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METHODOLOGY

Automatic kernel counting on maize ear 
using RGB images
Di Wu1†  , Zhen Cai3, Jiwan Han2† and Huawei Qin1*

Abstract 

Background:  The number of kernels per ear is one of the major agronomic yield indicators for maize. Manual assess-
ment of kernel traits can be time consuming and laborious. Moreover, manually acquired data can be influenced 
by subjective bias of the observer. Existing methods for counting of kernel number are often unstable and costly. 
Machine vision technology allows objective extraction of features from image sensor data, offering high-throughput 
and low-cost advantages.

Results:  Here, we propose an automatic kernel recognition method which has been applied to count the kernel 
number based on digital colour photos of the maize ears. Images were acquired under both LED diffuse (indoors) 
and natural light (outdoor) conditions. Field trials were carried out at two sites in China using 8 maize varieties. This 
method comprises five steps: (1) a Gaussian Pyramid for image compression to improve the processing efficiency, (2) 
separating the maize fruit from the background by Mean Shift Filtering algorithm, (3) a Colour Deconvolution (CD) 
algorithm to enhance the kernel edges, (4) segmentation of kernel zones using a local adaptive threshold, (5) an 
improved Find-Local-Maxima to recognize the local grayscale peaks and determine the maize kernel number within 
the image. The results showed good agreement (> 93%) in terms of accuracy and precision between ground truth 
(manual counting) and the image-based counting.

Conclusions:  The proposed algorithm has robust and superior performance in maize ear kernel counting under 
various illumination conditions. In addition, the approach is highly-efficient and low-cost. The performance of this 
method makes it applicable and satisfactory for real-world breeding programs.
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Background
Maize is one of the most important crops in the world 
[1]. Kernel-trait scoring is an important part of the 
maize breeding process, where the number of kernels 
per ear is a key indicator for maize quality assessment 
[2]. Traditional kernel counting methods rely on simple 
observation by humans [3]. These methods are labour-
intensive, time-consuming and low-efficient, often lead-
ing to errors. The photocell technology is developed to 

automatically count maize kernels, but a photocell whose 
lifetime is extremely short and sensitivity decreases with 
running time needs to be replaced frequently [4].

Machine vision enabled systems can acquire pheno-
typic information in a high-throughput manner [5]. 
This type of technology is being used increasingly in the 
extraction of trait information from cereals [6–9] includ-
ing maize. Information about cereal ears and the seeds/
kernels in the ears can be acquired from images using 
one of two main methods. The first method involves 
rotating ears and acquiring images to obtain full-sur-
face image information [10]. However, rotatory mecha-
nism increases the manufacturing cost of the entire 
system and decreases working efficiency or throughput. 
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An alternative method takes a single image of the ear, 
extracts features and estimates the total number of ker-
nels [11]. The quality of estimation depends on several 
factors but this method is much cheaper and could be 
adapted to suit breeding programs. In 2009, Ruiz et  al. 
modified the EASA algorithm for environmentally adap-
tive crop segmentation [12].

Images invariably show complex arrangements of ker-
nels and Zhao et al. used a median filter and a Wallis filter 
as a pre-processing method. It is followed by an improved 
Otsu method with a combination of multi-threshold and 
row-by-row gradient based method (RBGM) gradient 
descent to separate the kernels [13]. In 2018, Zhang et al. 
proposed a segmentation method for kernels on maize 
ear, which combines a genetic algorithm with improved 
pulse coupled neural network. It achieved an accuracy of 
98% [14]. However, touching kernels were not considered 
and influenced the overall performance. Accurate count-
ing requires identification and separation of touching 
kernels. In 2017, Grift et al. proposed a semi-automated 
vision system to count the number of kernels in the mid-
section of a maize ear and to calculate a range of mor-
phological parameters of the kernel. They used an area 
threshold to distinguish touching kernels, which were 
then separated by a local Otsu threshold [15]. The num-
ber of kernels on the base and tip of the ear was estimated 
by a formula with errors ranging from − 7.67 to + 8.60%.

Liu et  al. improved the watershed algorithm with 
morphological multi-scale decomposition to separate 
rice kernels [16]. Subsequently, Belan et  al. developed a 
marker-controlled watershed algorithm based on the 
kernels constrained by path-cost function and distance 
threshold in Euclidean Distance Transform (EDT) with 
an 86.2% accuracy rate [17].

In 2001, Visen et al. proposed a method to distinguish 
between a group of touching kernels and an isolated ker-
nel by the degree of overlap between each kernel and its 
equivalent ellipse. Then a second method separated the 
touching kernels by evaluating the boundary curvature 
to determine the open nodes and touching line [18]. In 
2011, Mebatsion et al. improved the segmentation algo-
rithm based on the concavity with the elliptic Fourier 
series approximation smoothing the boundary contours 
[19]. Plot detection algorithms based on a background 
skeleton were also used to separate the touching kernels 
[20]. Active Contour Model (Yang et al. 2010) and Mor-
phological operations (Wang et al. 2006 and Porto et al. 
2008) were also popular in separation of the touching 
kernels [21–23].

Previous work demonstrated reasonable performance. 
However, the colour gradient between kernels in images 
of maize ear is often narrow and it is difficult to segment 
kernels using colour information only. There are three 

simultaneous problems: corner-to-corner, edge-to-cor-
ner and edge-to-edge touching. Also, both the sizes and 
the shapes of kernels on the same maize ear are irregu-
lar. These issues were not discussed in depth in previous 
publication.

The watershed and its improved versions are often 
accompanied with over-segmentation, that multiple false 
positive internal markers were detected in the same area. 
The concavity algorithm, despite excellent improvements, 
could only separate a maximum of three touching kernels 
[18]. The combined ellipse-fitting and concavity algo-
rithm was restricted to the separation of approximately 
elliptical kernels [19], which was not always suitable for 
maize kernels. The morphological operation and Active 
Contour Model failed to correctly segment the edge-to-
edge touching and occluded kernels, and the latter was 
especially time-consuming.

Assessment of other objects pose similar problems and 
many algorithms have been developed for segmentation/
recognition of fruits [24–28], cells/nuclei [29–32], fungal 
spores [33], disease spots [34] and defects [35]. However, 
these algorithms are not developed for the separation 
and recognition of kernels in images of maize ears, there-
fore, often problematic. Hence, it is necessary to develop 
an effective method for recognition and quantification of 
maize kernels in the ear images.

Methods
Plant material
Some maize samples are collected at a farmhouse in 
Suzhou City, Anhui Province. Other sample images were 
provided by DongYang Maize Research Institute of Zhe-
jiang Academy of Agricultural Sciences. The test samples 
include eight varieties Zhengdan 958, Xianyu 688, Fudan 
No. 3, Xianyu 335, Jinnuo 685, Jingkenuo 2016, Beibai-
nuo No. 10, and Zhengbai No. 1. The sample images were 
taken from one side of the maize ears. The ground truth 
for testing the algorithm is acquired by manually count-
ing kernel number in images. A total of 2000 maize ears 
were used in the algorithm development, of which 1200 
ears were used for algorithm validation.

Image acquisition
Image quality is sensitive to the illumination as shown in 
Fig. 1. Images were acquired separately under indoor LED 
diffuse and outdoor natural diffuse illumination. Sample 
images of multiple maize varieties taken under various 
illuminations were selected to develop and test the pro-
posed algorithm. Images were taken using a Canon cam-
era (Cyber-shot EOS550D, 18 megapixels) and are 24-bit 
(RGB) colour images. The background is in blue as maize 
ears rarely contain blue colour. This can ease the segmen-
tation of maize ear. The kernel recognition software was 
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developed using Microsoft Visual Studio 2013(C++) 
with the following computer configuration: Intel(R) Core 
(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz, 12G (RAM).

Image processing
Image compression
A reasonable compression of the image size, such as the 
Gaussian Pyramid [36], often helps improve the effi-
ciency of extracting useful information. The advantages 
of Gaussian Pyramid are not only removing colour and 
pixel redundancy but also preserving the images’ low 
pass information. Level i Gi

(

x, y
)

 in Gaussian pyramid is 
calculated according to Eq. (1), where w(m, n) is the ker-
nel window function and Gi−1

(

x, y
)

 is the compressed 
pixel value in level i-1.

Figure 2 shows G0-G3 layers in maize image Gaussian 
pyramid according to the same ratio.

(1)
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)
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2
∑
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)

We first analyzed compressed image based on edge 
integrity and compression ratio. Canny operator [37] 
was used to detect edges of layer images G0-G3 as 
shown in Fig.  3, whose hysteresis thresholds are uni-
formly set to 80 and 80*2.2. These thresholds were 
established by testing a range of values and these gave 
the best results. For comparison purposes, the edge 
detection results are displayed for each kernel at the 
same scale in Fig.  3. Both G1 and G2 maintain rela-
tively complete edge information (Figs.  3b, c). Con-
siderable edge information in layer G3 was missing 
(Fig.  3d), which has a detrimental effect on the later 
segmentation.

The compression ratio R is calculated according to 
Eq. (2), where B is the bit number of the original image, 
B’ is the bit number of the compressed image.

Fig. 1  Maize ear images acquired under different lighting conditions: 
a under indoor illumination, b under outdoor illumination

Fig. 2  Compression layers in maize image Gaussian pyramid: a G0 
layer (original image), b G1 layer, c G2 layer, d G3 layer

Fig. 3  Canny edge detection: a–d are edge maps of G0, G1, G2, G3, 
respectively
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Processing speed is inversely proportional to R. The 
processing speed gradually increased from G0 to G3 layer 
as R is reduced. Considering the above two factors, layer 
G2 is considered to be better for the balance of speed 
and quality. The compressed image was then restored in 
a Gaussian Pyramid [38]. Level i Gi

(

x, y
)

 in a Gaussian 
Pyramid is calculated according to Eq. (3), where w(m, n) 
is the kernel window function and Gi−1 is the pixel value 
in level i-1.

Background separation
The first step of kernel recognition is to remove the back-
ground and the bald tip area, so that subsequent process-
ing can be focused on maize kernel area. A threshold 
segmentation [39] method based on colour feature is 
adequate in the case as there is a clear boundary in col-
our intensities between the maize kernel and the to-be-
removed (background and bald tip area) area.

Mean shift filtering
Mean Shift Filtering [40] algorithm is a general cluster-
ing algorithm that replaces the original pixel value with 
the pixel value of the convergence point iteratively. This 
removes the local similar texture and retains the features 
with large differences such as edge, which makes it suit-
able to group kernel pixels with similar colours.

Each pixel in the image is a sample point. In this pro-
cess, it is crucial to set the parameters, physical space 
radius sp and the colour space radius sr, for iteration 
space centered on the sample point. The smaller sp and 
sr, the more details remain; the larger sp and sr, the 
smoother the image. sp and sr are set to 40 and 60 respec-
tively based on tests for the balance of kernel smoothness 
and fruit edge. Maximum layer numbers of the pyramid 
is set to 3.

Figure  4a is the compressed image in previous step. 
Figure  4b is the result image after Mean Shift Filtering. 
Figure  5 shows the maize fruit area and to-be-removed 
area, taking blue as the segmentation colour feature (due 
to background is blue) and showing the observable dif-
ferences. The maize fruit is segmented out by setting 
the unified threshold within blue channel, as shown in 
Fig.  4c. There was some noise in the processed image 
after segmentation. To remove noise, firstly, the operation 
of region filling was used to fill the holes in the kernels; 
Secondly, areas less than 20 pixels were removed using 
small-area removal. The result was shown in Fig. 4d.

(2)R = B′/B× 100%
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Enhancement of the kernel edges
The touching area between kernels was often fuzzy and 
the colour gradient of this area was narrow. This could 
result in errors in subsequent kernel segmentation as 
the segmentation of kernels was mainly based on the 
clear definition of kernels edges. Here, colour decon-
volution (CD) algorithm [41] was used to widen colour 
gradients in touching area to enhance the kernel edge.

Fig. 4  Result images of maize after the Mean Shift Filtering algorithm 
and threshold segmentation: a compressed maize image; b result 
image after the Mean Shift Filtering algorithm; c fruit image after 
threshold segmentation; d fruit image after noise removal

Fig. 5  Statistical analysis of the filtered image Blue component
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Colour deconvolution
In 2001, CD algorithm was initially proposed for separa-
tion and quantification of immunohistochemical stain-
ing [41]. Here, we make an assumption that the colour 
of maize fruit is made up of two or three “stains” (in this 
case, a new colour space). Kernel edge enhancement can 
be viewed as a problem of finding a stain with a major 
colour difference in touching areas. The amount distribu-
tion of an individual stain in maize fruit image is calcu-
lated by CD algorithm.

Firstly, the colour space was transformed from the RGB 
colour space to the Lab colour space which has a wider 
colour range [24], according to Eq.  (4). Hue and bright-
ness are two separate channels in Lab space, which was 
considered an advantage over RGB space. Visually from 
figure (Fig.  4d), we can see that brightness is the main 
feature distinguishing each kernel from the touching 
areas (where the kernel edges should be). Therefore the 
colour space was converted to extract the brightness fea-
ture. Figure 6 shows the typical maize fruit images to be 
enhanced. Figure 6 shows the Lab color images expressed 
by BGR model.

Secondly, the CD Matrix was generated. The CD algo-
rithm transforms the Lab colour space R to a new colour 
space R* composed of the stains used for staining the 
fruit. The transformation between R and R* is defined by 
Lambert-Beers law as the following Eq. (5):

where C is the optical density (OD) matrix composed of 
absorption factors c associated with stains, as Eq. (6):

where cl,1, ca,1 and cb,1 are the predefined, normalized L, a 
and b absorption factor for the first stain c1 . The transfor-
mation of Eq. (5) is Eq. (7),

Here, the optical density (OD) for three channels can 
be defined as R’. Each pure stain is characterized by a spe-
cific OD for the light in each channel (Lab), which can be 

(4)







L = 0.2126R+ 0.7152G + 0.0722B
a = 1.4749(0.2213R− 0.339G + 0.1177B)+ 128

b = 0.6245(0.1949R+ 0.6057G − 0.8006B)+ 128

(5)R = exp
(

−CR∗
)

(6)C =

cl,1 ca,1 cb,1
cl,2 ca,2 cb,2
cl,3 ca,3 cb,3

(7)R∗
= DR′

(8)where D = C
−1

(9)and R′
= − ln R

represented by a 3 × 1 OD vector describing the stain in 
the Lab colour space. In the case of three stains, the new 
colour space can be described as a matrix of the form OD 
matrix, as Eq. (6). D is the CD matrix obtained by calcu-
lating the inverse of the OD matrix C. In our work, the 
OD matrix cannot be determined arbitrarily as maize 
fruit are not stained by specific dyes. A conclusion drawn 
by Ruifrok and Johnston is that stain amount distribution 
is not influenced by the combination of multiple stains 
[41].

Fig. 6  Maize fruit images in RGB colour space and converted Lab 
colour space, the varieties are in turn: a Xianyu 688; b Jinnuo 685; c 
Fudan No. 3
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If maize fruit image I(X ,R) is defined as a 2D set of pix-
els X with its colour space function R composed of L, a 
and b intensity, I(X ,R∗) in R* colour space is calculated 
according to Eq. (7). This allows a distribution map of an 
individual stain in stain combination to be obtained.

In our experiment, the colour appearance of differ-
ent maize varieties varied widely. We experimented to 
receive a better kernel enhancement result by testing 10 
stain combinations and 80 images, i.e. 10 sample images 
for each of 8 maize varieties. Images of each variety were 
taken under various light conditions. For each image, we 
applied these 10 stain combinations and found the one 
with best separation performance. The evaluation of the 
performance was by going through the segmentation 
and recognition procedures to acquire the kernel count-
ing results. These results were then compared with the 
ground truth. Those two procedures will be introduced 
in the following sections. Three stain combinations were 
chosen for their better performance of enhancing the 
edge information and they produced the best results for 
the 80 test images. Two were adapted from https​://blog.
bham.ac.uk/intel​limic​/g-landi​ni-softw​are/colou​r-decon​
volut​ion/, which is a colour deconvolution plugin for 
ImageJ and Fiji [41]. They are called methyl green and 
hematoxylin GL by the author. One was customized by 
ourselves and we call it “white”. The OD matrices are 
shown in Eqs. (10)–(12). In order to automatically choose 
the most suitable one from these three combinations for 
unseen images, we designed a method. It split the 80 test 
images into 3 groups on each a stain combination pro-
duced the best performance. The average L, a, b values of 
each group were calculated. So when an unseen image is 
input, we calculate its L, a, b values and choose the stain 
combination with the least Euclidean distance of Lab 
values.

Xianyu 688, Jinnuo 685 and Fudan No.3 in Fig.  5 are 
three typical varieties for each stain combination methyl 
green, hematoxylin GL and white. The edge enhancement 
maps corresponding to Fig.  6, processed by CD algo-
rithm, are shown in Fig. 7. Figure 7 shows a clearer defini-
tion of the kernel edge, demonstrating that CD algorithm 
is propitious to edge enhancement.

(10)
R G B

methylgreen
[

0.98003 0.144316 0.133146
]

(11)

R G B

hematoxylinGL
[

0.644211 0.716556 0.266844
]

(12)
R G B

white
[

0 0 0
]

Kernel segmentation
The gray image extracted from Fig. 7c, taking R channel 
from the processed image, is shown in Fig. 8a. Due to 
uneven distribution of light on the kernel, gray intensi-
ties are not continuously uniform in the global range. 
Fixed threshold segmentation would result in over-
segmentation or under-segmentation. Figure 8b shows 
the Otsu (Maximum Between-Class Variance) thresh-
old segmentation image in which touching kernels in 
red rectangular box are under-segmented. An adaptive 
threshold method for compensation of the lighting or 
reflecting unevenness was considered for separat-
ing the kernels [39]. Every pixel c(i, j) in the grayscale 
image has one threshold M(i, j) which is the mean gray 
value in neighborhood block centered on c(i, j), and 
then pixel c(i, j) with gray value larger than M is set to 
255 or otherwise to 0. The size of neighborhood block 
blocksize is set to the average length of kernels mini-
mum bounding rectangle (MBR), experimentally. Too 
small a blocksize results in more noise, while an over-
sized one may lose edge information. Figure  8c shows 
the adaptive threshold segmentation result. Compared 
to Fig.  8b, under-segmented and over-segmented ker-
nels are greatly reduced in Fig. 8c, which demonstrated 
that the adaptive threshold method is suitable for ker-
nel segmentation.

Fig. 7  Edge enhancement maps: a Xianyu 688 “stained” by methyl 
green; b Jinnuo 685 “stained” by hematoxylin GL; c Fudan No. 3 
“stained” by white

https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution/
https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution/
https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution/
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Kernels recognition
Figure  8c shows that after segmentation, there are still 
touching kernels on both sides of the maize fruit owing 
to lighting factors and kernel occlusions. The adhesion 
type includes not only corner-to-corner and edge-to-cor-
ner touching but also edge-to-edge touching, which are 
shown in Fig. 9.

For such a complicated problem, a local maximum 
detection method based on Gaussian filter was applied to 
recognize kernels.

Step 1: Smoothing the kernel binary image with 
Gaussian filter. This step aims to enhance the intensity 

at the kernel center which is the maximum point to 
be detected. Thus, the closer to the kernel center, 
the greater the intensity level. Figure  10a shows the 
smoothing result of the edge-to-edge touching kernels 
image. Figure 10b illustrates that the maxima points are 
distributed at the center of a kernel after Gaussian fil-
tering. The size of the Gaussian filter window N*N was 
determined to be the average width of seed MBR (mini-
mum bounding rectangle).

Step 2: Defining a local block with a rectangular box 
which moves line by line in the image and finds the 
maxima points as initial kernel recognition points in 
the local block. The size of the local detection block L*L 
was determined to be the average width of kernel MBR, 
which helps to find the recognition point correspond-
ing to the kernel.

Step 3: Eliminating spurious kernel recognition 
points. Multiple maxima points were obtained cor-
responding to the same kernel, and the chosen rec-
ognition point needs to be positioned to the centroid 
location of the local block for accurate counting. The 
recognition results for images in Fig.  9 are shown in 
Fig. 11.

Fig. 8  Gray image and binary image after segmentation: a gray 
image; b Otsu threshold segmentation result; c adaptive threshold 
segmentation result

Fig. 9  Binary touching kernels images: a corner-to-corner touching 
kernels; b edge-to-corner touching kernels; c edge-to-edge touching 
kernels

Fig. 10  Gaussian filtering result of edge-to-edge touching kernels 
image: a result image; b contour map
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Results
Recognition performance
A total eight maize ear varieties were used to develop the 
proposed automatic recognition algorithm and evaluate 
its performance. Two illumination conditions were used 
to test the robustness about imaging environments of our 
method. The ground truth is manual counting of kernel 
number in a maize ear side view image. The performance 
of our proposed algorithm was also compared with that 
of Hough Circle detection algorithm that has been widely 
applied to the detection of objects that contain circular 
feature to some extent such as apples, disease spots and 
arcs in agriculture and industry [34, 35]. The Hough Cir-
cle detection has the following advantages: 1. It is suitable 
for positioning multi-circle with short diameter. 2. The 
circular objects that obscured by others or the irregular 
short arcs can be detected. The algorithm was therefore 
considered to be suitable for recognizing touching and 
occluded kernels on maize ear. The test examples for 
eight varieties are listed below.

Comparisons between Hough Circle detection and the 
proposed algorithm used eight varieties, i.e. Zhengdan 
958, Xianyu 688, Fudan No. 3, Xianyu 335, Jinnuo 685, 
Jingkenuo 2016, Beibainuo No. 10 and Zhengbai No. 
1 (Figs.  12, 13, 14, 15, 16, 17, 18 and 19). As shown in 
Figs. 12a, 13, 14, 15, 16, 17, 18 and 19a, all kernels on the 
maize ear are interconnected to each other in the origi-
nal images, some are even occluded, and their shapes 
vary widely. Figures  12b, 13, 14, 15, 16, 17, 18 and 19b 
show the results by Hough Circle detection algorithm. 
Most kernels were well recognized. However, a kernel 
was either unrecognized or recognized as two when its 
contour roundness is low (shown in the partial enlarged 
view), which reduced the counting accuracy. Figures 12c, 
13, 14, 15, 16, 17, 18 and 19c show the results by our pro-
posed algorithm, where the cases not recognized cor-
rectly by Hough Circle detection were now recognized. 
Particularly, the proposed algorithm could recognize 
kernels with diverse touching types. A few areas belong-
ing to bald tip were both recognized as kernels by two 
algorithms (Figs.  18, 19), but Hough Circle detection 
produced more false positives. Indoor LED diffuse and 
outdoor natural diffuse illumination were respectively 

applied in the test. The Zhengdan958 image (Fig. 12) was 
acquired under indoor LED diffuse which has a narrow 
spectral range, so it is a little more warm yellow. High-
lights appeared in the maize area near the LED tube and 
shadows appeared in the maize area occluded by the 
camera. Different from other varieties, the Zhengdan958 
images were collected at a farmhouse in Suzhou City, 
Anhui Province, where there is no blue background, we 
replaced it with a black background. But that does not 
affect the background segmentation process. In contrast, 
other samples (Figs.  13, 14, 15, 16, 17, 18 and 19) were 
acquired under outdoor natural light around 10 a.m. 
which has a balanced spectrum. Light is evenly distrib-
uted in maize ear area. The results (Figs. 12c, 13, 14, 15, 
16, 17, 18 and 19c) did not show clear influences caused 
by illumination conditions.

Then the proposed algorithm was evaluated quan-
titatively. The results are shown in Table  1. The correct 
recognition rate of the proposed method was more than 
93.6%. In contrast, Hough Circle detection is less than 
90% with the lowest rate being 78.9%. Compared with 
Hough Circle detection algorithm, the false positive and 
false negative numbers of the proposed method were 
greatly reduced. Figure 20 shows how accurate our pro-
posed algorithm is. Table  2 shows the results in batch 
testing. The average correct rate is the average of indi-
vidual correct recognition rates on each maize ear, which 
shows good consistency between the batch test results 
and the single test results. The above results indicate 
that the proposed algorithm has superior performance. 
It is more accurate compared with traditional methods, 
such as the Hough Circle detection algorithm, for maize 
kernel recognition in ear image. The results also show 

Fig. 11  Recognition effect: a corner-to-corner touching kernels; b 
edge-to-corner touching kernels; c edge-to-edge touching kernels

Fig. 12  Recognition results of test sample Zhengdan 958: a original 
image of maize ear; b recognition effect based on Hough Circle 
detection algorithm; c recognition effect based on the proposed 
algorithm
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that the algorithm is robust under different illumination 
conditions. The average processing time by the proposed 
algorithm on a single ear is 0.64  s. Therefore, the pro-
posed method is efficient and accurate for the automatic 
recognition and counting of maize kernels.

Segmentation by morphological algorithm
Figure  21 shows the results of repeated morphologi-
cal corrosions on three touching types (as derived from 
Fig. 9) until the kernels are separated. Corner-to-corner 
and edge-to-corner touching kernels can be separated, 
but edge-to-edge touching kernels cannot be separated 
until the smaller one disappeared, which results in count-
ing error.

Segmentation of touching kernels
The kernels were separated into two categories accord-
ing to individual kernel area threshold which was set to 
the average of the areas. Figure 22b, c respectively dem-
onstrated kernels with their area greater and less than 
the average area, in which there are both individual and 
touching kernels (shown in the red box). Therefore, the 
segmentation method based on area threshold cannot be 
used to judge whether the kernel is touching. Obviously, 
our method could deal with these states.

Discussion
Counting kernel number of a maize ear through image 
processing is challenging but of significance for maize 
breeding. As shown in Figs.  12a, 13, 14, 15, 16, 17, 18 
and 19a, the fuzzy touching area between kernels, with 
narrow colour gradients results in almost all kernels on 
the maize ear touching each other. Some kernels are 
even occluded, and their shapes vary widely. As can be 
seen from segmentation results using morphological 

algorithm, morphology and morphology-based seed 
watershed methods, these may not be suitable for seg-
menting the kernels in maize ear image. In contrast, the 
accuracy of our proposed method is suitable for practical 
applications in maize kernels recognition, as it exceeded 
93% for eight typical ear varieties. This demonstrates that 
the method has good stability for multiple maize varie-
ties. Compared with Hough Circle detection algorithm, 
the proposed method is able to take account of irregular 
kernel shapes. Moreover, the method is efficient: process-
ing 700× 2300 pixel image takes about 0.64 s on a com-
puter, with Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz 
2.40  GHz, 12G (RAM) but without using a GPU. That 
makes real-time processing using low cost hardware fea-
sible. According to the results by area threshold, whether 
increasing or decreasing the area threshold, the touch-
ing and individual kernel cannot be correctly classified. 
It is because of the varying kernel sizes. Nevertheless, 
the importance of our method is two-fold: Firstly, it can 
recognize touching kernels of irregular shapes in the 
same maize ear. Secondly, there is no need to distinguish 
touching and individual kernels in recognition.

We can see that there are a few false recognition points 
on the bald tip of maize only for two varieties Figs. 18, 19. 
This is because that some areas on the bald tip would not 
be removed in the step background separation due to its 
redundant color intensity and were processed as fruit in 
subsequent steps. It has a slight impact on counting pre-
cision and can be ignored. Due to one-sided imaging of 
the ear, it is inevitable that occlusion will arise on both 
sides of the maize ear, as shown in the red box of Fig. 14a. 
In addition, because of weakened illumination on both 
sides, the occluded and small kernel is much smaller than 
other kernels. So the size of the touching area approxi-
mates that of a single kernel, which leads to a negative 

Fig. 13  Recognition results of test sample Xianyu688: a original image of maize ear; b recognition effect based on Hough Circle detection 
algorithm; c recognition effect based on the proposed algorithm
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recognition error as the occluded kernels are not recog-
nized by the proposed algorithm and affects the accuracy 
of automatic counting. Thus, further research is needed 
to solve the problem of the recognition of occluded maize 
kernel. We hope to avoid occluded kernels by improving 
image acquisition methods, such as panoramas. Due to 
the imaging angle, the kernel size varies greatly that the 
block size is relatively small for some kernels and the ker-
nel is recognized as two. Thus, further work is needed to 
reduce false-positive number by distortion correction. In 
experiment of verifying the robustness of the algorithm 

to lighting, we did not capture all samples under two illu-
minations. The work will be improved in later research to 
make the results more convincing.

Conclusion
This paper proposes a high-efficiency and low-cost 
approach to recognize and count the kernels on maize 
ear. Due to its accurate counting, fast speed and sta-
ble operation, the kernel recognition algorithm can be 
used as an alternative to the traditional manual count-
ing especially in a high throughput manner. Moreover, 

Fig. 14  Recognition results of test sample Fudan No. 3: a original image of maize ear: kernel occlusion on the ear side is shown in the red box; b 
recognition effect based on Hough Circle detection algorithm; c recognition effect based on the proposed algorithm
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this algorithm is applicable to counting multiple vari-
eties of maize kernels. In our experiment, two dif-
ferent lighting conditions are considered, where the 
algorithm performs well. Nevertheless, the accuracy 
of this method is affected when the kernels on both 
sides of the ear are occluded and the image geometry 

distortion is large. This method also provides a refer-
ence for the counting of other crop kernels, which will 
be helpful for breeding programs.

Fig. 15  Recognition results of test sample Xianyu 335: a original image of maize ear; b recognition effect based on Hough Circle detection 
algorithm; c recognition effect based on the proposed algorithm

Fig. 16  Recognition results of test sample Jinnuo 685: a original image of maize ear; b recognition effect based on Hough Circle detection 
algorithm; c recognition effect based on the proposed algorithm

Fig. 17  Recognition results of test sample Jingkenuo 2016: a original image of maize ear; b recognition effect based on Hough Circle detection 
algorithm; c recognition effect based on the proposed algorithm
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Fig. 18  Recognition results of test sample Beibainuo No. 10: a original image of maize ear; b recognition effect based on Hough Circle detection 
algorithm; c recognition effect based on the proposed algorithm

Fig. 19  Recognition results of test sample Zhengbai No. 1: a original image of maize ear; b recognition effect based on Hough Circle detection 
algorithm; c recognition effect based on the proposed algorithm

Table 1  Comparisons of counting accuracy of two recognition algorithms for eight different varieties

Maize 
varieties

Number 
of kernels

Hough circle detection algorithm Proposed algorithm

Number 
of correctly 
recognized

False-
positive 
number

False-
negative 
number

Correct rate 
(%)

Number 
of correctly 
recognized

False-
positive 
number

False-
negative 
number

Correct rate 
(%)

Zhengdan 958 204 182 6 22 89.2 191 0 13 93.6

Xianyu 688 1181 971 9 210 82.2 1140 2 41 96.5

Fudan No. 3 1531 1208 51 223 78.9 1500 30 31 97.9

Xianyu 335 579 532 19 47 91.9 554 3 25 95.7

Jinnuo 685 854 743 33 111 87.0 804 15 50 94.1

Jingkenuo 
2016

655 579 38 76 88.4 631 2 24 96.3

Beibainuo 
No. 0

548 489 43 59 89.2 513 8 35 93.6

Zhengbai 
No. 1

382 350 49 32 91.6 373 13 9 97.6
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