sion is reduced by 1 × 1 convolution.

This study changes the feature image fusion to make 
deep connection at 19 and 34 layers to avoid reducing 
the object detection accuracy of small objects by using 

(2)IoU =
|(A ∩ B)|
|(A ∪ B)|

(3)GIoU = IoU −
|C(A ∩ B)|
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Fig. 1  Diagram of two overlapping rectangles. The black rectangle 
represents the predicted bounding box, and the gray rectangle 
represents the original marked bounding box
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MobileNetv2 network. For the input image of 416 × 416, 
13 × 13 feature image is obtained by convolution after the 
convolution network at 53 layers. The feature image recep-
tive field here is the largest, which is suitable for the detec-
tion of large objects, that is, the first prediction output. To 
achieve fine-grained object detection, the 53-layer feature 
map of convolution layer starts to up sample from the right 
and obtains the feature map of the same resolution with 34 
layers. After the residual module is fused with the 34-layer 
feature map, the 65 layers obtain the feature map of 26 × 26 
after convolution, which has medium-sized receptive field 
and is suitable for detecting medium-sized objects. The 
65-layer feature map is up sampled again and obtains the 
feature map of the same resolution with 19 layers. The fea-
ture map is fused with the 19-layer feature image through 
the residual module. The 52 × 52 feature image is obtained 
by eight times lower sampling than the input image. At 
this time, the receptive field is small, which is suitable for 
detecting small-sized objects.

The proposed MobileNetv2-YOLOv3 is an end-to-end 
object detection framework based on the idea of regres-
sion. The use of depth-wise separable convolution to 
extract features can effectively improve the computa-
tional efficiency of the convolutional network and reduce 
its huge number of parameters. At the same time, the 
detection accuracy of the convolutional network model is 
improved using multilayer feature fusion and point con-
volution to increase the network depth.

In the channel dimension mapping of the feature map, 
the conventional convolution is assumed be transformed 
and decomposed into linear combinations. If K  repre-
sents a regular convolution kernel, then 

In the above-mentioned formula, b is an m-dimensional 
matrix composed of two-dimensional convolution of 
S × S size, which can be expressed as 

∧

(b) is defined as a diagonal matrix, and the diago-
nal elements are bi (i = 0, 1, 2, · · · , m) , which can be 
expressed as

M is defined as the numerical matrix of n×m n and m 
represent the dimensions of the output and input feature 
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∧

(b).
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maps, respectively. “ · ” represents a special matrix multi-
plication. The operation formula of conventional convo-
lution kernel K  can be expressed as 

In the aforementioned formula, µnm is the weight coef-
ficient of convolution kernel on position (n, m) . knm is 
the value of convolution kernel on position (n, m) , which 
can be expressed as knm = µnmbm.

According to the above-mentioned formula, the 
number of parameters of conventional convolution 
is s × s × n×m . The number of depth-wise separa-
ble convolution parameters of MobileNetv2-YOLOv3 
model that meets the requirements of mobile terminal is 
s × s ×m+ n×m . The compression rate is

The batch normalisation (BN) method is used to acti-
vate the corresponding operation. The mean value of the 
output dimensions is set to 0, and the variance is set to 1. 
This setting can reduce the change in the input data dis-
tribution of the next layer network and unify the distri-
bution of the input data. It can also effectively improve 
the model convergence speed and avoid gradient explo-
sion. The basic structure of the depth-wise separable con-
volutional network is shown in Fig.  2. The figure shows 
that the conventional convolution kernel is replaced by 
two convolution nuclei, that is, depth-wise separable and 
point convolutions are adopted.

The MobileNetv2-YOLOv3 model is constructed using 
the depth-wise separable convolution mentioned above. 
The network is a full convolution network, which con-
sists of regular, depth-wise separable and point convolu-
tions. For the output of each convolutional network, BN 
is adopted, that is, the BN layer is added. The use of the 
BN layer solves the gradient disappearance and explosion 
in the process of back propagation.

According to Huang et  al. [45], the feature map can 
be obtained from the shallow layer network and can be 
fused to obtain better performance. YOLOv2 [41] only 
conducts monolayer feature map fusion. In the pro-
posed model, a new feature map fusion method called 
multilayer feature map fusion is adopted. The method 
changes the channel of feature map by point convolution 
method, uses reshape method to transform the feature 
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map to the specified size, undergo the same process for 
the multilayer network, overlay with the upper network, 
and obtains the fused feature maps. A deep and narrow 
network architecture is designed on the basis of SSD [14]. 
The deeper network architecture can obtain higher pre-
cision. By contrast, the narrower network architecture 
limits the complexity of the network. Therefore, the pro-
posed MobileNetv2-YOLOv3 model has fewer network 
layers than other object detection networks. Point and 
depth-wise separable convolutions are used to construct 
the network to limit its complexity. In the main convo-
lution operation at the end of the network structure, the 
depth of the network is increased by increasing the num-
ber of point convolution to limit the complexity of the 
network.

Pre‑trained method combining mixup training and transfer 
learning
Various types of tomato gray leaf spot exist in the natu-
ral environment, and mutual shielding of tomato leaves 
is often encountered due to the limited scenarios cov-
ered by the sample dataset. Thus, the detection of 
tomato disease will limit the generalisation ability of the 
model. In this study, the visual coherent image mixup 
method designed for training object detection network 
is used. The method is effective in enhancing the general 

ability of the model. Mixup refers to combining two input 
images into one image according to a certain weight. The 
training model based on this composite image is robust 
and can effectively reduce the effect of the differences 
between images.

Transfer learning transfers the knowledge learned from 
the trained model to the new model to help the training 
of the new model. Yosinski et al. [46] conducted transfer 
learning experiment. They proved that the underlying 
CNN could learn general features of objects, such as geo-
metric, edge and colour changes. By contrast, the high-
level network is responsible for extracting specific feature 
details. A small dataset can also achieve good training 
effect through transfer learning.

In this study, a hybrid training method is adopted on 
COCO dataset for preliminary training, and the knowl-
edge learned from COCO dataset is transferred to 
tomato gray leaf spot image recognition through transfer 
learning. By freezing part of the convolution layer, only 
correct model parameters of part of the convolution layer 
for back propagation are obtained. By using a method 
combining mixup training and transfer learning, the 
training time can be reduced, the memory consumption 
can be saved and tomato gray leaf spot object recognition 
effect can be improved.

Metrics used to evaluate the proposed method
In this study, F1 score and AP (average precision) are 
used to evaluate the model trained by the loss function. 
The formula is expressed as follows. 

In the above-mentioned formula, P is the accuracy rate, 
R is the recall rate, TP is the number of true positive sam-
ples, FP is the number of false positive samples and FN is 
the number of false negative samples.

Experimental operation environment
The experimental hardware environment of this study is 
shown in Table  2. On this basis, the software environ-
ment is built as follows: Ubuntu 16.04, python, OPENCV 

(11)P =
TP

TP + FP
.

(12)R =
TP

TP + FN
.

(13)F1 =
2PR

P + R
.

(14)AP =
1

∫
0

P(R)dR.

Fig. 2  Basic structure of depth-wise separable convolutional network 
a standard convolution filter; b depth-wise separable convolution 
filter; c point convolution filter
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and CUDA. The framework uses the Caffe and Dark-
net-53 frameworks.

Model training
The training process of tomato gray leaf spot detection is 
shown in Fig. 3. This study adopts the method of compar-
ative experiment and uses network model Faster-RCNN, 
SSD, YOLOv3 and MobileNetv2-YOLOv3 to perform 
the comparative experiment and verify the model effect 
on different datasets. Firstly, the collected data are split, 
annotated and stored in the format of PASCAL VOC. 
Secondly, hybrid learning combined with transfer learn-
ing, transfer learning alone and not using the pre-training 
methods are used to train the network model. The model 
parameters are corrected using the back-propagation 

algorithm to gradually reduce the loss function. The 
training process is completed when the average loss is 
less than 0.01 and the loss function is no longer reduced 
after multiple iterations.

The super parameter of the model is set to 32 sample 
number of each batch, the momentum factor is 0.9 and 
the initial learning rate is 0.001. In every 5000 iterations 
of training, the learning rate is reduced by 10 times, 
and the weight of the model is saved every 100 times of 
training.

Results and discussion
Model testing
The GIoU loss function and the original YOLO loss func-
tion are used to train the MobileNetv2-YOLOv3 network 
model, and their training times are 10.6 and 12.8 h. The 
loss curve is shown in Fig. 5a. The loss value in the figure 
is the value of the loss function. The loss curve iterated 
on the training dataset using the model of YOLO loss is 
shown in the curve YOLO loss-train of Fig. 5a, and the 
loss curve iterated on the verification dataset is shown in 
the curve YOLO loss-val of Fig. 5a. The loss curve iter-
ated by the model using the GIoU loss function on the 
training dataset is shown in the curve GIoU loss-train 
of Fig. 5a, and the loss curve iterated on the verification 

Table 2  Configuration of experimental hardware environment

Hardware name Model Number

Main board Asus WS X299 SAGE 1

CPU INTEL I7-9800X 1

Memory The Kingston 16G DDR4 2

Graphic card GEFORCE GTX1080Ti 2

Solid-state drives Kingston 256G 1

Hard disk Western digital 1T 1

Fig. 3  Flowchart of tomato disease detection network training
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dataset is shown in the curve GIoU loss-val of Fig.  4a. 
The graph of average IoU for training is shown in Fig. 4b.

As shown in Fig.  4, the fitting degree of the model 
using GIoU Loss training is better than that of traditional 
YOLO loss on the verification dataset, and the aver-
age IoU value is significantly higher than that of YOLO 
loss. The model using YOLO loss is gradually stable after 
3000 times, whilst the model using GIoU loss is gradu-
ally stable after 9000 times. The validation dataset is used 
to verify the advantages and disadvantages of the model, 
and the super parameters of the model are adjusted by 
comparing the loss curves of the validation and train-
ing datasets. Figure 4a shows the loss curve of the super 
optimal parameter iterated during the constant tuning 
process. The weights are saved 100 times per iteration, 
and the trained model is tested and evaluated. This study 
uses objective evaluation criteria (F1 score, AP value and 
average IoU value) to evaluate the advantages and disad-
vantages of the model through the weight saved for every 
100 training sessions.

Test results using mixup training and transfer learning
MobileNetv2-YOLOv3 network is used as the basic 
network. The traditional method does not use the pre-
training model and trains all of the parameters with the 
training set from scratch. The transfer learning method 

uses the pre-training model of COCO dataset to train 
part of the layer parameters of the model. This study pro-
poses the use of the pre-training model of mixup training 
combined with transfer learning to fine-tune the model. 
The testing results of the three kinds of methods in the 
test dataset are shown in Table 3. Compared with the tra-
ditional method, transfer learning significantly affects the 
improvement of the model. When mixup training and 
transfer learning are combined, the F1 score of the model 
increases by 3.73%, the AP value increases by 2.64% and 
the Average IoU value increases by 2.64%.

Comparison of detection results of different backbone 
networks
This study compares different network models and 
backbone networks to prove the advantages of Mobile-
Netv2-YOLOv3, and the test results in the test dataset 
are shown in Table 4. The network structure of YOLOv3 
is more sophisticated than that of YOLOv2. Thus, the 
detection speed of the former is slightly lower than that of 
the latter, but the F1 score is increased by 6.20% and the 
AP value is increased by 6.24%. The recognition accuracy 
increases significantly. Table  3 indicates that the detec-
tion speed and weight size of YOLOv3-Tiny increase 
greatly, but the detection precision decreases obvi-
ously. By using MobileNetv1 as the backbone network 

Fig. 4  Iteration curves. a Iteration curves of loss, b Iteration curves of average IoU

Table 3  Comparison of detection results using different training methods

Training methods F1 score/ % Average precision/ % Average IoU/ %

Original method 88.99 87.65 80.49

Transfer learning method 91.53 89.38 82.57

Mixup + Transfer learning method 92.72 90.29 83.13
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of YOLOv3, the detection speed reaches 270 frames per 
second, and the weight size is only 23 MB. However, the 
AP value is decreased compared with that of the original 
YOLOv3. By using MobileNetv2 as the backbone net-
work of YOLOv3 (the proposed MobileNetv2-YOLOv3), 
the F1 score and the AP value achieve the best results. 
Compared with the original YOLOv3, the AP value is 
increased by 1.77%, the F1 score is increased by 0.95%, 
the weight size is only 28  MB and the detection speed 
reaches 22 frames per second. Therefore, MobileNetv2-
YOLOv3 network has obvious advantages because 
embedded terminal or mobile device is mostly used in 
image recognition of tomato leaf spot.

Test results using GIoU loss function
MobileNetv2-YOLOv3 is used as the basic network and 
the GIoU loss function is utilised to replace the original 
YOLOv3 loss function. After the training of the model, 
the test results are shown in Table  5. The F1 score is 
increased by 1.47%, the AP value is increased by 2.80% 
and the average IoU value is increased by 4.48%. Com-
pared with the original YOLOv3, the test results are 
improved greatly. Therefore, the GIoU loss function 
greatly affects the accuracy of bounding box regression, 
which enables highly accurate detection of the location of 
tomato leaf spot disease.

Comparison of different backgrounds of disease
The different backgrounds of disease can affect the detec-
tion accuracy of the model greatly. Therefore, different 
backgrounds of the disease are taken as a control vari-
able in this study, and the MobileNetv2-YOLOv3 model 
is used by the network model. Different backgrounds of 
test dataset are used to verify the test results, as shown 
in Table 6.

For the recognition of disease under the background 
of sufficient light without leaf shelter, the F1 score of the 
model can reach 94.13%, the AP value can reach 92.53% 
and the average IoU can reach 89.92%. Table 5 shows that 
the detection accuracy is slightly low for the recogni-
tion of disease under the background of insufficient light 
with leaf shelter. The reason is that the backgrounds have 

elements that mimic certain disease characteristics con-
sidering the actual application scenario. Thus, the net-
work may learn them, which influences the recognition 
effect. The P–R curve of the whole test set is shown in 
Fig. 5.

Comparison of different detection methods
Faster-RCNN, SSD and MobileNetv2-YOLOv3 are 
trained, and the test results are compared in different test 
sets (Table  7). Compared with SSD and Faster-RCNN, 
MobileNetv2-YOLOv3 significantly improves in accu-
racy, and the F1 score can reach more than 90% in the 
case of different backgrounds. For the detection of the 
disease under the background of sufficient light without 
leaf shelter, the F1 score and the AP value are 2.12 and 
3.35% higher than those of SSD and 1.68% and 3.11% 
higher than those of Faster-RCNN. Figure  6 shows that 
MobileNetv2-YOLOv3 can miss the detection of tomato 
gray leaf spot under the condition of insufficient light 
(cloudy days) and leaf occlusion, and this performance 
is due to the effect on the detection accuracy of tomato 
gray leaf spot object under a darker background. Table 6 
indicates that SSD is close to Faster-RCNN in terms of 
detection accuracy.

In terms of training time, the batch size of each 
iteration of the model is set to 32. The training times 
of Faster-RCNN and SSD are 16.7 and 12.2  h, respec-
tively, whilst the training time of the proposed Mobile-
Netv2-YOLOv3 is only 10.6 h. The full connection layer 
is removed from YOLOv3 and SSD. Thus, the training 
time will be significantly improved compared with that 
of Faster-RCNN. This study also adopts the method 

Table 4  Comparison of detection results using different backbone networks

Network models Backbone networks F1 score/ % Average precision/ % Weight size Detection 
speed

YOLOv2 DarkNet-19 85.67 82.28 195 MB 70

YOLOv3 DarkNet-53 91.77 88.52 236 MB 62

YOLOv3-Tiny Tiny 78.67 77.21 34 MB 220

YOLOv3 MobileNetv1 88.37 86.49 23 MB 270

YOLOv3 MobileNetv2 92.72 90.29 28 MB 246

Table 5  Detection results using GIoU loss function

Network models F1 score/ % Average 
precision/ %

Average IoU/ %

YOLOv3 91.77 88.52 82.49

MobileNetv2-YOLOv3 92.72 90.29 83.13

GIoU + MobileNetv2-
YOLOv3

93.24 91.32 86.98
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of mixup training and transfer learning to effectively 
reduce the training time. In terms of detection speed, 
MobileNetv2-YOLOv3 can achieve a detection speed 
of 246 frames/s, which is nearly 4 times faster than 
that of SSD and nearly 20 times faster than that of 
Faster-RCNN. The results of the above-mentioned five 
groups of comparative tests indicate that the proposed 
MobileNetv2-YOLOv3 lightweight neural network can 
effectively identify tomato gray leaf spot region under 
natural environment. The recognition accuracy and 

speed of the proposed method have significant advan-
tages over other methods.

Conclusions and future directions
Conclusions

1.	 An improved recognition method of tomato gray leaf 
spot based on MobileNetv2-YOLOv3 lightweight 
neural network is proposed. The test results show 
that, in the test dataset of images captured under the 
background of sufficient light without leaf shelter in 
natural environment, the F1 score and AP value are 
94.13% and 92.53%, and the average IOU value is 
89.92%. In all of the test datasets, the F1 score and 
AP value of model detection reach 93.24 and 91.32%, 
respectively. The loss function of GIoU regression 
box is used to replace the MSE mean square error 
part of the traditional loss function border regres-
sion, and the average IoU is as high as 86.98%, which 
provides good technical support for tomato gray leaf 
spot localisation.

2.	 A lightweight neural network model is proposed by 
improving the model. The model occupies 28 MB of 
memory. For an image of 416 × 416, the detection 
speed can reach 16.9  ms on GPU and 80.9 ms on 
CPU, which can be used to transplant to embedded 

Table 6  Comparison of detection results under different backgrounds

Test set F1 score/ % Average precision/ % Average IoU/ %

Sufficient light without leaf shelter 94.13 92.53 89.92

Sufficient light with leaf shelter 93.22 91.01 87.86

Insufficient light without leaf shelter 91.32 90.07 85.52

Insufficient light with leaf shelter 90.61 90.02 84.31

Fig. 5  P–R curve

Table 7  Comparison of detection results using different network models

Test set Network models F1 score/ % Average 
precision/ %

Sufficient light without leaf shelter GIoU + MobileNetv2-YOLOv3 94.13 92.53

SSD 92.01 89.18

Faster-RCNN 92.45 89.42

Sufficient light with leaf shelter GIoU + MobileNetv2-YOLOv3 93.22 91.01

SSD 91.44 88.52

Faster-RCNN 92.12 92.13

Insufficient light without leaf shelter GIoU + MobileNetv2-YOLOv3 91.32 90.07

SSD 89.67 87.96

Faster-RCNN 90.01 88.33

Insufficient light with leaf shelter GIoU + MobileNetv2-YOLOv3 90.61 90.02

SSD 88.55 86.52

Faster-RCNN 89.77 87.61
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and mobile terminal. A method combining mixup 
training and transfer learning is proposed to transfer 
the knowledge learned from the COCO dataset to 
the tomato gray leaf spot recognition model, which 
improves the generalisation ability of the model and 
greatly reduces the training time and resources.

3.	 The recognition accuracy of Faster-RCNN and SSD in 
different scenarios is compared with those of different 
models in terms of the detection accuracy and calcu-

lation speed to verify the feasibility and superiority of 
the proposed method. In natural environment, the F1 
score and AP value are 4.06% and 3.61% higher than 
those of SSD and 3.92% and 3.38% higher than those 
of Faster-RCNN. MobileNetv2-YOLOv3 can achieve 
a detection speed of 246 frames/s, which is nearly 4 
times faster than that of SSD and nearly 20 times faster 
than that of Faster-RCNN. The proposed method has 
significant advantages over other methods.

Fig. 6  Effect diagram of the proposed detection method
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Future directions
Tomato is a widely planted crop in the world with abun-
dant nutrients. In this study, MobileNetv2-YOLOv3 is 
applied to the early detection of tomato gray leaf spot 
disease to achieve non-destructive detection. However, 
some problems still need to be solved urgently. 

1.	 This work only aims to detect tomato gray leaf spot 
disease. Other kinds of common diseases exist in 
tomato. Thus, the research of disease types on this 
basis should be increased to realise the detection of 
other kinds of diseases.

2.	 Given the achievements obtained in this study 
through the combination of software and hardware, 
the proposed algorithm should be run on a computer 
platform or a mobile app to enable application to 
actual production for facilitating farmers’ access to 
aid for their crops anytime and anywhere.

3.	 This study realises the early detection of tomato 
gray leaf spot disease, which can play a role in timely 
detection. Subsequent studies will acquire tempera-
ture and humidity information, pathogenic spore 
information, soil information and environmental 
information through multiple sensors, fuse multi-
source data and construct an early warning model 
of tomato gray leaf spot disease based on multidata 
fusion to further realise early warning when the dis-
ease does not occur.
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