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METHODOLOGY

Smoothing and extraction of traits 
in the growth analysis of noninvasive 
phenotypic data
Chris Brien1,2,3*, Nathaniel Jewell1,2, Stephanie J. Watts‑Williams2, Trevor Garnett1,2 and Bettina Berger1,2

Abstract 

Background:  Non-destructive high-throughput plant phenotyping is becoming increasingly used and various 
methods for growth analysis have been proposed. Traditional longitudinal or repeated measures analyses that model 
growth using statistical models are common. However, often the variation in the data is inappropriately modelled, in 
part because the required models are complicated and difficult to fit. We provide a novel, computationally efficient 
technique that is based on smoothing and extraction of traits (SET), which we compare with the alternative tradi‑
tional longitudinal analysis methods.

Results:  The SET-based and longitudinal analyses were applied to a tomato experiment to investigate the effects 
on plant growth of zinc (Zn) addition and growing plants in soil inoculated with arbuscular mycorrhizal fungi (AMF). 
Conclusions from the SET-based and longitudinal analyses are similar, although the former analysis results in more 
significant differences. They showed that added Zn had little effect on plants grown in inoculated soils, but that 
growth depended on the amount of added Zn for plants grown in uninoculated soils. The longitudinal analysis of the 
unsmoothed data fitted a mixed model that involved both fixed and random regression modelling with splines, as 
well as allowing for unequal variances and autocorrelation between time points.

Conclusions:  A SET-based analysis can be used in any situation in which a traditional longitudinal analysis might 
be applied, especially when there are many observed time points. Two reasons for deploying the SET-based method 
are (i) biologically relevant growth parameters are required that parsimoniously describe growth, usually focussing 
on a small number of intervals, and/or (ii) a computationally efficient method is required for which a valid analysis 
is easier to achieve, while still capturing the essential features of the exhibited growth dynamics. Also discussed are 
the statistical models that need to be considered for traditional longitudinal analyses and it is demonstrated that the 
oft-omitted unequal variances and autocorrelation may be required for a valid longitudinal analysis. With respect to 
the separate issue of the subjective choice of mathematical growth functions or splines to characterize growth, it is 
recommended that, for both SET-based and longitudinal analyses, an evidence-based procedure is adopted.
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experiments, Longitudinal analysis, Tomato, Random regression modelling
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Background
High-throughput phenotyping (HTP) has become 
an important tool in investigating shoot growth and 
structure in a range of plants that include rice, maize, 
sorghum, wheat, barley, chickpeas, setaria, medic, straw-
berries and tomatoes, either for studying shoot growth 
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responses per se or as a precursor to genetic analysis 
[1–13]. Because it involves non-invasive phenotyping of 
the same plants at different time points, it is now possi-
ble to measure many plants at many time points so that 
the precision of growth analyses [14] is much improved. 
The basic structure of such data is that there are units, or 
‘subjects’, on each of which measurements are made over 
time.

One approach to analyzing growth is to carry out a 
functional analysis in which a mathematical function, 
anticipated to be able to follow the growth pattern, is fit-
ted. Fundamental to such analyses is the choice of func-
tion. It has been common to fit exponential, logistic 
and other mathematical functions of various forms to 
describe growth [15]. As noted in Hunt [14] and Shipley 
and Hunt [16], the problem with using specific functions 
is that the growth may not fit the assumed form and this 
led these authors and others [2, 5, 17–20] to recommend 
the use of splines to model growth. Shipley and Hunt [16] 
highlighted that it is often not possible to see deviations 
from the assumed functional form by examining a plot 
of the growth over time. Genetic markers have been suc-
cessfully detected using semiparametric smoothing of the 
data [2, 5]. On the other hand, one of the attractions of 
using mathematical functions is that the parameters asso-
ciated with them often have biological interpretations.

Here we outline and describe our experiences with two 
techniques for characterizing the dynamics of growth 
using data from HTP facilities. For both of these tech-
niques, growth might be characterized by fitting either 
mathematical growth functions or splines to remove the 
transient deviations that occur in such data. The first 
technique is a computationally efficient method that we 
have developed and is called smoothing and extracted 
trait (SET) analysis. Essentially, the data for each individ-
ual is first smoothed and this is followed by the extraction 
of traits that are to be statistically analyzed. The second 
will be referred to as longitudinal analysis, also known as 
repeated measurements or growth curve analysis. Here, it 
employs fixed and random regression models (FRM and 
RRM) that are based on natural cubic smoothing splines 
(FRMS and RRMS) [21, 22]. The difference between 
FRM(S) and RRM(S) is that the intercepts and slopes 
are fixed for FRM(S) and, except for an overall intercept 
and slope, are random for RRM(S). Further, the statistical 
analysis will allow for unequal variance and autocorrela-
tion between time points. For both techniques, the issue 
of fitting a valid model is canvassed.

To illustrate the two techniques, the data from a 
tomato (Solanum lycopersicum) experiment [11] is used. 
This experiment involved the eight combinations of four 
levels of zinc (Zn) addition (0, 10, 40, and 90 mg Zn kg−1 
soil) and either the addition of an arbuscular mycorrhizal 

fungal (AMF) inoculum (+AMF) or of a mock inoculum 
(−AMF) to the soil in pots with a single plant. The exper-
iment consisted of 32 potted plants that were placed in 
carts on the conveyor system within a Smarthouse (Aus-
tralian Plant Phenomics Facility, University of Adelaide), 
where they were imaged daily from 17 to 51  days after 
planting (DAP). While the previously reported results 
[11] cover only 27–43 DAP, the full data set was pro-
cessed and is the subject of the analyses reported here. 
‘Cart’ will be used as the generic term for the unit in this 
experiment, each physical cart holding a pot with a single 
plant.

Results
The raw data obtained from the image processing is 
exhibited in the profile plots in Fig.  1. In addition to 
PSA, the continuous PSA absolute and relative growth 
rates (PSA AGR and PSA RGR) are shown, these being 
calculated by differencing consecutive PSA and ln(PSA) 
values, respectively. There is a marked “sawtooth” pattern 
evident in the PSA AGR and PSA RGR, this pattern not 
being evident in the PSA plot. The results of analyzing 
the PSA by a SET-based and a longitudinal analysis of the 
tomato data are now described.

A SET‑based analysis of the tomato data
For this analysis the PSA is first smoothed. We investi-
gated direct- and log-smoothing of the PSA using natural 
cubic splines for several values of the smoothing degrees 
of freedom (DF), as well as the fitting of a three-parame-
ter logistic curve. Log-smoothing with six DF was chosen 
to yield the smoothed projected shoot area (sPSA). The 
continuous sPSA AGR and sPSA RGR are calculated by 
differencing consecutive sPSA and ln(sPSA) values. Fig-
ure 2 presents plots of these three responses. Using these, 
time intervals with end points at DAPs 18, 22, 27, 33, 39, 
43 and 51 were chosen. For the analysis, the sPSA val-
ues for each of these end points were extracted and the 
mean sPSA AGR and sPSA RGR calculated for each of 
the intervals DAP 18–22, 22–27, 27–33, 33–39, 39–43, 
43–51. Thus there are seven single-DAP traits extracted 
for sPSA and six interval traits extracted for sPSA AGR 
and six for sPSA RGR.

Each of these 19 extracted growth traits was analyzed 
separately and a summary of the hypothesis tests carried 
out to determine the significance of the effects of Zn and 
AMF inoculation on these traits is given in Additional 
file 1: Table S1. They show that only Zn had a significant 
effect (p ≤ 0.05) on sPSA at DAPs 18 and 22; subsequent 
to these DAPs (viz. DAPs 27, 33, 39, 43 and 51), Zn and 
AMF interacted significantly (p ≤ 0.05) in their effect on 
sPSA. For sPSA AGR, there were significant (p ≤ 0.05) 
interactions of Zn and AMF for DAP intervals 22–27, 
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27–33 and 33–39, while for sPSA RGR there were sig-
nificant (p ≤ 0.05) interactions for DAP intervals 18–22, 
22–27, 39–43 and 43–51.

To illustrate these effects, predicted values for each 
of the responses sPSA, sPSA AGR and sPSA RGR are 
combined and each presented in its own plot in Fig. 3. 
It shows that generally DAP 18–22 was a period of 
increasing AGR; DAP 22–27 was a period of even faster 
increases in the AGR; DAP 27–33 was a period during 
which the AGR peaked; DAP 33–39 was a period of 
reduced growth; DAP 39–43 is the period of restricted 

watering and followed by a 2-day recovery period 
when growth had slowed even more; DAP 43–51 was a 
period in which the AGR did not change or decreased 
further. The RGR, except for the first and last intervals, 
continued to decrease. There is little, if any, difference 
between the trends for the different Zn treatments over 
time for the plants grown in soils inoculated with AMF. 
For those grown with mock inoculation, the difference 
between the zero and 10 mg Zn kg−1 additions is small; 
the differences between these two concentrations and 
the other two concentrations varies over time for the 

Fig. 1  Profile plots for unsmoothed projected shoot area (PSA) and growth rates. The PSA (a) is shown over DAP 17–51, as are the continuous 
absolute growth rate (AGR) (b) and relative growth rate (RGR) (c) calculated from the PSA. For each trait, AMF treatments occupy separate panes. 
Each line corresponds to one of the 32 carts, each with a potted plant. The dashed, vertical black line indicates the start of a 3-day interruption to 
watering
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sPSA, sPSA AGR and sPSA RGR. It can also be seen in 
Fig. 3 that the variance differs over time. However, each 
per-cart analysis involves a single time or time interval 
and the different variances between times are irrele-
vant to a single analysis.

The six interval traits for each of sPSA, sPSA AGR 
and sPSA RGR were jointly analyzed, as described in 
Additional file  2. The differences between the results 
of the joint analyses and those of the separate analyses 
just described are minor. However, the joint analyses 
were more difficult to perform than the separate anal-
yses. It would appear that, as long as comparisons are 

limited to predictions at the same time, then separate 
analyses are valid.

A longitudinal analysis of the tomato data
Each of PSA and ln(PSA) was subjected to a longitudi-
nal analysis, the aim of which was to obtain estimates 
of the trend over time of the PSA, PSA AGR and PSA 
RGR for each combination of Zn and AMF. The analy-
sis fitted a mixed model to describe the behaviour of 
the complete set of values for one of the traits, without 
any pre-smoothing of the data. The fitted mixed model 
employed an RRMS in that random nonlinear trends 

Fig. 2  Profile plots for the smoothed projected shoot area (sPSA) and growth rates. The sPSA (a) is shown over DAP 17–51, as are the continuous 
absolute growth rate (AGR) (b) and relative growth rate (RGR) (c) calculated from the sPSA. For each trait, AMF treatments occupy separate panes. 
The dashed, vertical black line indicates the start of a 3-day interruption to watering
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between individual carts were specified by fitting natu-
ral cubic smoothing splines with random intercepts 
and slopes, and a knot per observed DAP. Homogene-
ous splines were fitted so that the amount of smoothing 
was the same for all carts. The mixed model also allowed 
for the residual variance to differ between DAPs and for 
there to be first-order autoregressive correlation between 
DAPs. For both PSA and ln(PSA), the variances differed 
significantly between the DAPs (p < 0.001) and the auto-
correlation was significant (p < 0.001), the estimated first-
order autoregressive correlation parameter being 0.88 for 
both PSA and ln(PSA). An FRMS, for which ten equally 

spaced knots was specified, was chosen to describe the 
trend for each combination of Zn and AMF using hetero-
geneous splines, that is, splines for which the amount of 
smoothing was allowed to differ between the combina-
tions. Analyses were conducted to investigate the simpli-
fication of the FFRMs and the results are summarized in 
Additional file  3: Tables S2 and S4. For the trends over 
time, the hypothesis tests for both PSA and ln(PSA) lead 
to the conclusion that the trends differed significantly 
between the combination of Zn and AMF. For PSA, het-
erogeneous splines for the different combinations of Zn 
and AMF were significant (p = 0.001) so that the amount 

Fig. 3  Results of the SET-based analyses, showing predicted sPSA (a), sPSA AGR (b) and sPSA RGR (c) for the chosen DAPs and time intervals. The 
error ribbons are the predicted values ± 0.5 LSD (α  =  0.05). Separated ribbons indicate a significant difference, in contrast to overlapping ribbons 
for which there is not a significant difference
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of smoothing differed between the treatments. For 
ln(PSA), the three forms of heterogeneous splines were 
not significant (p > 0.05), but the homogeneous splines 
differed significantly between the combinations of Zn 
and AMF (p = 0.002); the amount of the smoothing was 
the same for all Zn-AMF combinations, but the fitted 
curves differed. For both responses, the intercept varied 

significantly between the Treatments or combinations of 
Zn and AMF (p < 0.001).

The predicted values obtained from the analyses are 
exhibited in Fig.  4. It is noticeable that the predicted 
PSA and the backtransformed predicted PSA differ: the 
(Least Significant Difference) LSD increases as the DAP 
increases for the backtransformed predicted PSA, so 

Fig. 4  Results of the longitudinal analyses, showing predicted PSA (a), PSA AGR (b), backtransformed PSA (c), and PSA RGR (d) for smoothing 
with 10 knots. The error ribbons are the predicted values ± 0.5 LSD (α  =  0.05). Separated ribbons indicate a significant difference, in contrast to 
overlapping ribbons for which there is not a significant difference
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that there are not the significant differences between the 
treatment with 40 mg kg−1 of added Zn and those with 
the lower levels of added Zn. There is some evidence 
in the residual plots in Additional file  3 of more outli-
ers from the analysis of ln(PSA). Most differences in the 
predicted PSA trend occur for the −AMF treatment; 
also, the 90  mg  kg−1 Zn treatment stands out from the 
other levels of Zn. These conclusions are similar to those 
reached from the SET-based analyses, although there are 
more significant differences for the SET-based analyses, 
especially for PSA RGR.

Assuming residuals have equal variance and are 
uncorrelated for the longitudinal analysis
An analysis in which the significant unequal variances 
and autocorrelation of the residuals are removed from 
the fitted PSA model was performed to demonstrate the 
kind of effect that the reduced model can have on the 
predictions and their standard errors. Additional file  3: 
Figure S9, compares the predictions and their standard 
errors under the full and reduced models. The effect on 
the predictions is small, but there is a tendency for the 
standard errors to be somewhat larger under the reduced 
model as compared to those under the full model.

Discussion
Use descriptive plots to make evidence‑based choices 
in deciding how to smooth growth data
An exploratory analysis is a crucial first step in analyz-
ing data and is descriptive in nature; it does not involve 
any formal statistical modelling. For longitudinal data, it 
is often founded on profile plots that include a profile of a 
trait for each physical unit or ‘subject’ in the experiment 
by graphing the trait values for each unit over time.

Figure  1 gives the profile plots of the PSA, PSA AGR 
and PSA RGR for the tomato experiment. The “sawtooth” 
pattern evident in the PSA AGR and PSA RGR, but not 
the PSA, in Fig. 1 generally results from transient effects 
on the plants. They have been observed in all the experi-
ments conducted in the Smarthouses at the Australian 
Plant Phenomics Facility, University of Adelaide. Sec-
ondly, it is clear that growth is not exponential because 
the RGR is decreasing, rather than constant. However, it 
may be logistic prior to DAP 39, when a 3-day, uninten-
tional watering interruption occurred, because up to that 
point the AGR shows a single, symmetrical peak.

These profile plots are particularly useful because they 
provide an impression of the growth dynamics in the 
experiment, thus allowing an assessment of whether or 
not particular growth models may be appropriate for 
smoothing the data. The primary function of smooth-
ing the PSA is to refine the description of the data by 
removing the transient effects evident in Fig. 1 in order 

to establish the underlying growth trajectories of the 
plants. Smoothing may be achieved by fitting (i) smooth-
ing splines or (ii) a mathematical function, usually in 
the form of a nonlinear model. Smoothing with splines 
involve the subjective process of deciding on the method 
of smoothing and the smoothing DF; otherwise, if a 
mathematical function is to be used, the particular func-
tion has to be chosen and this involves a similarly subjec-
tive process.

The smoothing spline DF are somewhat analogous 
to the degree of a polynomial: smaller smoothing DF 
result in a smoother fit. Generally, the transient devia-
tions that occur in HTP facilities mandate that a high 
degree of smoothing be used, typically smoothing DF 
varying between four and six. Automated techniques 
for choosing the amount of smoothing, such as cross-
validation and mixed model fitting, do not result in suffi-
cient smoothing. Instead, we advocate an evidence-based 
choice of the amount of smoothing and the smooth-
ing method, with the aid of median-deviations plots of 
observed minus smoothed values of the PSA, PSA AGR 
and PSA RGR (Fig. 5). Median values above zero indicate 
either that the smoothed value is under-estimating the 
trend or that there is a positive transient effect; median 
values below zero indicate the opposite. Comparisons of 
unsmoothed and smoothed profile plots assist in decid-
ing between whether the estimation is faulty or a transi-
tory response has occurred (Fig. 6). The underestimation 
of the initial PSA values and the overestimation of the 
initial PSA AGR and PSA RGR with direct smoothing 
when the degrees of freedom are small is, in our experi-
ence, common when the range of the PSA values being 
smoothed cover a range of two or more orders of mag-
nitude. It seems that this is due to the high degree of 
smoothing being imposed, in conjunction with the une-
ven influence of the smoothing penalty over this large 
range of values. In such cases, log smoothing is likely to 
be preferred, unless conclusions are to concentrate on 
time points beyond the first few time points and so the 
smoothed values for the initial DAPs can be discarded in 
subsequent analyses. Then the selection of the smoothing 
method should be based on the behaviour of the methods 
within the range of primary interest. It can happen in an 
experiment that there is an abrupt change in the growth 
rate, for example when the watering regime for at least 
some of the plants changes from restricted watering to 
full watering. In such cases the use of segmented smooth-
ing, where the data is divided into subintervals each of 
which is separately smoothed, may be more appropriate 
than smoothing the undivided data.

An alternative method of smoothing the data is to 
fit a mathematical function, such as a three- or four-
parameter logistic function. Such nonlinear models are 
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Fig. 5  Median deviations of observed minus smoothed PSA values. Each line corresponds to a smoothing scheme, a scheme being the 
combination of a smoothing method with a value for the DF. Median values above zero indicate that the smoothed value is under-estimating 
the trend or that there is a positive transient effect; median values below zero indicate the opposite. The dashed black envelope is 10% of the 
log-smoothed sPSA for six DF
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popular [15], and have the advantage that they attempt 
to represent the underlying mechanism. Pinheiro and 
Bates [23] catalogue as their advantages that they incor-
porate parameters (e.g. an asymptote) that have a natu-
ral biological interpretation, are more parsimonious in 
that they involve less parameters, and provide more reli-
able predictions outside the observed times. Against this, 

making predictions beyond the observed times is danger-
ous and is often not a requirement in the context of HTP. 
Further, the mechanistic property is only of advantage if 
the response is actually being generated by the hypoth-
esized mechanism. A particular problem for nonlinear 
models arises when treatments are applied during growth 
because it is difficult for nonlinear models to cope with 

Fig. 6  Comparison of the smoothed and raw PSA AGR (a) and PSA RGR (b) curves for six DF. The left hand panes were obtained by direct 
smoothing of the PSA RGR values using six smoothing DF, whilst the right hand panes are based on log smoothing. The central panes are derived 
from the raw, observed data. The vertical lines delineate intervals of reasonably homogeneous growth dynamics observed in the sPSA, sPSA AGR 
and sPSA RGR. The black line through the profiles is the median profile and the dashed lines are the outer whiskers (points outside the whiskers are 
potential outliers). The colours differ between the Zn treatments
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the changes in growth rates that ensue. The tomato 
experiment provides an example of this difficulty, in this 
case resulting from the unintentional “treatment” due to 
the interruption to watering at DAP 39. In such cases, 
and more generally, the semiparametric approach has 
the advantage that it seeks to follow the observed trend. 
Further, it has been demonstrated here, and is elaborated 
upon below, that the semiparametric method is capable 
of producing a variety of biologically relevant param-
eters, including a number that are similar to those pro-
duced using nonlinear models. The amount of smoothing 
achieved with nonlinear models is comparable with that 
achieved with smoothing splines using low smoothing 
DF. However, as noted previously mathematical func-
tions assume a form to the growth that may not apply in 
a particular case and a subjective choice of a function is 
necessary. The tools that have been outlined for choosing 
the amount and method of smoothing can also be used to 
assess the applicability of particular mathematical growth 
functions.

It is emphasized that this smoothing process is a purely 
descriptive procedure and does not entail formal statisti-
cal inference. As a result no attempt is made to formally 
model the variance of the observed response around the 
smoothed trend at this stage.

Profile plots of the smoothed data are a useful descriptive 
tool and aid outlier identification
Profile plots of the smoothed traits are useful as descrip-
tions of the original longitudinal data, particularly with 
the addition of loess smooths for each treatment, and as a 
diagnostic tool. For example, Fig. 2a is presented, in a dif-
ferent form, without loess curves and without the outlier, 
in Figure 3 in Watts-Williams et al. [11]; profile plots with 
loess curves are given in Figure 1 in Al-Tamimi et al. [2].

The traces over time of each cart that make up a pro-
file plot (i) show the underlying growth trajectories (ii) 
display the variability in replicate plants, and (iii) make 
it easier to identify unusual (outlier) plants, the latter 
because the plots involve multiple observations of each 
plant. The R package growthPheno [24] can include 
outer “whiskers” over time, such as are often included in 
boxplots; potential outlying data is indicated where lines 
move outside these whiskers. Other criteria that might be 
used in deciding if a plant is a potential outlier, and so 
a candidate for exclusion, include: (i) plants whose sPSA 
values are below, or above, a specified threshold value in 
a particular time interval, for example the last few days of 
imaging; (ii) plants whose sPSA AGR or sPSA RGR val-
ues are close to zero when the bulk of plants are not, or 
plants with excessive or haphazardly fluctuating growth 
rates. The threshold values may well vary with different 
treatments. Generally, it is advisable to attempt to verify 

that something irregular happened with a particular plant 
before removing it. Thus, lab books and images are exam-
ined for possible reasons for a plant’s exceptional behav-
iour to justify removal.

Extracting per‑cart growth traits using the smoothed 
profile plots
Here the focus is on extracting PSA-based traits that 
capture the growth dynamics. For the SET process, 
smoothed profile plots, like those in Fig. 2, play a central 
role in determining the traits to be extracted. All three 
plots are examined to subjectively identify time inter-
vals during each of which growth dynamics appear to be 
homogeneous. For example, an interval might cover a 
period in which (i) the AGR was increasing for all plants, 
(ii) the AGR was increasing at a different rate as com-
pared to the previous interval, (iii) there is no increase in 
AGR, (iv) biomass did not change, (v) biomass decreased, 
(vi) the RGR is constant, (vii) there is a limited number 
of plant groups that differ in their growth dynamics, for 
instance two groups, one of which is growing rapidly 
and the other is growing much less during the proposed 
interval, or (viii) plant behaviour is generally inconsist-
ent. If treatments are applied during imaging then inter-
vals will need to be aligned with their application. For 
example, a treatment on a single day is likely to result in 
an interval stopping and another starting with the last 
imaging before treatment; a period of treatment is likely 
to necessitate one or more intervals covering the period. 
Once the intervals are chosen, the sPSA values for the 
end points of these intervals and the mean sPSA AGR 
and sPSA RGR for each interval are extracted. Such traits 
have been successfully used in QTL and GWAS analyses, 
as published results [2, 6, 7, 9, 25] demonstrate.

Other possible PSA-based extracted traits include 
the maximum growth rate, the time at which the maxi-
mum sPSA was reached or the time at which maximum 
growth rate was attained. Additional imaging variables, 
like maximum height and top view convex hull, could be 
used to form extracted traits. The transpiration use effi-
ciency (TUE) [2], the water use index (WUI) [8] and total 
and individual leaf length [9] have also been employed as 
traits. Further, traits could be based on chemical meas-
urements or results from hyperspectral imaging data. All 
of these traits can be smoothed and have traits extracted 
over the entire period of imaging or for one or more 
intervals, in the same manner as the PSA.

Longitudinal analysis is popular, but producing a valid 
analysis is challenging
The aim of the longitudinal analysis is to obtain esti-
mates of the time trend for the traits by fitting a model to 
describe the behaviour of the complete set of values for 
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one of the traits, without any pre-smoothing of the data. 
The intuitively obvious approach to the analysis of HTP 
data is longitudinal analysis and it is often what is used, 
either via nonlinear models or smoothing splines. Such 
analyses have the advantage that the trend is exhibited 
continuously.

The longitudinal analyses reported here have two com-
ponents: an analysis and a prediction component. For the 
analysis component, both the PSA and the logarithm of 
the PSA are analysed, the analysis of ln(PSA) only being 
necessary if the estimation of the PSA RGR is required. 
For the prediction component, the predicted values over 
time are obtained for the PSA and ln(PSA) from the 
results of the analysis component. Then the estimates of 
the trends over time are obtained for (i) the PSA AGR, 
using the predicted values from the analysis of the PSA, 
and for (ii) the PSA RGR, using the predicted values from 
the analysis of the ln(PSA). For each growth rate (GR), 
the predicted values for consecutive DAPs are differ-
enced. Calculating the GRs in this way maintains a con-
sistency between a GR and its parent trait and allows the 
calculation of the standard errors and LSD values from 
those for the parent trait.

An issue that commonly arises in connection with lon-
gitudinal analysis is how to adequately model the varia-
tion in the experiments. If this is not achieved then the 
standard errors and the appraisal of the significance of 
differences between predictions is likely to be in error. 
Examination of Fig. 2 reveals that the spread amongst the 
four replicates in the tomato experiment is not the same 
over the entire imaging period so that variances that dif-
fer between DAPs will need to be incorporated into the 
model. Also, general experience suggests that correlation 
between neighbouring DAPs is likely. Thus, these aspects 
need to be modelled via covariance models. Random 
regression modelling can be used to model various covar-
iance functions for a particular set of data [26] and this 
has been extended to RRMS [27]. For example, genetic or 
phenotypic covariance functions might be modelled by 
specifying splines for the lines or for the individual sub-
jects in the experiment, respectively. The subject-specific 
splines model phenotypic covariance. However, subject-
specific splines may not provide an adequate descrip-
tion of the phenotypic covariance at the subject level [21, 
28] and it may be necessary to allow for unequal vari-
ances and correlation between the times as well. Several 
authors [18–20, 29] have recently advocated the use of 
RRMs to characterize plant growth. However, the speci-
fication of the RRM is somewhat variable. Some authors 
are under the incorrect impression that there is no need 
to investigate the correlation structure of the residuals if 
subject-specific RRMs are used, and even that equal vari-
ances between times is unnecessary when using RRMs. 

Also, it is not necessarily appreciated that RRMs can 
be fitted at several levels and that only subject-specific 
RRMs contribute to the modelling of the residual covari-
ance structure. Here FRMSs were used at the treatment 
level and RRMSs were used at the subject level. However, 
the incorporation of unequal variance and first-order 
autoregressive correlation between DAPs in the mixed 
model was found to be necessary to adequately model 
the variation in the tomato experiment. Not including 
them in the model resulted in some overestimation of the 
standard errors.

Clearly, longitudinal mixed models can be quite com-
plex and fitting them can be quite difficult, even for a 
relatively simple example like the tomato experiment. 
Frequently models do not converge to a stable solu-
tion and so have to be abandoned, as happened with the 
tomato example. Also, fitting splines as an integral com-
ponent of the mixed model was not entirely successful in 
that the degree of smoothing appeared to be insufficient 
to deal with the amount of temporal variability in the 
data, a problem others have noted [18].

SET‑based analyses avoid the complications 
of RRMS‑based analyses, while both result in similar 
conclusions
The SET-based method, like longitudinal analysis, can 
be employed in any situation in which there are (at least 
approximately) normally distributed, longitudinal meas-
urements to be analysed. However, for a SET-based 
analysis it is necessary that there are observations for a 
reasonable number of time points, of the order of ten or 
more. There were 35 in the tomato experiment. While we 
focus on PSA in this paper, as has already been discussed, 
the SET technique is not restricted to this trait.

A fundamental difference between SET-based and 
longitudinal analyses is that the parsimonious descrip-
tion of the growth dynamics in a trait is integral to SET-
based analysis. Nonetheless, optionally, summary growth 
parameters can be extracted post-analysis from the pre-
dictions obtained from a longitudinal analysis, including 
for specific intervals, as is done in a SET-based analysis. 
However, the significance of differences in the param-
eters is generally limited to those that are linear functions 
of the analyzed response and producing them may be 
convoluted. A SET-based analysis is a more straightfor-
ward option.

There is an intrinsic efficiency to analyzing intervals as 
compared to individual time points in that neighbouring 
time points are often highly correlated (for the tomato 
experiment, the estimated correlation for neighbouring 
time points was 0.88 and 0.77 for time points with a sin-
gle intervening time point). Consequently, the results of 
neighbouring time points will be similar and there will be 
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a larger number of hypothesis tests so that more falsely 
significant conclusions are likely.

Comparison of Figs. 3 and 4 reveals that the SET-based 
analysis has picked up essentially the same trends in the 
traits as the longitudinal analysis, albeit on a coarser 
scale, and results in similar conclusions. Crucial to 
achieving this is the choice of intervals for the SET-based 
analyses.

Not only are the results similar, but some of the prob-
lems noted for a longitudinal analysis are avoided in a 
SET-based analysis. The pre-smoothing of the data allows 
the imposition of a greater degree of smoothing so that 
more of the transitory variation is removed. Because 
analyses are performed on per-cart traits, convergence of 
the fitting process is much less of an issue and the tech-
nique is computationally cheap. Valid results are more 
likely because the need to deal with correlation between 
times is avoided and heterogeneous variances across 
times is automatically accommodated. The analysis of 
individual time points, as is proposed here and in Kwak 
et  al. [17], may have the problem that the correlation 
between time-points is not taken into account [18]; simi-
lar comments apply to a series of time intervals. However, 
it would appear, from the results of the study reported in 
Additional file  2 that, as long as comparisons are lim-
ited to predictions at the same time, then the proposed 
separate analyses are valid. However, one still needs to be 
alert to the possibility of unequal variances arising from 
different treatments; this often occurs with well-watered 
as compared to restricted watering of plants for example.

It also may be argued that the longitudinal analysis has 
the advantage of utilizing all of the data. However, the 
pre-smoothing process that is part of the SET-based anal-
ysis also uses all of the data. As for summarizing growth 
rates within intervals using interval estimates of growth 
rates for smoothed data, the proposed estimator is the 
weighted average of that data for all of the time points in 
the interval. It is true that, for an interval, this simplifies 
mathematically to the difference between the smoothed 
values for the interval end points. However, neighbouring 
observed values have contributed to these values through 
the smoothing process and anomalous time points can 
be avoided by ensuring that they are not chosen as end 
points for intervals. In any case, the same calculations 
would be performed on predictions from longitudinal 
analyses to produce equivalent interval growth rates.

Choosing between a SET‑based and a longitudinal analysis
Which of these two methods is used to analyze the lon-
gitudinal data from an experiment will depend upon 
the objectives of the experiment, the practicalities of 
the situation and the preferences of the researchers. A 
SET-based analysis is better suited than longitudinal 

analysis to situations in which at least one of the follow-
ing applies: (i) an objective is to provide a parsimonious 
description of growth, perhaps, focusing on differences 
in specific intervals (ii) biologically relevant traits are to 
be extracted for subsequent analysis, a common objective 
of the functional analysis of growth data that our method 
also facilitates, or (iii) an analysis that is computationally 
less demanding or based on a simpler model, while still 
capturing the essential features of the exhibited growth 
dynamics, is wanted. A longitudinal analysis is appropri-
ate when the objective is solely to characterize the broad 
growth trajectory and one is able or prepared to under-
take the analysis. The SET-based technique has been 
used successfully in a number of published analyses [2, 3, 
6–9, 11, 25, 30]. On the other hand, a difficult longitu-
dinal analysis was used when a broad description of the 
growth trajectories with error intervals for the different 
treatments was required [31].

Subjectivity in growth analyses
Subjectivity in growth analyses arises in choosing an 
analysis method and in the models employed in the 
analysis:

1.	 It occurs at the outset of a growth analysis with the 
need to decide whether a SET-based or a longitudinal 
analysis is to be conducted. As we discussed in more 
detail above, the objectives of the researchers and 
their preferences have a role to play in  making this 
decision.

2.	 A subjective element is involved, for both SET-based 
and longitudinal analyses, in the choice of the models 
to be used to describe (i) the growth trend and (ii) 
the variation in the experiment. For modelling the 
growth trend, the objective is to identify a model that 
follows the underlying growth trajectory as accurately 
as possible. For this, there is the subjective choice 
between nonparametric smoothing and growth mod-
els in the form of mathematical functions. For non-
parametric functions, subjectivity arises in selecting 
the method of smoothing and the associated smooth-
ing parameters. For growth models, the particular 
form of mathematical function is often subjectively 
selected. We have suggested median deviations plots 
as a means of making these choices evidence-based. 
The choice of a variation model is somewhat more 
vexed, especially for a longitudinal analysis. The 
model needs to account for spatial variation in the 
data, unequal variance between treatments and cor-
relation and unequal variances between time points. 
Because the occurrence of these different forms 
of variation varies between experiments, a set of 
potential models that cover the anticipated forms of 
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variation in an experiment is subjectively identified. 
Choosing a model from this set that is appropriate to 
describing the data can be based on hypothesis tests 
and diagnostic plots of residuals.

3.	 It may be an objective of the analysis to produce esti-
mates of growth parameters in order to obtain a par-
simonious description of specific aspects of growth 
with a view to comparing different lines and/or treat-
ments with respect to these parameters. When a 
mathematical function is used to model the growth, 
the possible growth parameters are often restricted 
to those based on the parameters for the selected 
growth model, As an example, the parameters for 
the three-parameter logistic described in “Methods” 
section under the heading “Data smoothing” are the 
upper asymptote, the time at which half the asymp-
tote is reached and a scale parameter that is approxi-
mately the time elapsed between reaching half and 
three-quarters of the asymptote. In addition to the 
subjectivity involved in selecting a mathematical 
function, the choice of one or more of these param-
eters, or others derived from them, as summaries of 
particular aspects of growth has a subjective com-
ponent. When splines are used to model the growth, 
the number of growth parameters available is con-
siderable, as has been outlined in the discussion of 
the extraction of per-cart growth traits. In the same 
manner as for choosing aspects of growth to summa-
rize when mathematical functions are used to model 
growth, subjectivity applies in making these choices 
when splines are used to model growth.

Conclusions
We have compared two methods for analyzing data from 
HTP facilities: SET-based and longitudinal analyses, 
both of which used cubic smoothing splines to describe 
the trend in the traits of interest over time, although the 
SET-based analysis also investigated the use of a logistic 
curve.

It has been demonstrated that features of the SET-
based method include that it focusses attention on spe-
cific time periods and produces traits that can be subject 
to further analysis. SET-based analyses are easier to 
perform than longitudinal analyses and the technique is 
flexible, efficient, valid and widely applicable. Thus, the 
SET-based analysis will appeal to those researchers who 
want to perform a valid growth analysis without hav-
ing to contend with the complications associated with 
longitudinal analyses, or for whom focusing on growth 
in distinct time periods will allow them to test relevant 
scientific hypotheses. The SET-based analysis has been 

successfully employed for several published phenotypic 
analyses [2, 3, 6–9, 11, 25, 30]. We have developed the R 
package growthPheno [24] that facilitates the SET.

On the other hand, if a traditional analysis is chosen, 
it is necessary to carefully consider the modelling of the 
variation in the experiment. This is crucial to ensuring 
that the p-values used in model selection and hypothesis 
testing are correct and in obtaining accurate estimates of 
the standard errors to be employed in assessing predic-
tion differences.

Methods
Plant growth and data acquisition
The 32 pots involved in the experiment were placed into 
32 carts on the conveyor system within a Smarthouse at 
the Australian Plant Phenomics Facility, University of 
Adelaide, where they occupied two lanes by 16 positions. 
There were four replicates of each treatment and a ran-
domized complete-block design was used to assign the 
treatments. The plants were imaged daily from 17 to 51 
DAP using RGB cameras. From these images the PSA of 
the plant was obtained by summing the areas as meas-
ured (in kilopixels or kpixels) from two side views at an 
angular separation of 90° and a view from above [2]. This 
resulted in 1120 PSA values, which are used as a meas-
ure of plant biomass, having been shown to be related to 
plant fresh weight for numerous species [2, 12, 32–34]. 
Note that watering was unintentionally interrupted for 
3 days (39–41 DAP inclusive).

Calculating growth rates
The AGR and RGR between two time points, tj followed 
by tk, can be calculated as follows [14]:

If there are observations at several time points between 
tj and tk, it can be proved that the weighted mean of the 
AGRs and RGRs for all pairs of observed time points in 
the interval tj to tk, is given by the formulae in (1), when 
the weight for each GR being averaged is the time range 
for each GR. Such a GR is referred to as an interval GR 
and those for successive time points are called continu-
ous GRs. That is, the AGR and RGR for a time interval 
from tj to tk that covers several subintervals are given by 
Eq. (1). The formulae can be adapted to traits other than 
PSA. Thus, if a WUI has been obtained for a set of time 
points, then the continuous and interval WUIs can be 
derived from the AGR formula. This method avoids the 

(1)

AGR(tj ,tk) =
PSAtk − PSAtj

tk − tj
and

RGR(tj ,tk) =
ln

(

PSAtk

)

− ln

(

PSAtj

)

tk − tj
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problematic assumption of a homogeneous GR for the 
interval, as required for the use of linear regression as 
outlined in Paine et al. [15].

The growth rates can also be calculated using the first 
derivatives of the smoothing splines. However, not all 
software provides them and they are more complicated 
to use, especially for obtaining interval GRs. Further, dif-
ferencing is the only way to calculate observed or raw 
GRs.

SET procedures
A SET-based analysis, as exemplified for the tomato 
data, involved the six steps shown in Fig. 7. The first five 
of these steps, the SET, amount to data preparation for 
the remaining analysis step. In the SET, the raw data is 
explored, smoothed and cleaned to obtain a data set that 
has had transient deviations from trend removed by the 
smoothing and has had outlying plants that can be iden-
tified as being unambiguously flawed, removed They are 
graphics intensive, as is also advocated by others [15].

Fig. 7  Outline of the SET-based analysis processes and outputs. The first five steps are the SET and the remaining set is the analysis step. The solid 
lines indicate a move onto the next step in the process, the dashed lines indicate the production of outputs by the process and the dotted lines 
indicate input into a step in the process
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The SET was done using growthPheno [24] and 
nlme [35], both of which are packages for the R statistical 
computing environment [36]. The functions used from 
these packages are those that allow the simultaneous pro-
cessing of all plants from an experiment. They require a 
single column for (i) a plant identifier, (ii) the times for 
each observation, (iii) each of the factors specifying the 
treatment associated with an observation, and (iv) each 
of the traits. The package growthPheno has options 
that allow the specification of the handling of missing 
values. While the traits that we are using as examples are 
botanical in nature, the software is not restricted to pro-
cessing this type of trait.

Import, select and derive longitudinal data
The data from processing the images of the plants in the 32 
carts in the tomato experiment over DAP 17–51 was sup-
plied in an Excel file and imported into R [36]. The trait of 
interest is the projected shoot area (PSA); the PSA values 
were used to derive the continuous absolute growth rates 
(AGRs) and relative growth rates (RGRs) for adding to the 
data, a continuous growth rate (GR) being a GR obtained 
for each time of imaging. Based on Eq. (1), the continuous 
AGR was calculated by taking the difference between suc-
cessive PSA values and the continuous RGR calculated by 
taking the difference between the logarithms of successive 
values, the time difference being one day; a value for the 
first imaging time is not produced for either GR.

Exploratory analysis
Profile plots for PSA, PSA AGR and PSA RGR have been 
produced for the exploratory analysis, a profile plot for 
a trait containing a line for the trait values over time for 
each cart.

Data smoothing
The PSA values are to be smoothed either by fitting 
natural cubic smoothing splines or by fitting a three-
parameter logistic function to the data for each cart. For 
smoothing using splines, there is a choice of two meth-
ods: (i) log-smoothing for which splines are fitted to the 
natural logarithms of the PSA values for each cart and 
then backtransforming the fitted values, i.e. by taking the 
exponentials of the fitted values; (ii) direct smoothing, for 
which the spline is fitted to the untransformed data. In 
addition, the smoothing DF must be specified. The equa-
tion for a three-parameter logistic function is given by

where φ1 is the upper asymptote, φ2 is the time at which 
half the asymptote is reached and φ3 is a scale parameter 
that is approximately the time elapsed between reaching 

PSAt = φ1
/{

1+ exp
[

−(t − φ2)
/

φ3
]}

,

half and three-quarters of the asymptote. It is noted 
that, if there is missing data for one or more time points, 
imputed smoothed values can be obtained for them.

To choose the smoothing method and smoothing DF 
for the tomato experiment, median-deviations plots were 
generated for smoothed data obtained from the PSA, PSA 
AGR and PSA RGR by (i) both direct and log smoothing 
in combination with four, five, six and 12 smoothing DF, 
and (ii) the fitting of a three-parameter logistic curve.

The median deviations plots for PSA are in Fig. 5, while 
the complete set is in Additional file  1: Figures  S1–S3. 
For these plots, the median deviations are obtained by 
(i) calculating the deviation, observed minus smoothed 
value, for each plant at each time point, and (ii) calculat-
ing the median of the deviations at a single time point for 
the plants to be plotted in a single pane of the graph. One 
would expect the magnitude of the deviations to increase 
as the smoothing DF decreases, because there is, as ever, 
a trade-off between the amount of smoothing and the 
magnitude of the deviations from the observed trend.

The median deviations of the observed PSA values 
from directly smoothed PSA values for four, five and six 
smoothing DF deviate markedly from the observed data, 
especially prior to DAP 31; the median deviations for the 
logistic also have larger negative values up to DAP 23, 
especially for the +AMF treatment. The deviations in 
this earlier period have many values that are in excess of 
10% of median smooth PSA values. It seems that direct 
smoothing with these DF underestimates the initial trend 
and the logistic overestimates it. Log smoothing with 
smoothing DF equal to four or five and the logistic tend 
to produce the largest deviations post DAP 25, while the 
logistic unsurprisingly produces large deviations post 
DAP 47. In these latter periods overestimation seems to 
be occurring. On the other hand, Additional file  1: Fig-
ures S2 and S3, reveal that the PSA AGR and PSA RGR 
are underestimated prior to DAP 23, particularly when 
direct smoothing is used with small smoothing DF. This 
is to be expected given that the PSA values range from 
1.75 to 185.50 kpixels.

Taking into account all of the plots presented in Addi-
tional file 1, log smoothing with six smoothing degrees of 
freedom is chosen for representing the PSA trend over 
DAPs 17–51. This differs from the previously reported 
analysis [11], where direct smoothing with six smooth-
ing DF were used because the statistical analyses focused 
on DAP 27–43. To confirm this choice, a comparison 
of the results of direct and log smoothing for PSA, PSA 
AGR and PSA RGR when six smoothing DF are used is 
made using Additional file  1: Figures  S4–S6, with the 
comparison for PSA AGR and PSA RGR also shown in 
Fig. 6. These profile plots have the feature that the medi-
ans of the data for each pane of the plot are included 
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as a black line and the outer “whiskers” are included as 
dashed black lines. The lower (upper) outer whisker 
is the median minus (plus) 1.5 times the interquartile 
range, the interquartile range being the 75th quartile 
minus the 25th quartile of the data. Points outside the 
outer whiskers are regarded as potential outliers. The 
largest difference between the two smoothing schemes 
occurred with sPSA RGR, where direct smoothing with 
small smoothing DF is clearly over-estimating the RGR 
in the first 3 days. The effect of the unintentional water-
ing interruption from DAP 39–43 on subsequent growth 
is apparent, especially in the GRs. This is a situation in 
which segmented smoothing may have been appropriate. 
However, the smoothed trend lines for log smoothing 
with six DF appear to follow adequately the overall trend 
through this period. Besides, smoothing a short interval, 
such as DAP 43–51, is problematic and in this case there 
is a large decrease in the PSA AGR for DAP 44, especially 
for −AMF.

Data cleaning
In the tomato experiment, there was a plant in the +AMF 
treatment that was obviously much slower growing 
than other plants (see Additional file  1: Figures  S4 and 
S5, where this plant is outside the lower outer whisker 
at times). It was a small plant whose AGR was low, but 
whose RGR was similar to other plants and so does not 
show in Fig. 6. It had low AMF root colonization and a 
random mutated shoot phenotype, which could explain 
why its behaviour was consistent with a plant that was 
not inoculated with AMF. As before [11], we have omit-
ted the plant from the analyses reported here.

Extracting per‑cart growth traits
The plots in Fig. 2 and the Log-6 plots in Fig. 6 and Addi-
tional file 1: Figures S4–S6 were examined by statisticians 
and researchers to subjectively identify time intervals 
during each of which growth dynamics appear to be 
homogeneous. The vertical dashed lines in Additional 
file 1: Figures S4–S6 and in Fig. 6 mark the chosen inter-
vals: DAP 18–22 was a period of increasing AGR; DAP 
22–27 was a period of even faster increases in the AGR; 
DAP 27–33 was a period during which the AGR peaked; 
DAP 33–39 shows a relatively constant rate of decrease in 
the AGR; DAP 39–43 is the period of restricted watering 
and followed by a 2-day recovery period; DAP 43–51 was 
a period in which the AGR is flat but fluctuating wildly. 
Traits can be formed from the values of sPSA, sPSA AGR 
and sPSA RGR for time-interval end points and the mean 
values of the sPSA AGR and sPSA RGR over each of the 
time intervals. Thus, there are potentially 33 extracted 
traits:

1.	 sPSA, sPSA AGR and sPSA RGR at DAPs 18, 22, 27, 
33, 39, 43, 51;

2.	 the sPSA AGR and sPSA RGR for each of the inter-
vals DAP 18–22, 22–27, 27–33, 33–39, 39–43, 43–51.

Analyzing per‑cart growth traits
Of the 33 extracted traits, those for sPSA AGR and 
sPSA RGR at DAP end points will be omitted, leaving 
19 extracted traits to be analyzed. The per-cart model 
fitting involves fitting a mixed model to each of these 
traits and incorporates terms to account for (i) the spa-
tial variation that affected the experiment and  (ii) the 
effect of treatments on the phenotypic response. The 
mixed model is of the following form:

where y is the response vector of values for the trait 
being analysed, β is the vector of fixed effects, u is the 
vector of random effects, and e is the vector of residual 
effects. Both X and Z are design matrices, correspond-
ing to β and u, respectively.

For the maximal model for a per-cart trait for the 
tomato experiment, the fixed-effect vector β is parti-
tioned into subvectors as follows: 

[

µ βB βZ βA βZA
]

 , 
where μ is the overall mean parameter and the β sub-
vectors are, respectively, the subvectors of Block (B) 
parameters, Zn (Z) parameters, AMF (A) parameters, 
and parameters for Zn-AMF combinations (ZA). There 
are no random effects and the residual vector e is 
assumed to be normally distributed with mean vector 0 
and variance σ2I32, where σ2 is the residual variance and 
I32 is the identity matrix of order 32 i.e. the residuals 
are independently distributed with the same variance 
for all. To check this latter assumption residual-ver-
sus-fitted-values and normal probability plots were 
obtained for all traits (see Additional file 1: Figures S7–
S25). There was no evidence of substantial departure 
from the equal variance and normality assumptions.

The R packages asreml [37] and asremlPlus [38] 
were used to fit the mixed model to the 19 extracted 
traits. Wald F-statistics, with Kenward and Roger [39] 
calculation of their denominator degrees of freedom, 
were obtained to assess the significance of the fixed 
effects involving Zn and AMF. These packages were 
also used to produce predicted values and their stand-
ard errors, the latter used to compute LSD (α =  0.05) 
values for comparing pairs of predicted values.

An additional analysis was performed for each 
of sPSA, sPSA AGR and sPSA RGR. For each, their 
extracted traits were combined and a joint analysis 
conducted.

(2)y = Xβ+ Zu + e
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The following tips are offered, based on our experience 
with using the SET method:

1.	 When the smoothing DF are two, a straight line is fit-
ted, and when the smoothing DF equals the number 
of observed time points the fitted curve goes through 
all of the observed points ([40], Section 3.3.4). Hence, 
the smoothing DF are usually greater than two and 
less than the number of observed time points, the 
actual value depending on the amount of smoothing 
desired.

2.	 When looking for bias arising from the smoothing 
of individuals, perhaps using the median deviations 
plots, pay particular attention to either end of the 
observed range of times and when there are sudden 
changes in trend.

3.	 Collect data before and after the times during which 
the interest in growth is concentrated. Always smooth 
all of the data for a plant, even if interest is restricted 
to a subinterval of the observed times. One reason 
for this is to avoid the bias in the smoothing that can 
occur at either end of the period of observation.

4.	 When examining deviations plots it is expected that 
there will be periodic patterns in the deviations, these 
being due to the removed transient effects.

5.	 Facet profile plots so that differences between the 
facets are maximized.

6.	 Choose intervals based on the growth dynamics, it 
not being necessary for the intervals to be equal in 
size. Although the original trait and its AGR and 
RGR should be examined, it often happens that the 
AGR is the most important guide. Focus on broad 
patterns in the trends.

7.	 Examine the profile plots for likely sources of differ-
ential variance and for anomalous individuals.

Longitudinal analysis
The aim of the longitudinal analysis was to obtain esti-
mates of the trend over time of the PSA, PSA AGR and 
PSA RGR for each combination of Zn and AMF by fitting 
a model to describe the behaviour of the complete set of 
values for one of the traits, without any pre-smoothing 
of the data. Only the first two and the fourth steps of a 
SET analysis were relevant to the longitudinal analysis, 
because it was carried out on the raw, cleaned data. It has 
two components: an analysis and a prediction compo-
nent. For the analysis component, both the PSA and the 
logarithm of the PSA are analysed, the analysis of ln(PSA) 
only being necessary if the estimation of the PSA RGR is 
required. For the prediction component, the predicted 
values over time are obtained for the PSA and ln(PSA) 
from the results of the analysis component. The estimates 

of the trends over time are obtained for (i) the PSA AGR, 
using the predicted values from the analysis of the PSA, 
and for (ii) the PSA RGR, using the predicted values from 
the analysis of the ln(PSA). For each GR, the predicted 
values for consecutive DAPs are differenced. Calculating 
the GRs in this way maintains a consistency between a 
GR and its parent trait and allows the calculation of the 
standard errors and LSD values from those for the parent 
trait.

In the analysis component, as in the per-cart analysis, 
splines were used to describe the trend. Variation at the 
cart (subject) level was modelled using (i) RRMSs, in 
which random nonlinear trends between individual carts 
were specified by fitting natural cubic smoothing splines 
with random intercepts and slopes, with a knot per 
observed DAP and homogeneous splines fitted so that 
the amount of smoothing was the same for all carts, (ii) 
unequal cart variance between DAPs, and (iii) first-order 
autoregressive correlation between different DAPs. An 
FRMS was used to describe the trend over time for each 
combination of Zn and AMF; it employed heterogeneous 
splines, that is, splines for which the amount of smooth-
ing was allowed to differ between the combinations. 
However, the same number of equally spaced knots was 
specified for these splines, although four analyses were 
conducted with one of 10, 15, 20 or 35 knots.

The mixed model on which the analysis of these two 
traits is based is of the form given in Eq. (2). The maximal 
model for this analysis includes a subject-specific RRMS, 
a subject being a Block-Cart combination. It has the 
fixed-effect vector β partitioned into subvectors as fol-
lows: 

[

µ βB βZ βA βZA βD βDB βDZ βDA βDZA
]

 , where 
μ is the overall mean parameter and the β subvectors are, 
respectively, the subvectors of Block (B) parameters, Zn 
(Z) parameters, AMF (A) parameters, parameters for Zn-
AMF combinations (ZA), DAP (D) parameters, parame-
ters for DAP-Zn combinations (DZ), parameters for 
DAP-AMF combinations (DA), and parameters for DAP-
Zn-AMF combinations (DZA). The incidence matrix X is 
partitioned to conform to the partition of β. That is, the 
maximal fixed model involves a full three-factor interac-
tion model for the factors Zn, AMF and DAPs, which 
provides an unsmoothed representation of the differ-
ences in the trend over the DAPs for the different Zn-
AMF combinations. To specify the RRMS, and using 
“xD” to signify a centred, numeric covariate for the cate-
gorical factor DAPs, the random effects vector u is parti-
tioned as 

[

uBC uBCxD uBCspl(xD)
]

 , where uBC is the 
subvector of Block-Cart random effects, uBCxD is the sub-
vector of random DAP slopes over xDAP for each Block-
Cart combinations and uBCspl(xD) is the subvector of 
random spline coefficients of the spline basis functions 
for xDAP for each Block-Cart combination. The 
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incidence matrix Z is partitioned to conform to the parti-
tion of u. The vector 

[

uBC uBCxD
]

 is assumed to be nor-
mally distributed with mean vector 0 and variance 
�xD ⊗ I32 , where �xD is 2 × 2 matrix specifying the vari-
ances and covariance of the intercepts and slopes and I32 
is an identity matrix of order 32, the number of Block-
Cart combinations. The vector uBCspl(xD) is assumed to be 
normally distributed with mean vector 0 and variance 
σ 2
BCspl(xD)GBCspl(xD) , where GBCspl(xD) is a matrix derived 

from the knot points for the fitted spline. The residual 
vector e is assumed to be normally distributed with mean 
vector 0 and variance �1120, where, for y ordered by 
Block-Cart then DAP, all elements are zero except for 32 
diagonal blocks, one for each Block-Cart combination, 
The variance matrix for the ith Block-Cart, �i , is 35 × 35 
and allows for different variances for different DAPs and 
first-order autoregressive correlation between DAPs i.e. 
correlation that decreases according to a power law as 
the number of intervening DAPs between a pair of DAPs 
increases. Formally,

where σj is the cart standard deviation on the jth 
DAP and ρ|tk−tj| is the correlation between DAPs tk and 
tj, being the correlation between consecutive DAPs, 
ρ, raised to the power equal to the number of DAPs 
between the two DAPs. In terms of variation, this model 
allows for Block differences, random variation between 
carts, random variation between carts in the curved 
trend over the DAPs that each follows and random devia-
tions from this trend on a particular DAP for a particular 
cart; this last variation varies from one DAP to the next 
and there is correlation between observations on differ-
ent DAPs that is strongest for consecutive DAPs.

The model selection strategy for a response proceeded 
in stages as follows:

1.	 Select the model to describe the spatial and tempo-
ral variation present in the response The maximal 
mixed model was fitted to the response. Then tests 
of whether the random model could be simplified 
were carried out: is unequal variance between times 
needed? Is the autocorrelation significant? Can 
the spline component for variation in time trends 
between carts be removed to leave a random linear 
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term? If variance components were estimated to be 
very close to zero, they were either removed, if they 
were single-component terms, or fixed at 1× 10−4 , if 
they were one of the DAP variances. The latter is jus-
tified in that it is indicating that the variation in vari-
ance for that DAP is derived entirely from variance 
in the curved trend. Unsmoothed predictions for the 
combinations of Zn, AMF and DAPs are obtained 
from this model.

2.	 Explore the amount of smoothing to apply to the 
FRMS describing the time trend of each combi-
nation of Zn and AMF For this, the three-factor 
model for Zn, AMF and DAPs was reparameter-
ized to specify an FRMS that includes fixed linear 
and random spline terms, based on xDAP a centred, 
numeric covariate for the DAPs, and random devia-
tions terms for DAPs; heterogeneous spline terms 
for each combination of Zn and AMF were speci-
fied leading to separate variance components for 
each combination and hence different amounts of 

smoothing for them. That is, the partition of β was 
modified to 

[

µ βB βZA βxDZA
]

, where the βZA con-
tains the intercept parameters for each combination 
of Zn and AMF and βxDZA contains the fixed slope 
parameters over xDAP for each combination of Zn 
and AMF. The random vector u is partitioned into 
[

uhet(ZA)spl(xD) uZAD uBC uBCxD uBCspl(xD)
]

 , where 
uhet(ZA)spl(xD) is the subvector of random spline coef-
ficients of the spline basis functions for xDAP with 
heterogeneous variance components for each Zn-
AMF combination and uZAD is the subvector of ran-
dom deviations from the fitted curved trend for each 
Zn-AMF-DAPs combinations The degree of smooth-
ing was altered by fitting the FRMS with 10, 15, 20 
or 35 equally-spaced knots for the Zn by AMF by 
spl(xDAP) term, uZAspl(xD). For each fit, a test for the 
significance of the random deviations was conducted.

3.	 Choose the number of knots by obtaining the predic-
tions for different amounts of smoothing for each 
trait and calculate GRs from each set of predictions 
The predictions for the observed values of xDAP in 
combination with the levels of Zn and AMF were 
obtained, along with the predictions and LSD (5%) 
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for comparing predictions at the same DAP. The pre-
dictions and half-LSD intervals were plotted for each 
of the four knot numbers and subjectively compared. 
The calculation of the predicted growth rates were 
obtained by taking differences between consecutive 
predictions of either the PSA or the ln(PSA). The 
LSD (5%) for the predicted growth rates were cal-
culated from those of the corresponding primary 
response, PSA or ln(PSA). Also, to examine the fit of 
these (smoothed) predictions, plots of the trend devi-
ations were produced, the trend deviations being the 
difference between the unsmoothed predictions and 
the smoothed predictions. These are analogous to the 
median deviations used in the SET.

4.	 Look to simplify the FRMS describing the effect of 
Zn and AMF on the trend over DAPs Firstly, for 
the chosen number of knots, a test of significance 
was conducted to determine if the ZAD random 
deviations were significant; if they were not sig-
nificant, they were dropped from the model. Then 
tests of significance were made to compare models 
with heterogeneous spline terms for each Zn-AMF 
combination, heterogeneous spline terms for each 
AMF level, heterogeneous spline terms for each Zn 
level and a single, homogeneous spline term across 
all Zn-AMF combinations. If none of the models 
with heterogeneous spline terms was significant, 
then a third parameterization of the model was fit-
ted, this one incorporating interactions between 
(i) Zn, (ii) AMF, and (iii) the Zn by AMF interac-
tion with xDAP and spl(xDAP) and DAPs, where 
each spline term has a single, homogeneous spline 
component. In this case the partition of β was 
modified to 

[

µ βB βZ βA βZA βxDZ βxDZA βxDZA
]

 
and that for the random vector u to 

[

uZspl(xD)
uAspl(xD) uZAspl(xD) uZD uAD uZAD uBC uBCxD uBCspl(xD)

]

 . 
The difference between this and the previous param-
eterization is that main effect terms for Zn and AMF 
have been included for each of the intercepts, slopes 
and splines. For each response, a test of significance 
was conducted to determine if the ZAD random 
deviations were significant; if they were not signifi-
cant, they were dropped from the model and tests 
of the ZD and MD random deviations conducted, 
dropping any nonsignificant deviations. On comple-
tion of these tests, a test was conducted to establish 
whether the ZAspl(xD) spline term was significant; if 
it was not significant, it was dropped from the model 
and tests of the Zspl(xD) and Mspl(xD) spline terms 
conducted, dropping any nonsignificant spline terms. 
The predictions from the fitted models were obtained 
for the Zn-AMF combinations over the observed 
DAPs and the growth rates calculated from them.

Again, the R packages asreml [37] and asreml-
Plus [38] were used to fit the mixed models to both 
response variables. Testing for variance terms used 
Restricted Maximum Likelihood Ratio Tests (REMLRT), 
the calculation of the p-value being adjusted when the 
test involved a variance component constrained to be 
nonnegative [21]. Wald F-statistics, with Kenward and 
Roger [39] calculation of their denominator degrees of 
freedom, were obtained to assess the significance of the 
fixed effects. These packages were also used to produce 
predicted values and their standard errors, the latter used 
to compute LSD (α = 0.05) values for comparing pairs of 
predicted values.

To investigate the adequacy of the fitted models, 
residual versus-fitted-values, boxplots of the residual for 
each DAP and normal probability plots of the residu-
als were obtained and are presented in Additional file 3: 
Figures  S10–S15. The residual versus-fitted-values and 
residual boxplots appear to be satisfactory, there not 
being any evidence of heterogeneity of variance. How-
ever, the normal probability plots indicate that the nor-
mality assumption underlying the longitudinal analysis is 
not met. On the other hand, the shape made by the resid-
uals in the plot indicates that the data are symmetrically 
distributed. It is concluded that the results of the analyses 
will be approximately correct, especially given the large 
number of observed values in each analysis.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
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experiment based on the smoothing and extraction of traits (SET). Three 
median deviations plots for choosing the smoothing DF and method for 
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of the effect of Zn and AMF on the extracted per-cart traits. Residual-
versus-fitted-values and normal probability plots for each of the per-cart 
traits. 

Additional file 2. A comparison of the results from separate and joint 
analyses of per-cart traits. A description of the joint analysis of the per-cart 
traits. The results of the joint analysis. A comparison of the predictions and 
LSDs from the separate and joint analyses. 

Additional file 3. Supporting material for the longitudinal analysis. Four 
plots comparing the predicted trends for four different knot numbers and 
four plots showing the deviations between unsmoothed and smoothed 
predictions. A table of Wald F-statistic p-values and a summary table of 
the variance model hypothesis testing for each of PSA and ln(PSA) for the 
full variance model. A table of Wald F-statistic p-values for each of PSA 
and ln(PSA) for the reduced variance model. Two plots comparing the 
predictions and standard errors obtained under the full and reduced vari‑
ance models. Residual-versus-fitted-values, residual boxplots for different 
DAPS and normal probability plots for the longitudinal analysis of PSA and 
ln(PSA). 

Additional file 4. R scripts and data for preparing the tomato data 
and carrying out the reported analyses. The data is provided in the file 
tomato.dat.csv, but in R is also available with the growthPheno 
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package. The script global.r provides settings, constants and func‑
tions that are used across all scripts and is executed at the beginning of 
most scripts. The script SET.r gives the code for obtaining the smoothed 
longitudinal data (Steps 1–4 of the SET process). Cart.dat.r extracts 
the per-cart.traits (Step 5 of the SET process). Cart.anal.r analyses 
the per-cart data and Cart.predict.r obtains the predictions 
based on the selected models (Step 6 of the SET-based analysis). Cart.
joint.r performs the extra joint analysis of per-cart traits. Longi.
anal.r fits several models to all the tomato data for PSA and ln(PSA) 
in order to establish a variance model for each and then, for the selected 
variance model, the number of knots for the splines describing the curved 
trend for each combination of Zn and AMF is varied (Stages 1–2). Longi.
predict.r obtains the predictions for the different numbers of knots 
(Stage 3). Longi.trend.r investigates the effect of Zn and AMF on 
the time trend when 10 knots are used and does diagnostic checking of 
the residuals (Stage 4); it also fits a reduced variance model that assumes 
equal variances for different DAPs and zero correlation between DAPs.
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