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Abstract 

Background:  To investigate potential effects of herbicide phytotoxic on crops, a major challenge is a lack of non-
destructive and rapid methods to detect plant growth that could allow characterization of herbicide-resistant plants. 
In such a case, hyperspectral imaging can quickly obtain the spectrum for each pixel in the image and monitor status 
of plants harmlessly.

Method:  Hyperspectral imaging covering the spectral range of 380–1030 nm was investigated to determine the her-
bicide toxicity in rice cultivars. Two rice cultivars, Xiushui 134 and Zhejing 88, were respectively treated with quinclorac 
alone and plus salicylic acid (SA) pre-treatment. After ten days of treatments, we collected hyperspectral images and 
physiological parameters to analyze the differences. The score images obtained were used to explore the differences 
among samples under diverse treatments by conducting principal component analysis on hyperspectral images. To 
get useful information from original data, feature extraction was also conducted by principal component analysis. In 
order to classify samples under diverse treatments, full-spectra-based support vector classification (SVC) models and 
extracted-feature-based SVC models were established. The prediction maps of samples under different treatments 
were constructed by applying the SVC models using extracted features on hyperspectral images, which provided 
direct visual information of rice growth status under herbicide stress. The physiological analysis with the changes of 
stress-responsive enzymes confirmed the differences of samples under different treatments.

Results:  The physiological analysis showed that SA alleviated the quinclorac toxicity by stimulating enzymatic activ-
ity and reducing the levels of reactive oxygen species. The score images indicated there were spectral differences 
among the samples under different treatments. Full-spectra-based SVC models and extracted-feature-based SVC 
models obtained good results for the aboveground parts, with classification accuracy over 80% in training, validation 
and prediction set. The SVC models for Zhejing 88 presented better results than those for Xiushui 134, revealing the 
different herbicide tolerance between rice cultivars.
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Background
Rice (Oryza sativa L.) is one of the primary income-gen-
erating cereal crops for farmers, with a net approximately 
481 dollars per hectare in most of southeast Asia like the 
Philippines, and is a staple food for more than half  of 
the world’s population depending on rice for more than 
20% of their daily calories [1]. However, rice production 
is heavily constrained by different biotic and abiotic fac-
tors, such as drought, high temperature, diseases, heavy 
metals, herbicides, etc. [2]. Weeds are considered to be 
as one of the most important biotic factors in rice fields 
[3]. Researchers have found that if enough hand weeding 
is done at the optimal times, crop production will not be 
decreased by weed competition [4]. In fact, paddy fields 
are scarcely ever weeded by hand since weeding is tedi-
ous and time consuming. The increasing cost of labor 
and their shortage make hand weeding impossible [5]. 
To ensure rice yields, farmers usually use herbicides to 
control weeds, because chemical control is cheaper, more 
reliable, and less labor-intensive and time-consuming 
compared to manual weeding [6]. The quinolinecarbox-
ylic acid quinclorac (3,7-dichloro-8-quinolinecarboxylic 
acid), belonging to a new class of highly selective auxin 
herbicides, has been used as pre- and post-application in 
transplanted and directly seeded rice [7]. However, exces-
sive herbicide usage can cause damage to crops at early 
stages [8]. Since 1990, the herbicide quinclorac, due to its 
high efficiency, has been widely applied in China to con-
trol the most noxious weed, barnyard grass in rice fields 
[9, 10]. In our previous study, quinclorac can cause seri-
ous herbicide toxicity symptoms in rice [7]. Thus, how 
to alleviate the damages caused by herbicides is a critical 
issue for herbicide damage control.

Nowadays, various approaches, for example, breeding 
for herbicide-resistant crops, have been utilized to alle-
viate the toxic issues. Exogenous hormone application 
is an effective, economical, environment friendly and 
safe method for crops to alleviate herbicide toxicity [11, 
12]. For example, Ananieva et al. [13] found that salicylic 
acid (SA) treatment decreased the effects of herbicide 
paraquat on photosynthesis. Application of exogenous 
jasmonic acid enhanced herbicide tolerance in tobacco 
(Nicotiana tabacum) exposed to imazapic by reducing 

herbicidal residue effect and up-regulating related stress-
responsive enzymes [14]. Gibberellic acid has been dem-
onstrated to protect Zea mays from metolachlor toxicity 
[15]. SA is a plant endogenous hormone that regulates 
several biochemical processes and plays a crucial role in 
plant defense systems [16]. Researchers have found that 
the exogenous application of SA impacts various physi-
ological processes such as photosynthesis, antioxidant 
capacity, transpiration rate, stomatal closure, membrane 
permeability and lignin deposition, and it improves 
drought, chilling and herbicide tolerance [7, 13, 17–19]. 
Furthermore, according to Grossmann and Kwiatkowski 
[20] and Wang et  al. [7], SA alleviates quinclorac toxic-
ity by increasing antioxidant enzyme activities and by 
enhancing detoxification ability in rice seedlings.

It is quite hard to monitor herbicide’s phytotoxic symp-
toms of rice in the field. Because sometimes when plants 
are emerging with spots, chlorosis, abnormality, wilting 
or growth retardation, it is difficult to determine the rea-
sons that are provoked by herbicide toxicity, diseases, 
viruses or just nutrition deficiency. Traditionally, farmers 
can only use their eyes to distinguish whether the crops 
are under abiotic or biotic stress. Qualitative investiga-
tion depends on herbicide application methods, environ-
ments, crop harmful symptoms, but these results lack 
specific data or relevant indicators to support and con-
tain subjective consciousness without a comparatively-
consolidated criterion. Quantitative analysis is much 
harder to discriminate whether plant is under higher 
herbicide stress. In our previous studies [7], determina-
tion of physiological parameters has been utilized to 
evaluate the plant physiological changes under herbicide 
stress and its recovery by SA. In fact, it is too late when 
phytotoxic symptoms become evident, the damage is 
irreversible and the components of herbicide may have 
been already degraded in plants. The above-mentioned 
methods require complex operations and large reagent 
consumption and are time consuming, which cannot be 
used for rapid and large-scale detection of herbicide tox-
icity/crop damage. Therefore, rapid and sensitive tech-
niques are required for measuring herbicide toxicity in 
rice plants, allowing prompt reactions and remediation 
to ensure food production and safety.

Conclusion:  We develop a reliable and effective model using hyperspectral imaging technique which enables the 
evaluation and visualization of herbicide toxicity for rice. The reflectance spectra variations of rice could reveal the 
stress status of herbicide toxicity in rice along with the physiological parameters. The visualization of the herbicide 
toxicity in rice would help to provide the intuitive vision of herbicide toxicity in rice. A monitoring system for detect-
ing herbicide toxicity and its alleviation by SA will benefit from the remarkable success of SVC models and distribution 
maps.

Keywords:  Rice, Quinclorac, Salicylic acid, Antioxidant, Support vector machine, Hyperspectral imaging
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Multiple herbicide injury identification methods have 
been evaluated on crops. Obviously, visual examination 
provides the most direct way to assess occurrence and 
extent of herbicide injury. However, this approach is pos-
sible when injury is apparent to the naked eyes. Other 
methods include the measurement of physical factors 
such as plant height [21], chlorophyll [22], some growth-
related compounds or enzymes [23]. All of mentioned 
methods are tedious and lagging in early detection of 
herbicide injury. Therefore, alternative approaches for 
early detection of herbicide damage are imperative.

In the herbicide metabolism process, it will influence 
many physiological processes which include a reduc-
tion in chlorophyll content, and decrease in photosyn-
thetic rate, amino acid synthesis and so on [24]. These 
changes are detectable with plant reflectance meas-
urements before herbicide injury becoming notice-
able. It is possible to evaluate herbicide stresses by using 
spectral reflectance measurements. Non-imaging vis-
ible and near-infrared reflectance (VNIR) spectroscopy 
(400–2500 nm) is one of the most promising techniques 
based on the absorption of radiation in the visible and 
near-infrared region of the electromagnetic spectrum for 
crop analysis [25]. Although near-infrared spectra (NIR) 
analysis depends on the quality of model established by 
species, growth stage, available spectral range and some 
other factors [26], the main advantages of the NIR meth-
ods are low costs, quick and accurate responses, non-
destructive analysis, and no need for or minimum sample 
preparation or manipulation with hazardous chemicals/
solvents [27]. Previously, rice crop VNIR has been uti-
lized for the detection of chlorophyll, nitrogen content, 
moisture content, starch quality, protein activity and 
amino acid content [28–32]. Wu et al. [33] and Sánchez 
et  al. [34] used NIR technology to determine herbicide 
or pesticide levels in vegetables and food. However, there 
were few reports on herbicide quinclorac toxicity detec-
tion in rice plants using NIR. Non-imaging VNIR can 
acquire spectra from small sample region of the sample, 
which lacks the acquisition of spatial information.

As an extension of both spectroscopic and imaging 
techniques, hyperspectral imaging (HSI) has become an 
emerging platform. HSI integrates two classical optical 
sensing technologies of computer imaging vision and 
spectroscopy to obtain both spatial and spectral infor-
mation from an object [35]. The generated spatial map 
of spectral variation is capable of determining simulta-
neously the inherent physical and chemical properties 
of samples as well as their spatial distribution [36]. For 
a hyperspectral image, each pixel contains a spectrum 
at the spectral range of the HSI system. Therefore, it 
is used to visualize the distribution of quality param-
eters of different samples, which provides direct visual 

information of the entire samples [37]. HSI has been 
used for remote sensing [38] and ground-based sensing 
in agriculture [39–41]. As a fast and non-destructive 
method, HSI has been widely applied in agricultural 
fields for mapping crop seeds, nutrition and diseases 
[39–41].

Moreover, the spectral range from 400 nm to around 
1000 nm is widely used in monitoring plant growth for 
VNIR and HSI [42, 43]. Researchers have found that 
the spectral range (400–700 nm) was mainly influenced 
by pigments and the spectral range (700–1000  nm) 
was mainly influenced by leaf or canopy structure 
[44–48]. What is more, vegetation indices (includ-
ing the red edge parameter) which are widely used to 
monitor plant growth, are derived from the spectral 
range between 400 and 1000 nm [47, 49, 50]. Research-
ers have used the spectra in this range to detect plant 
stresses, such as drought, water deficiency, salinity and 
disease [41, 51–53]. Moreover, spectra in this range 
were also applied to study the changes of plant growth 
under herbicide or pesticide stress [54, 55].

The prime aim of the present study was to evaluate 
the feasibility of using ground-based HSI for the sepa-
rability of quinclorac toxicity and the alleviation func-
tion of SA in rice seedlings. The specific objectives 
were: (1) comparison of spectral variations of leaves 
under normal and quinclorac stress, and stress allevia-
tion by SA; (2) establishment of detection models and 
visualization of leaves under different treatments; and 
(3) investigation of impact of rice varieties Xiushui 134 
(XS 134) and Zhejing 88 (ZJ 88) on detection perfor-
mance. The general workflow of this study is shown in 
Fig. 1.

Fig. 1  The flowchart of the study design
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Results
Analysis of physiological parameters
The experimental design is shown in Table  1. It is clear 
that under quinclorac stress, rice seedlings were inhib-
ited with leaf rolling, especially in cv. ZJ 88. Our previous 
study has demonstrated that SA pre-treatment can allevi-
ate growth damage in both two cultivars (cv. XS 134 and 
cv. ZJ 88). However, we can’t distinguish the significant 
difference between quinclorac treated plant (Q) group 
and SA pre-treatment plant (S) group. Even in XS 134, 
there was no big difference among three different treat-
ments since XS 134 is more resistant to quinclorac than 
ZJ 88 (Fig. 2).

The aboveground parts of the two rice cultivars were 
used for analysis. Quinclorac application triggered 
enhancements of antioxidant enzyme activities except 
catalase (CAT) in comparison with the control (Fig. 3A). 
SA pre-treatment (S) further enhanced the activity of 
all enzymes compared to quinclorac treatment alone 
(Q). Superoxide dismutase (SOD), ascorbate peroxi-
dase (APX) and peroxidase (POD) activities showed the 
same increasing tendency in the leaves of rice. The con-
tent of MDA was highly accumulated under quinclorac 
stress while SA significantly reduced it (Fig. 3B). Regard-
ing reactive oxygen intermediates including hydroxyl 

radicals (OH−) and hydrogen peroxide (H2O2), the simi-
lar response occurred in the two cultivars as well. The 
varied trend of soluble protein was consistent with CAT 
(Fig. 3A, B). After the application of quinclorac, reduced 
glutathione (GSH), oxidized glutathione (GSSG) and 
glutathione reductase (GR) were found to be lower com-
pare to control (Fig.  3C). Meanwhile, SA helped these 
enzymes to return the normal level or even higher. In a 
word, there were significant differences among the three 
different groups (CK, Q, S) according to the results of 
physiological parameters measured in leaves.

Spectral features
The average spectra for the aboveground samples are 
presented in Fig. 4. Typical spectra of plant leaves could 
be observed. For the two rice cultivars, differences among 
each group (CK, Q, S) could be observed. The spectra of 
CK group showed larger differences from the other two 
groups, while the spectra of the Q and S groups were 
much closer. The reflectance between 434 and 700  nm 
of the CK group was lower than that of the Q and S 
groups. The reflectance spectra between 434 and 700 nm 
are related to the leaf pigments, according to our previ-
ous study [7]. Leaf pigment content increased with the 
decrease of quinclorac content. The reflectance spec-
tra matched with the spectra in ref [56]. Moreover, the 
reflectance between 750 and 953  nm of the CK group 
was higher than that of the Q and S groups. Studies have 
showed that reflectance spectra were less sensitive in 
the near-infrared region to stresses [57]. In the region of 
700–1300  nm, leaf reflectance is governed by their cel-
lular structure [58]. Similar phenomenon could be found 
for rice leaves under the stress of arsenic stress [59], dis-
eases [60], rice leaf folder [61] and under heat treatment 
[62], etc. The samples were divided into two data sets at 

Table 1  Experimental design

Treatment Quinclorac (g/L) Salicylic 
acid 
(mg/L)

Control (CK) 0 0

Quinclorac alone (Q) 0.25 0

Salicylic acid pretreatment and 
quinclorac (S)

0.25 10

Fig. 2  The growing photos of two rice cultivars under different treatments. CK: control; Q: 0.25 g/L quinclorac; S: 10 mg/L SA pretreatment followed 
by 0.25 g/L quinclorac
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Fig. 3  Effects of different treatments on the activities of POD (A), SOD (B), CAT (C), APX (D), MDA (e), H2O2 (F), OH− (G), soluble protein (H), GSH (I), 
GSSG (J), GR (K) in leaves of two rice cultivars respectively. Data are means ± standard error from three replicates. Means followed by same small 
letters (a, b, c, d) with in the column are not significant at P ≤ 0.05. CK: control, Q: 0.25 g/L quinclorac, S: 10 mg/L SA followed by 0.25 g/L quinclorac
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a ratio of 2:1 for calibration and prediction according to 
their groups. The CK group, the Q group and the S group 
were assigned the category value of 1, 2 and 3 for model-
ling, respectively.

PCA score images analysis
For each rice cultivar, there were three groups of sam-
ples under different treatments. PCA was firstly applied 
to form score images at different PC to qualitatively ana-
lyze the differences among samples under different treat-
ments. One image was randomly selected from each 
group, and PCA was conducted on the pixel-wise spectra 
obtained by the hyperspectral imaging system to evaluate 
the difference among the groups. The first ten principal 
components (PCs) of XS 134 and ZJ 88 both explained 
over 99.99% of total variance (Figs.  5 and 6). The PCA 

score images from PC1 to PC10 were shown in Figs.  5 
and 6. Score values were presented in pseudo color.

Figure  5 shows the PCA score image of XS 134. Dif-
ferences on the color distributions were observed in the 
PCA scores images from PC1 to PC10. In general, images 
of PC1, PC5, PC6, PC7 and PC9 showed that the groups 
of Q and S were close and they were different from the 
CK group. Images of PC2, PC3 and PC4 showed that 
groups of CK and S were close, and they were different 
from the Q group. Images of PC8 and PC10 showed that 
there were differences among the CK, Q and S groups.

Figure  6 shows the PCA score image of ZJ 88. Dif-
ferences within PC1 image were small. Images of PC3 
showed differences among the CK, Q and S groups. 

Fig. 4  Average spectra of the three groups of XS 134 (a) and ZJ 
88 (b). CK: treated with nutrient solution; Q: treated with 0.25 g/L 
quinclorac, S: pre-treated with 10 mg/L SA under 0.25 g/L quinclorac 
stress

Fig. 5  PCA score images from PC1 to PC10 of the three groups of 
XS 134. CK: treated with nutrient solution, Q: treated with 0.25 g/L 
quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L 
quinclorac

Fig. 6  PCA score images from PC1 to PC10 of the three groups of 
ZJ 88. CK: treated with nutrient solution, Q: treated with 0.25 g/L 
quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L 
quinclorac
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Images of PC2, PC4, PC6, PC7, PC8, PC9 and PC10 
showed that groups of Q and S were close and they were 
different from the CK group.

The PCA score images indicated that there were differ-
ences among the CK, Q and S groups of the two rice cul-
tivars. Specially, differences between the CK group and 
Q group were larger, while differences between the CK 
group and S group, Q group and S group were smaller.

SVC models using full spectra
To evaluate the effect of herbicides on rice plants, SVC 
models were furtherly built by using the full spectra. To 
find the optimal SVC model, the model parameters (pen-
alty coefficient C and RBF kernel parameter g) were opti-
mized by a grid-search procedure. Here we separated the 
datasets into three different categories (training, valida-
tion and test sets) at the ratio of 4:1:1. To build SVC mod-
els, the penalty coefficient (C) and kernel parameter (g) 
were optimized by a grid-search procedure. It was quite 
difficult to determine the grid for SVC models, and the 
range of C and g was 10  N (N = − 8, − 7, − 6,…, 6, 7, 8, 
the step of N is 1) based on trails and experiences. The 
optimal SVC model was determined by the best classi-
fication accuracy of training and validation. The discri-
minant results of SVC models using the full spectra of 
the aboveground segments of rice cultivars XS 134 and 
ZJ 88 are shown in Table 2. Performances of SVC mod-
els were evaluated by classification accuracy and kappa 
coefficient.

For XS 134, the good classification results were 
obtained with the accuracy of three datasets approach-
ing or over 90%. No samples from CK and Q groups were 
misclassified with each other. Samples from the Q group 
and the S groups were more likely to be misclassified as 
each other, and samples from the CK group and the S 

group were more likely to be misclassified as each other. 
In the training set, three samples from the Q group were 
misclassified as samples in the S group. Two samples 
from the S group were misclassified as samples in the CK 
group and the Q group. Two samples from the S group in 
the validation set were misclassified as the samples in the 
Q group. In the test set, one sample from the CK group 
and the S group was misclassified as each other.

For ZJ 88, the samples from different groups could be 
classified precisely. Compared with XS 134, better clas-
sification results were obtained, with classification accu-
racy of the training and test set equaling to 100%. Only 
one sample from the Q group in the validation set was 
misclassified as the sample from the S group.

The SVC model of ZJ 88 performed better than that of 
XS 134. The reason can be attributed to that XS 134 was 
relatively resistant to herbicide quinclorac, and the effect 
of SA was not as significant as in ZJ 88. ZJ 88 was rela-
tively susceptible to herbicide quinclorac, and SA worked 
better after being added to the rice plants under quin-
clorac stress.

SVC models using extracted features
PCA was also used for feature extraction. As men-
tioned above, the first ten PCs explained over 99.99% of 
total variances, and the scores of the first ten PCs were 
extracted as features. To evaluate the performance of 
extracted features, the first ten PCs were used as inputs 
of SVC models. The results were shown in Table 3.

For XS 134, the classification accuracy of the training 
set and the validation set of the aboveground segments 
fluctuated around 90%, while the accuracy of testing 
set is a little bit lower. Most of the inaccuracies existed 
between the Q and S groups. Similar phenomenon was 
observed in case of ZJ 88. The division accuracies of all 

Table 2  Confusion matrix of SVC models using full spectra

a  Parameter means the model parameter of SVC, which is the combination of penalty coefficient C and RBF kernel parameter g, i.e. (C, g)
b  Total means the total classification accuracy
c  Kappa is used to evaluate the inter-rater reliability of the classification results

CK: treated with nutrient solution, Q: treated with 0.25 g/L quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L quinclorac

Cultivar Parametera Training set Validation set Testing set

CK Q S Accuracyb Kappac CK Q S Totalb Kappac CK Q S Accuracyb Kappac

XS 134 (107,10–2) CK 25 0 0 6 0 0 5 0 1

Q 0 23 3 0 6 0 0 7 0

S 1 1 26 0 2 5 1 0 6

93.67% 90.47% 89.47% 80.65% 90% 84.96%

ZJ 88 (107, 10–2) CK 28 0 0 7 0 0 6 0 0

Q 0 28 0 0 6 1 0 6 0

S 0 0 26 0 0 6 0 0 7

100% 100% 95% 92.51% 100% 100%
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datasets were elevated in ZJ 88. Only one sample from 
the Q group was mismatched as the sample from the S 
group in the validation set.

Compared with SVC models using full spectra, SVC 
models using extracted features showed slightly worse 
results. A radar graph presenting the classification results 
is shown in Fig. 7. As shown in Fig. 7, Tables 2 and 3, the 
SVC model using full spectra of ZJ 88 obtained the bet-
ter performance, the SVC model using extracted features 
of XS 134 obtained the worse results. The overall results 
indicated that the cultivar ZJ 88 exhibited greater differ-
ences and was easier to be classified than XS 134. The 
results also corroborated the cultivar characteristics of ZJ 
88 (relatively susceptible to herbicide quinclorac) and XS 
134 (relatively resistant). Moreover, the number of input 
variables of SVC models reduced from 410 to 10 after 

feature extraction, resulting in a reduction of 97.56%. The 
results showed that the extraction of spectral features 
which contributed mostly to the evaluation of quinclorac 
stress of rice plants was of great value.

Image visualization
As the SVC models using features extracted by PCA 
exhibited good classification performance, hence they 
were used to predict the features of each pixel to form the 
prediction maps. The prediction maps of one randomly 
selected aboveground segments of XS 134 and ZJ 88 
under different treatments were shown in Figs. 8 and 9. 
In the prediction maps, pseudo colors were used to rep-
resent the sample status.

As shown in Figs. 8 and 9, differences among the three 
groups were observed. For better understanding the 

Table 3  Confusion matrix of SVC models using extracted features

a  Parameter means the model parameter of SVC, which is the combination of penalty coefficient C and RBF kernel parameter g, i.e. (C, g)
b  Total means the total classification accuracy
c  Kappa is used to evaluate the inter-rater reliability of the classification results

CK: treated with nutrient solution, Q: treated with 0.25 g/L quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L quinclorac

Cultivar Parametera Training set Validation set Testing set

CK Q S Accuracy Kappa CK Q S Total Kappa CK Q S Accuracy Kappa

XS 134 (105, 10–1) CK 25 0 0 6 0 0 5 0 1

Q 0 21 5 0 6 0 0 6 1

S 0 2 26 0 2 5 1 0 6

91.14% 86.68% 89.47% 80.65% 85% 76.15%

ZJ 88 (106, 10–1) CK 28 0 0 7 0 0 6 0 0

Q 0 28 0 0 6 1 0 6 0

S 0 0 26 0 0 6 0 2 5

100% 100% 95% 92.5% 89.47% 80.5%

Fig. 7  The accuracies and kappa of the models using full range of 
spectral response and PCA. c calibration, v validation, p prediction

Fig. 8  Original RGB images and the distribution maps of the leaves 
of XS 134. CK: treated with nutrient solution, Q: treated with 0.25 g/L 
quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L 
quinclorac
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prediction maps, predicted values of pixel-wise spectra of 
all samples are summarized in Table 4.

As for XS 134 in Table 4, pixels were predicted as the 
CK, Q and S groups in each sample. For samples from the 
CK, Q and S groups, the percentage of pixels predicted 
as CK showed significant differences, the percentage of 
pixels predicted as Q also showed significant differences. 
The percentage of pixels predicted as S in the samples 
from Q and S were close. As for ZJ 88 in Table 4, pixels 
were predicted as the CK, Q and S groups in each sample. 
For samples from the CK, Q and S groups, the percentage 
of pixels predicted as Q showed significant differences. 
The percentage of pixels of samples from Q and S pre-
dicted as CK as well as S were close.

Different performances of XS 134 and ZJ 88 could 
be observed in Table  4, the differences were caused by 
the sample themselves and the model performances. It 
should be noted that the number of samples used in this 
study was small, and in future studies, more samples with 

wider sample ranges should be studied. An important 
phenomenon was also found that the pixels predicted as 
CK was dominant in the three prediction images of the 
two rice cultivars. The reason can be attributed to that 
different parts have different responses to the stresses. 
The prediction maps indicated that hyperspectral imag-
ing was effective in monitoring rice plants under the 
stress of quinclorac toxicity.

Discussion
In the analysis of physiological parameters, SOD is an 
important enzyme and is considered as a first line of 
defense in plants under stress conditions. APX is a vital 
enzyme related to the regulation of reactive oxygen inter-
mediates (ROIs) for signaling, and CAT plays a crucial 
role in reactive oxygen scavenging systems under stress 
[63]. Then the high accumulation of hydrogen perox-
ide resulted in the consumption of CAT content (Fig. 2, 
c and g). POD up-regulation after herbicide application 
has been reported in maize, tobacco and many other 
crop species [64]. MDA is used as an index of lipid per-
oxidation. When plants are expose to the herbicides, the 
accumulation of toxic ROS such as OH−, H2O2, which 
causes damage to lipids, proteins and nucleic acids and 
leads to rapid plant death [65]. In the present experiment, 
the MDA, OH−, H2O2 and soluble protein contents were 
highly induced after herbicide treatment (Fig.  2e–g). 
Previously, H2O2 overproduction in cleavers (Galiuma-
parine L.) caused tissue damage under auxin herbicides 
toxicity [20]. SA-induced DELLAs accumulation has 
been found to increase the gene expression of detoxifying 
enzymes, thereby reducing the ROS levels [66]. Consist-
ent results of ROS changes were observed in our study 
(Fig.  3F and G). These findings are suggesting that SA 
allow the restoration of redox homeostasis under quin-
clorac stress condition. GSH exists in living cells and is 
involved in various physiological and biochemical reac-
tions. GSSG is reduced to GSH by glutathione reductase 
GR. GSH is oxidized to GSSG by glutathione peroxidase 
and dehydroascorbate reductase through the process of 
scavenging H2O2 [63]. GSH plays a crucial role in herbi-
cide detoxification [67]. In this study, GSH was decreased 
to protect the plant from quinclorac toxicity (Fig. 3I). SA 
helped the rice to synthesize more GSH to strengthen its 
defense system. Elevated concentrations of GSSG are the 
evidence of oxidative stress in plants [67]. SA induced 
GSSG to increase along with GSH conversion com-
pared to the leaves under quinclorac stress. This may be 
a result of GSSG converting quickly to GSH to maintain 
the detoxifying process. The GR enzyme varied accord-
ing to the balance between GSH and GSSG. The changes 
in enzymatic and non-enzymatic antioxidants and modu-
lation of ROS demonstrated that there were noticeable 

Fig. 9  Original RGB images and the distribution maps of the leaves 
of ZJ 88. CK: treated with nutrient solution, Q: treated with 0.25 g/L 
quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L 
quinclorac

Table 4  Summary of  pixel-wise predicted mean values 
of all samples for image visualization of XS 134 and ZJ 88

The percentage denotes the ratio of pixels predicted as each category. 
Means ± SD followed by same letters (a, b, c) in the vertical column are not 
significant at P ≤ 0.05

CK: treated with nutrient solution, Q: treated with 0.25 g/L quinclorac, S: pre-
treated with 10 mg/L SA followed by 0.25 g/L quinclorac

Cultivar Treatment CK Q S

XS 134 CK 72.6% ± 5.7%a 17.3% ± 3.9%c 10.1% ± 3.3%b

Q 50.4% ± 4.8%c 29.9% ± 5.9%a 19.7% ± 4.5%a

S 53.9% ± 5.3%b 25.3% ± 5.0%b 20.8% ± 5.3%a

ZJ88 CK 86.7% ± 3.5%a 3.4% ± 1.3%c 9.9% ± 2.8%b

Q 74.2% ± 8.1%b 10.0% ± 4.7%a 15.8% ± 4.6%a

S 76.5% ± 5.6%b 7.7% ± 2.6%b 15.8% ± 3.9%a
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differences among CK, Q and S groups. It provides the 
possibility to establish the model to quickly separate the 
rice seedlings under quinclorac stress or recovery stage 
with SA pre-treatment in an indirect way.

Except for physiological parameters, optical properties 
can reveal the internal and external features of plants. 
The unique characteristic of hyperspectral imaging to 
obtain spectrum of each pixel makes it quite efficient 
and convenient to analyze not only the optical features 
and morphological features, etc. In this study, hyperspec-
tral images were acquired for analysis based on optical 
features of rice. Reflectance spectra indicated that there 
were differences of rice seedlings among the three differ-
ent treatments. PCA score images showed the feasibility 
of using hyperspectral imaging to explore the differences 
among different herbicide stresses, and the results con-
firmed that the rice seedling changed with the herbi-
cide stresses. Furthermore, the established SVC models 
showed the good performances of the detection of rice 
seedlings under the stress of quinclorac toxicity and its 
alleviation by salicylic acid. These results proved the fea-
sibility that hyperspectral imaging could be used as an 
effective, rapid and non-destructive tool to monitor rice 
seedlings under stress of herbicides and its alleviation by 
salicylic acid. Additionally, hyperspectral imaging pro-
vided a promising alternative with significant potential in 
monitoring plant growth.

Symptoms of herbicide injury at early stages are diffi-
cult to recognize. Researchers have used the visible and 
near-infrared spectroscopy to study plants under the 
stresses of herbicide. Tian et  al. [68] used near-infrared 
spectroscopy to study oilseed rape under the stress of 
propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy) ben-
zylamino)benzoate (ZJ0273), and determined the total- 
and branched-chain amino acids in oilseed rape under 
the stress of ZJ0273 herbicide. Liu et al. [32, 69] applied 
near-infrared spectroscopy to determine acetolactate 
synthase activity and total amino acids in oilseed rape 
under the stress of herbicide. Bao et al. [70] utilized near-
infrared spectroscopy to determine total amino acids 
content in barley leaves under the stress of herbicides. As 
for hyperspectral imaging, not much work has been done. 
Kong et al. [71] used hyperspectral imaging to determine 
and visualize malondialdehyde (MDA) distribution in 
oilseed rape leaves under the stress of herbicide. Our 
work showed the feasibly of using hyperspectral imaging 
to study phenotypes of rice seedlings under the stress of 
herbicides. In future, different kinds of herbicides should 
be studied, and the differences of phenotypic variation 
between the herbicide stresses and other stresses should 
also be clarified. The use of hyperspectral imaging in 
rice plant phenotyping should be further extended and 
explored.

SVC has been widely used in spectral data analysis. 
Hyperspectral images could be acquired at the spectral 
range of 400–2500 nm. In this study, the analyzed spec-
tral range is 434–953 nm. This spectral range relates to 
the pigments and leaf or canopy structure [44–48]. The 
spectra at the range of 1000–2500 nm are near-infrared 
region which relates to the chemical compositions. The 
sub-ranges of 400–2500  nm have been widely studied 
in plant science [72]. SVC has also been used in vari-
ous studies based on different spectral ranges. Indeed, 
SVC is a machine learning method with unique char-
acteristics. By using spectral information with SVC for 
rice herbicide stress monitoring, the spectral infor-
mation relating to changes of plants under the stress 
is the basis for stress monitoring. SVC extracts the 
inner features from the obtained spectral data and uses 
these features to make decisions. For different spectral 
ranges, the spectral data contain different information 
reflecting sample status, and the performances of SVC 
models essentially depend on the information. Moreo-
ver, under the stress of herbicides, the chemical com-
positions will change, and the spectral data in the range 
of 1000–2500 nm reflecting the chemical compositions 
is feasible to be used to monitor rice herbicide stress. 
SVC is possible to obtain good performances at differ-
ent spectral ranges in which the spectral information 
relating the stress is contained.

Conclusion
Hyperspectral imaging covering a spectral range of 
380–1030  nm was used to evaluate herbicide quin-
clorac phytotoxicity on rice plants. The aboveground 
segments of two rice cultivars were studied for physi-
ological changes to quinclorac toxicity detection and 
for imaging calibration and prediction. PCA was used 
to form score images and extract features. Full-spectra-
based SVC models and extracted-feature-based SVC 
models all achieved good performance. The SVC mod-
els using optimal wavelengths were applied to hyper-
spectral images to obtain prediction maps. The SVC 
models and prediction maps showed feasibility of using 
hyperspectral imaging to evaluate the herbicide stress 
on rice plants. The classification performances of ZJ 88 
were better than those of XS 134, thus indicating differ-
ences between the two cultivars. Hyperspectral imag-
ing is a promising technique for monitoring herbicide 
stress at least for quinclorac on rice plants. For the 
subsequent study considerations based on the current 
results, it is recommended that more measurement 
time intervals should be used in the first 24 h of herbi-
cide application.
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Materials and methods
Plant materials and preparation
Two Japonica rice (Oryza sativa L.) cultivars: i.e., one 
relatively susceptible (cv. ZJ 88) and one relatively resist-
ant (cv. XS 134) to herbicide quinclorac, were used in 
this experiment [7]. The healthy seeds were first surface 
sterilized in 75% ethanol for 5 min and 0.1% NaClO for 
another 15  min and then soaked in distilled water for 
an additional 20 min. A total of fifty seeds of each group 
were sown in plastic germination boxes with wet double 
filter papers. Germination was manipulated at 30  °C for 
48  h. The germinated seedlings were selected and kept 
in darkness for two days and then cultured in a growth 
chamber with available areas of 1.5 m2, constant day/
night temperatures of 25/20  °C, programmed for a 14-h 
photoperiod, with a mixed incandescent and fluorescent 
irradiance of 300 μmol m−2  s−1, and a relative humidity 
of 70–80%.

The samples in the pot (16  cm diameter × 15  cm 
height) were divided into three groups including the 
control group (the CK group), the quinclorac treatment 
group (the Q group), and the group pre-treated with SA 
and followed by quinclorac stress (the S group). A total 
of 0.25 g/L of quinclorac (with 10% active ingredient, in 
the form of wet powder) was treated in a solution at the 
four-leaf stage. SA at 10 mg/L was added to the solution 
48 h before the quinclorac treatment. Each treatment was 
replicated three times, and each replication with approxi-
mately 40 plants. The concentrations of different treat-
ments were based on previous experimental data. The 
results of herbicide experiments are presented in Addi-
tional file 1.

The nutrient solution was renewed every five days 
with a Hoagland solution. The plants were grown under 
hydroponic condition. Ten days after treatment, the leaf 
samples were first prepared for hyperspectral image 
acquisition. Later, plant samples for biochemical analyses 
were collected. A total of 239 samples were prepared (121 
samples for ZJ88 and 118 samples for ZJ 88) for the treat-
ments. Two-thirds of the plants were selected as the cali-
bration set using the Kennard-Stone algorithm [73], and 
the remaining samples were used as the prediction set.

Measurement of physiological parameters
Measurement of lipid peroxidation and antioxidant enzyme 
activities
Malondialdehyde (MDA) was measured as an indica-
tor of lipid peroxidation. Lipid peroxidation was deter-
mined by using according to Zhou and Leul with some 
modifications [74]. Superoxide dismutase (SOD) activity 
was assayed as described by Zhang et al. [75]. Peroxidase 
(POD) activity was determined as described by Zhou 

and Leul [74]. Ascorbate peroxidase (APX) activity was 
assayed following Nakano and Asada [76] with a reaction 
of H2O2.

Measurement of reactive oxygen species and total soluble 
protein
Hydrogen peroxide (H2O2) was estimated using the 
method by Velikova et  al. [77] and Halliwell and Gut-
teridge [78] with some modifications. The soluble protein 
concentration was determined according to the method 
of Bradford [79].

Measurement of non‑enzymatic antioxidants
Glutathione GSH and GSSG were analyzed using the 
method of Law et  al. [80]. Glutathione reductase (GR) 
activity was assayed according to Jiang and Zhang [81].

Statistical analysis
All the treatments were arranged in a completely rand-
omized block design. Biochemical data i.e. the changes 
of enzymes activity were presented as mean values of 
three replicates ± standard error. The data were ana-
lyzed using a statistical package, SPSS (Version 19.0). 
One-way analysis of variance was employed followed by 
Duncan’s multiple range test to determine the significant 
differences among means of the treatments at 5% level of 
significance.

Hyperspectral imaging system and image acquisition
A ground-based visible and near-infrared hyperspectral 
imaging system (spectral range: 380–1030  nm; spec-
tral resolution: 2.8  nm) was used to acquire hyperspec-
tral images. An imaging spectrograph (ImSpector V10E; 
Spectral Imaging Ltd., Oulu, Finland), a high perfor-
mance CCD camera (Hamamatsu, Hamamatsu City, 
Japan), a camera lens (OLES23; Specim, Spectral Imaging 
Ltd., Oulu, Finland), two 150 W tungsten halogen lamps 
for line illumination (Fiber-Lite DC950 Illuminator; 
Dolan Jenner Industries Inc., Boxborough, MA, USA), 
and a sample motion plate to move the samples (Isuzu 
Optics Corp, Taiwan, China) were used to assemble the 
system. The illumination lamps were placed symmetri-
cal on both sides of the camera with the angle of 45°. 
The hyperspectral imaging system acquires images at a 
spectral resolution of 2.8 nm. This hyperspectral imaging 
conducted line scan, and the line light were focused on 
the place directly under the camera lens. Sample mov-
ing speed, camera exposure time, and the lens height to 
the sample were adjusted to 2.85 mm/s, 0.09 s, and 35 cm 
respectively for image acquisition. The acquire image size 
was 672 pixels (width) × L (pixels) × 512 (wavebands), 
where L was number of pixels in the length of the image.
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The original raw images were corrected to reflectance 
hyperspectral images for further processing. The cali-
brated image Ic was calculated using the following equa-
tion [72]: 

where Iraw was the raw hyperspectral image, B was the 
dark reference image acquired with reflectance close to 
0, W was the white reference image acquired with reflec-
tance close to 100%, and Ic was the calibrated hyperspec-
tral image.

Spectra extraction
After image correction, spectra data were extracted from 
hyperspectral images. The aboveground segments were 
used for analysis. The entire aboveground segment was 
defined as the region of interest (ROI). Pixel-wise spectra 
within the ROI were extracted. Because there was obvi-
ous random noise in the origin spectra, only the spectra 
at the range of 434–953 nm were studied. Wavelet trans-
form (wavelet function Daubechies9 with decomposi-
tion level 3) followed with the moving average smoothing 
with 7 smoothing points was applied to preprocess the 
pixel-wise spectra. Average spectrum calculated from 
the preprocessed pixel-wise spectra within each ROI was 
used as sample spectrum.

Data analysis methods
SVC
The SVC method is based on a computer algorithm that 
learns by example to assign labels to objects, and has 
been widely used for supervised pattern recognition in 
various biological applications [82]. The SVC has been 
applied in chemo-metrics [83], NIR classification tasks 
such as material identification [84, 85] and food discrimi-
nation [86–88]. The general concept of SVC is to trans-
form the origin data into a higher dimensional space 
where the samples are more likely to be linearly separa-
ble. The optimal hyperplane is constructed to maximize 
the shortest distances between the samples of each class 
in the higher dimensional space. The distance defines 
the margin associated to the separating hyperplane [89]. 
Selection of  kernel function  is a pivotal factor which 
determines performance of  SVC [90]. Among existing 
kernel functions, the radial basis function (RBF) as a ker-
nel function has been proven to be efficient and good 
performance is generally obtained [91]. So RBF was used 
for the SVC models in this study. The brief introduction 
of SVC is presented as follow.

First, we define the symbols and parameters used in the 
mathematical theory of the SVC algorithm as Table 5.

(1)Ic =
Iraw − B

W − B

Given training dataset S = {X,Y} in two classes, 
where X = {x1, x2,…,xn}, Y = {y1, y2,…,yn}, vectors 
xi ∈ Rp, i = 1, 2, . . . , n , and vector y ∈ {1,−1}n . SVC 
method uses a hyperplane maximizing the margin bor-
der of different sample points. The hyperplane is con-
structed as:

For non-separable data, SVC solves the following pri-
mal problem:

The constraints of Eq. (3) are:

Equation  (4) can be transformed to its dual problem 
under the conditions of Karush–Kuhn–Tucker: 

The constraints of Eq. (5) are:

In this study, the popular radial basis function (RBF) 
was used as the kernel function which can be expressed 
as:

Then the decision function can be expressed as:

(2)wTX + b = 0

(3)min
w,b,ζ

(

1

2
wTw + C

n
∑

i=1

ζi

)

(4)
yi(wTφ(xi)+ b) ≥ 1− ζi,

ζi ≥ 0, i = 1, 2, . . . , n

(5)
min

(

1

2
αTQα − eTα

)

Qij = yiyjK (xi, xj) = yiyjφ(xi)
Tφ(xj)

(6)
yTα = 0,

0 ≤ αi ≤ C , i = 1, 2, . . . , n

(7)K (xi, xj) = exp
(

−γ

∥

∥

∥
xi − xj

∥

∥

2
)

Table 5  The symbols and  parameters used 
in the mathematical theory of the SVC algorithm

Parameter Description

w The normal direction of the hyperplane

b The bias of the hyperplane

ξi The positive slack variable

C The user-defined parameter to assign penalty to errors

e The vector of all ones

αi The Lagrangian multipliers

K(xi,xj) The kernel function

γ The tuning parameter (called ‘gamma’) of the RBF 
kernel, must be greater than 0
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The C and gamma are the two parameters which 
should be optimized. Only the binary SVC classifiers for 
two classes’ situations are introduced in this section, it is 
easy to extend to multi-class issue.

PCA
PCA is an unsupervised classification method which 
reduces the dimensionality of the data while keeping 
most of the variation in the data set, and PCA is generally 
used for qualitative analysis [92]. PCA linearly transforms 
the original data into new orthogonal variables PCs [93]. 
Then each sample can be plotted with a few components, 
making it possible to represent the similarities and differ-
ences visually and demonstrate whether samples can be 
grouped [94]. Generally, the first few PCs carry most of 
the information that is used for qualitative analysis to vis-
ualize the sample clusters in the score spaces. In hyper-
spectral image analysis, PCA is also applied to pixels 
within the hyperspectral images to form the score visu-
alization image. Based on the score images of different, 
variations of spectral information within one sample or 
among different samples can be observed. A color gra-
dient representing the scores values can help to visual-
ize the differences. In this study, PCA was firstly applied 
to pixels within the hyperspectral images to explore the 
differences among rice leaves under different quinclorac 
stresses prior to building classification models.

Feature extraction
Feature extraction is a widely used approach to extract 
the useful features from the original data. Feature extrac-
tion conducts the data transformation to transform the 
original features into new features. New features contain 
the most of the useful information can be used instead of 
the original data. Use of the extracted features can reduce 
the amount and redundancy of the data, simplify the 
model, and improve the model performance and model 
stability.

PCA, as mentioned above, is a widely used feature 
extraction method [95]. Generally, the first few PCs 
explain the most of the variance and contain the most 
of useful information. Scores of these first few PCs can 
be used as new features to represent the features of the 
original data. Then the scores can be used to build multi-
variate models.

In this study, PCA was firstly applied to pixel-wise 
spectra within hyperspectral images to form score images 
for qualitative analysis of differences among samples 
under different treatments. After building SVC mod-
els using full average spectra, PCA was used to extract 

(8)f (x) = sign

(

n
∑

i=1

yiai exp (−γ �xi − x� )+ b

) features for data dimension reduction, and SVC models 
were built using the extracted features. The performances 
of SVC models using full spectra and extracted features 
were compared.

Image visualization
In hyperspectral images, each pixel contains a spectrum, 
which makes it possible to use the established model to 
predict the pixels within the hyperspectral images to 
form a prediction map (called image visualization) [96, 
97]. The brief procedure for image visualization is as 
follows:

1) Extracting the spectral data from hyperspectral 
images;

2) Establishing calibration models;
3) Developing a prediction map by applying the estab-

lished models to each pixel.
Image visualization provides direct visual presentation 

of the sample features and their distribution. It would 
help to present the variant distribution of different fea-
tures within samples. In general, the prediction map is 
presented in colors, and the colors represent the corre-
sponding feature values.

Software and model evaluation
The image segmentation to isolate the rice leaves from 
the background were conducted with ENVI 4.6 (ITT, 
Visual Information Solutions, Boulder, Co., USA). The 
spectral data extraction after image segmentation, model 
establishment and image visualization were conducted 
on Matlab R2014b (The Math Works, Natick, MA, USA). 
SVC was conducted using libSVC toolbox (version 3.1) 
[98]. Software is available at https​://www.csie.ntu.edu.
tw/~cjlin​/libSV​C. The classification accuracy was used to 
evaluate the calibration and prediction performances of 
the classification models.
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