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METHODOLOGY

In-silico detection of aneuploidy 
and chromosomal deletions in wheat using 
genotyping-by-sequencing
Narinder Singh1,2, John Raupp1, Dal‑Hoe Koo1, Bernd Friebe1, Bikram Gill1 and Jesse Poland1* 

Abstract 

Background: Short read sequencing technologies, such as genotyping‑by‑sequencing (GBS), have been utilized in 
genetic mapping, marker development, and population genomic studies. High‑throughput and multiplexing capabil‑
ity coupled with low cost make GBS an appropriate tool for molecular research. Here, we present the application of 
GBS to characterize wheat aneuploid stocks and detect chromosomal aberrations including aneuploidy and chromo‑
somal deletions. These aneuploids are an important resource that have been used in wheat genetics and genomics 
studies to localize genes, determine physical positions, and develop chromosome bin maps.

Results: Using GBS, we mapped sequence reads and quantified read coverage across chromosome bins. Using this 
approach, we confirmed known deletions and aneuploid stocks. In addition, we were also able to fully characterize 
these stocks and to identify several novel deletions and aneuploids. With this knowledge and a quick detection tool at 
our disposal, we can easily isolate these deletions and aneuploids into distinct lines.

Conclusion: We envision this tool to replace the intensive cytogenetics techniques, such as C‑banding, and fluores‑
cent‑ and genomic‑in situ hybridization to accurately detect chromosome dosage and segmental deletions in wheat 
genetic stocks as well as other crop species.
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Background
Wheat is a polyploid species that inherited its three dif-
ferent genomes from three distinct diploid species [1–4]. 
Unlike many species, wheat can tolerate chromosomal 
deletions due to its buffered polyploid nature. This has 
enabled the development of complete sets of chromo-
some aneuploid stocks and many chromosome dele-
tion stocks [5–7]. These genetic stocks are an important 
resource for wheat genetics, which have been used exten-
sively in genetic mapping, the development of genomic 
resources, and genome mapping [6, 8–11].

The maintenance of these genetic stocks requires 
extensive cytology to identify and confirm the chromo-
some deletion/aneuploidy. Therefore, the accurate char-
acterization of the presence and dosage of chromosome 
deletions and aneuploidy in a high-throughput manner 
is an important objective for more efficient curation and 
utilization of these stocks. Subsets of these deletion and 
aneuploid stocks have been characterized before using 
C-banding, fluorescent- and genomic- in  situ hybridiza-
tion, and expressed sequenced tags (ESTs) [12–14]. How-
ever, the low-throughput, time intensiveness and limited 
resolution of these methods limit their application for 
large scale characterization of these stocks. We there-
fore approached the question if genotyping-by-sequenc-
ing approaches could be utilized for characterizing 
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chromosome deletions and chromosome dosage in a 
high-throughput and low-cost manner.

Short-read sequencing technologies nowadays have 
become a mainstay for genomic studies in crop species 
due to their reducing cost and high-throughput. One 
such technology is genotyping-by-sequencing (GBS) that 
uses restriction enzymes to capture the reduced portion 
of genome for sequencing [15, 16]. GBS has been used for 
genome-wide single nucleotide polymorphisms (SNPs) 
discovery, genetic mapping, marker assisted selection 
(MAS), curating genebanks, population genomics, and 
genome-wide association studies (GWAS) [16–21]. 
Ability to multiplex samples combined with the high-
throughput and low cost of GBS make it a robust tool 
for all these targets. We here present the application of 
low coverage GBS to detect terminal chromosomal dele-
tions and check chromosome dosage of individual chro-
mosomes and chromosome segments based on the read 
counts of GBS.

Results and discussion
Distribution of tag counts
Genotyping-by-sequencing (GBS) resulted in a total 
of ~ 834 million 100  bp raw reads from 606 samples. 
Tassel5 GBSv2 pipeline was used to retrieve valid reads 
with unique barcode followed by an enzyme cut site and 
trim them to 64  bp in length (hereafter called tags). A 
total of 1,049,622 such unique tags were identified from 
606 samples. Because of their short length, these tags 
tend to map at multiple positions. Therefore, to reduce 
the error due to multiple mapping, tags were filtered to 
retain only uniquely mapped tags, which resulted in a 
total of 480,204 unique tags. Further filtering was per-
formed to remove those tags that mapped to unanchored 
scaffolds or had ambiguous mapping positions. This 

filtering resulted in a final count of 452,123 unique tags 
that were used for further analysis. The distribution of 
raw read count and unique tag count per sample is shown 
in Fig.  1a, b. Both raw read and tag counts per sam-
ple showed heavily skewed distributions with a median 
of ~ 1.37 million raw reads and 204,628 tags per sample, 
respectively.

Tag count distribution showed a bimodal distribution, 
and we tested if this could be attributed to separate GBS 
runs. Samples in this study were collected in seven DNA 
plates at different times and sequenced on three different 
Illumina flowcells. Distribution of the counts within and 
across flowcells and DNA plates revealed that the differ-
ent GBS runs contributed to the variability and skewness 
of the counts (Fig.  2). Latest GBS run (H3JCHBGX7) 
contributed the most reads and tags per sample, but had 
wider distribution, whereas other two previous runs had 
lower median counts but narrow distribution.

Normalization of tag counts
Due to reduced representation and random sampling 
of genomic regions in the GBS, not all samples or all 
genomic regions within samples are sequenced at the 
same depth. Due to this differential in the read and tag 
counts, normalization across the genome was performed 
to allow comparison within and across samples. Firstly, 
total tag counts were normalized across samples such 
that all samples had the same number of tags. This nor-
malization further allows the comparison of tag counts 
within each bin across samples (see “Methods” section). 
Then tag counts were normalized to median count for 
each bin across samples. Normalized tag counts per 
bin had a normal distribution (Fig.  1c). We observed a 
minor peak in the count of bins with zero tags per bin 
representing the deletion bins. Most of the bins had the 
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Fig. 1 Histograms showing the distribution of a raw read count per sample, b unique tag count per sample, and c normalized tag count per bin 
relative to median. Vertical red dotted lines represent the median values
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normalized tag counts close to the median value of one, 
representing normal two copies of the respective chro-
mosome or chromosome segment (dosage). Normalized 
tag counts around 0.5 represent 1x dosage, at 1.5 repre-
sent 3x dosage, and 2.0 is 4x dosage. On a whole chro-
mosome level the dosage of 1x, 2x, 3x and 4x, would 
represent monosomic, normal disomic, trisomic and tet-
rasomic condition, respectively.

Detection of chromosomal deletions and aneuploidy
Sample karyotypes using normalized tag counts were 
plotted with R-programming language and analyzed 
visually for chromosome segment deletion or ane-
uploidy. Most of the samples (86%) had been char-
acterized previously using traditional cytogenetic 
techniques, such as C-banding, and fluorescent- and 
genomic- in  situ hybridization (FISH and GISH) [13, 
22]. For almost all the previously characterized sam-
ples, we were able to confirm the known deletions. In 
addition, we also found several new deletions and pre-
viously undetected aneuploidy events. To show the 

range of karyotypes as a reference point, six distinct 
karyotypes, including the euploid Chinese Spring (CS) 
are shown in Fig. 3. As expected, CS did not show any 
deletion or aberration, and had two copies for all chro-
mosomes (2x). Other examples include 18S1-224-5, 
which is double-ditelo for chromosome 2AS (0x), and 
monosomic for chromosome 4D (1x). Sample 18-SI-
535-6 has a heterozygous deletion for the short arm of 
chromosome 6D  around the centromere but has  only 
one copy for the long arm of 6D (1x). Sample 18S1-
278-3 is a complex line with three different chromo-
somal aberrations. This sample is lacking both copies of 
chromosome 1A (N1A; 0x) but has four copies of chro-
mosome 1B (T1B; 4x). Furthermore, this sample is also 
monosomic for chromosome 4A (M4A; 1x).

Although we were able to identify majority of deletions 
and aberrations without any ambiguity, we did observe 
uncertainty in few samples, especially around the cen-
tromere (Fig. 3, sample 17SI-323-3). This is possibly due 
to the biased amplification of some sequences during 
polymerase chain reaction (PCR) as well as the methyla-
tion sensitive enzymes used for GBS, which have very few 
sites in the centromeric regions and would have much 
less sampling. Variation around the centromere should 
not be trusted at this time unless continually associated 
with a terminal aberration. However, it did not affect the 
detection of terminal deletions in the chromosomes as 
evident from the samples 17SI-323-3 and 17SI-334-1 in 
Fig. 3. Complete set of karyotypes for all other lines are 
presented in Additional file 1: Fig S1.

Additionally, there were several samples that produced 
unexpected karyotypes that were hard to interpret (Addi-
tional file 1: Fig S1). One such group of samples include 
17SI-357-4 to 17SI-359-3 and 18S1-216-1 to 18S1-220-3. 
These karyotypes could be interpreted to have a single 
copy (hemizygous; 1x) deletions at almost all chromo-
somes, which does not seem plausible. All these samples 
had overlapping  terminal deletions at chromosome 2BL 
(2BL-1 and 2BL-3). However, it is hard to say without fur-
ther investigation if these terminal deletions cause these 
karyotypes because other samples with a different 2BL 
terminal deletions produced interpretable karyotypes, 
such as 17SI-362-2 (2BL-7). This could also possibly be 
attributed to sequencing and PCR bias as these samples 
had relatively  lower but comparable number of tags to 
other representative samples. However, the total number 
of tags is just one measure of good sequencing and does 
not guarantee uniform coverage across genome. Other 
example includes 17SI-372-1 that had a terminal dele-
tion on chromosome 3DS. Even with these anomalous 
karyotypes, using this method we were able to detect the 
known deletion(s) in these samples. Other anomalous 
samples include 18S1-284-4 and 18S1-289-5, however, 
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these results could be confidently attributed to the low 
number of tags in these two samples, 1868 tags and 14 
tags, respectively.

Future refinement of the pipeline
This newly proposed pipeline provides an evidence that 
it can be applied to complement and/or replace current 
cytological methods to rapidly characterize, screen, and 
better understand the chromosomal aberrations in the 
genetic stocks. We envision that with the reducing cost of 
DNA sequencing and whole genome sequencing becom-
ing the mainstay for genomic studies, implementation of 
low-coverage whole-genome re-sequencing will be the 
next improvement in the pipeline giving higher resolu-
tion and reducing the noise due to PCR bias and provide 
better estimates for the deletion sizes.

Conclusions
We developed a high-throughput computational method 
to detect terminal chromosomal deletions and chro-
mosomal aneuploidy in wheat genetic stocks using low 
cost genotyping-by-sequencing. This methodology has 
the potential to replace cytological techniques for high-
throughput, rapid and efficient screening and characteri-
zation of genetic stocks. Implementing this method on 
a subset of genetic stock, we not only identified known 
deletions, but also found several new aberrations. These 

genetic stocks have helped geneticists map desired 
genes and develop reference genomes [8, 9], therefore 
their accurate characterization will facilitate the wheat 
improvement and pave the way towards greater food 
security.

Materials and methods
Genetic stock and tissue collection
Plant genetic stocks analyzed in this study include 
euploid Chinese Spring, 145 deletion lines, and six aneu-
ploid lines of common wheat, which have been previously 
described [6, 7, 23] (Additional file 2: Table S1). Multiple 
plants for each line were planted in the greenhouse in 2 
by 2 inches small pots and the tissue was collected from 
about 2 weeks old seedlings of individual plants. Due to 
variable number of planted seeds for each line, we had 
a total of 606 samples. About 5  cm of young leaf tissue 
was sampled from each plant and collected in 96-well tis-
sue collection box. The tissue was stored at − 80 °C until 
DNA extraction.

DNA extraction and genotyping
Tissue was lyophilized for 24–36  h and genomic DNA 
was extracted using Qiagen BioSprint 96 DNA Plant 
Kit (QIAGEN, Hilden, Germany), and quantified using 
Quant-iT™  PicoGreen® dsDNA Assay Kit (ThermoFisher 
Scientific, Waltham, MA, USA). Genotyping was 
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performed using genotyping-by-sequencing (GBS) fol-
lowing two enzyme technique [16]. GBS libraries were 
prepared in 384-plexing using two restriction enzymes, a 
rare cutter PstI and a frequent cutter MspI, with a com-
mon reverse adapter ligated, and sequenced on Illumina 
platform at McGill Univesity-Génome Quebec Innova-
tion Centre (Montreal, Canada) facility.

Sequence alignment
Using Tassel5 GBSv2 and ‘bowtie2’ pipeline, short reads 
from GBS FASTQ files were aligned against International 
Wheat Genome Sequencing Consortium’s RefSeq v1.0 
assemble to find physical locations of tags (valid reads 
with unique barcode and enzyme cut site) [24–26]. The 
pipeline was run with default parameters and the follow-
ing changes. Briefly, ‘bowtie2’ was run in multithreaded 
environment with ‘-end-to-end-D 20-R 3-N 0-L 10-i 
S,1,0.25′ parameters. The resulting sequence alignment 
map (SAM) file was filtered using unix ‘grep’ function 
and ‘XS:i’ flag to retain only uniquely mapped reads. Fil-
tered SAM file was used in the further steps of the pipe-
line to get tags by taxa distribution across samples. The 
full shell script used for alignment is available at GitHub 
link below.

Tag counts distribution and normalization
Each chromosome was divided into 100  Mb bins and 
total number of tags were counted within 100  Mb bin 
with a sliding step size of 50  Mb. To remove the bias 
due to differential sequencing depth and to compare tag 
counts within and across samples, normalization was 
performed across genome for each bin for all samples. 
Tag counting and normalization was performed in R-pro-
gramming language using base functions, and packages 
data.table and dplyr [27].

Karyotype visualization
Sample karyotypes were plotted in R-programming 
language using the base ‘barplot’ function and ggplot2 
package [27]. 50  Mb bins were categorized into sepa-
rate dosage groups based on their normalized values. 
Normalized values were assigned to the respective copy 
numbers as follows: 0–0.25 as null, 0.25–0.75 to 1, 0.75–
1.25 to 2, 1.25–1.75 to 3, 1.75–2.25 to 4, 2.25–2.75 to 5, 
and 2.75 or greater to 6 + copies. Distinct colors were 
assigned to each bin for dosage ranging from null (dele-
tion; 0x) to 6x. Individual karyotypes were analyzed visu-
ally to detect chromosomal deletions and aneuploidy.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1300 7‑020‑00588 ‑3.

Additional file 1: Figure S1. Karyotype visualizations for all samples 
included in this study. 

Additional file 2: Table S1. List of accessions (samples) analyzed in this 
study.
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