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Deep convolutional neural networks 
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Abstract 

Background:  Convolvulus sepium (hedge bindweed) detection in sugar beet fields remains a challenging problem 
due to variation in appearance of plants, illumination changes, foliage occlusions, and different growth stages under 
field conditions. Current approaches for weed and crop recognition, segmentation and detection rely predominantly 
on conventional machine-learning techniques that require a large set of hand-crafted features for modelling. These 
might fail to generalize over different fields and environments.

Results:  Here, we present an approach that develops a deep convolutional neural network (CNN) based on the tiny 
YOLOv3 architecture for C. sepium and sugar beet detection. We generated 2271 synthetic images, before combin-
ing these images with 452 field images to train the developed model. YOLO anchor box sizes were calculated from 
the training dataset using a k-means clustering approach. The resulting model was tested on 100 field images, 
showing that the combination of synthetic and original field images to train the developed model could improve 
the mean average precision (mAP) metric from 0.751 to 0.829 compared to using collected field images alone. We 
also compared the performance of the developed model with the YOLOv3 and Tiny YOLO models. The developed 
model achieved a better trade-off between accuracy and speed. Specifically, the average precisions (APs@IoU0.5) of 
C. sepium and sugar beet were 0.761 and 0.897 respectively with 6.48 ms inference time per image (800 × 1200) on a 
NVIDIA Titan X GPU environment.

Conclusion:  The developed model has the potential to be deployed on an embedded mobile platform like the 
Jetson TX for online weed detection and management due to its high-speed inference. It is recommendable to use 
synthetic images and empirical field images together in training stage to improve the performance of models.
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Background
Sugar beet (Beta vulgaris ssp. vulgaris var. altissima) 
is very vulnerable to weed competition due to its slow 
growth and low competitive ability at the beginning of 
vegetation [1]. The yield loss caused by weed competition 
can be significant. Therefore, effective weed management 

in early stages is critical, and essential if a high yield is 
to be achieved. In modern agriculture, herbicide is widely 
used to control weeds in crop fields [2]. Weeds are typi-
cally controlled by spraying chemicals uniformly across 
the whole field. However, the overuse of chemicals in 
this approach has increased the cost of crop protection 
and promoted the evolution of herbicide-resistant weed 
populations in crop fields [3], which is a hindrance to sus-
tainable agriculture development.

Site-specific weed management (SSWM) refers to a 
spatially variable weed management strategy to minimize 
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the use of herbicides [4]. However, the main techni-
cal challenge of SSWM implementation lies in develop-
ing a reliable and accurate weed detection system under 
field conditions [5]. As a result, various automated weed 
monitoring approaches are being developed based on 
unmanned aerial vehicle or on-ground platforms [6–8]. 
Among them, image-based methods integrating machine 
learning algorithms are considered a promising approach 
for crop/weed classification, detection and segmenta-
tion. Previous studies [7] utilized features like shape, tex-
ture and colour features with a random forest classifier 
for weed classification. Others, such as Ahmad el al [9] 
developed a real-time selective herbicide sprayer system 
to discriminate two weed species based on visual features 
and an AdaBoost classifier. Spectral features from multi-
spectral or hyperspectral images could also be exploited 
for weed recognition [10, 11]. Although the works men-
tioned above show good results on weed/crop segmenta-
tion, classification and detection, challenges such as plant 
species variations, growth differences, foliage occlusions 
and interference from changing outdoor conditions still 
need to be further overcome in order to develop a real-
time and robust model in agricultural fields.

Deep learning, a subset of machine learning, enables 
learning of hierarchical representations and the discov-
ery of potentially complex patterns from large data sets 
[12]. It has shown impressive advancements on various 
problems in natural language processing and computer 
vision, and the performance of deep convolutional neu-
ral networks (CNNs) on image classification, segmenta-
tion and detection are of particular note. Deep learning 
in the agriculture domain is also a promising technique 
with growing popularity. Kamilaris et al. [13] concluded 
that more than 40 studies have applied deep learning to 
various agricultural problems like plant disease and pest 
recognition [14, 15], crop planning [16] and plant stress 
phenotyping [17]. Pound et  al. [18] demonstrated that 
using deep learning can achieve state-of-the-art results 
(> 97% accuracy) for plant root and shoot identifica-
tion and localization. Polder et  al. [19] adapted an fully 
convolutional neural network (FCN) for potato virus Y 
detection based on field hyperspectral images. Specifi-
cally, for crop/weed detection and segmentation, Sa et al. 
[20, 21] developed WeedNet and WeedMap architec-
tures to analyse aerial images from an unmanned aerial 
vehicle (UAV) platform. Lottes et al. [8, 22] also did rel-
evant studies on weed/crop segmentation in field images 
(RGB + NIR) obtained from the BoniRob, an autonomous 
field robot platform. All these studies have demonstrated 
the effectiveness of deep learning, with very good results 
provided.

In practice, farmers usually plow fields before sowing 
to provide the best chance of germination and growth for 

crop seeds. Moreover, parts of pre-emergent weeds are 
buried under the ground and so killed through this pro-
cedure. However, Convolvulus sepium (hedge bindweed) 
can emerge from seeds and remaining rhizome segments 
left underground. This leads to different emergence times 
of C. sepium, resulting in multiple growth stages from 
first leaves unfolded to stem elongation being repre-
sented in a single field. The appearance of C. sepium at 
different growth stages varies. In the early growth stages, 
some C. sepium plants might have similar color features 
as sugar beet plants in their early growth stages. All these 
factors bring challenges to the development of a robust 
system for C. sepium detection under field conditions. To 
the best of our knowledge, no studies have attempted to 
detect them in a sugar beet field based on a deep learning 
approach.

In our study, first we develop an image generation pipe-
line to generate synthetic images for model training. We 
then design a deep neural network to detect C. sepium 
and sugar beet based on field images. The major objec-
tives of the present study are (i) to appraise the feasibility 
of using a deep neural network for C. sepium detection in 
sugar beet fields; (ii) to explore whether the use of syn-
thetic images can improve the performance of the devel-
oped model; (iii) to discuss the possibility of our model to 
be implemented on mobile platforms for SSWM.

Methods
A digital single-lens reflex (DSLR) camera (Nikon D7200) 
was used to manually collect field images from two sugar 
beet fields of West Flanders province in Belgium under 
different lighting conditions (from morning to afternoon 
in sunny and cloudy weather). Most sugar beet plants 
have 6 unfolded leaves, while the growth stages of C. 
sepium plants vary widely, from seedling to pre-flower-
ing. The camera was held manually to capture images 
randomly in the sugar beet fields. The distance between 
camera and soil surface was around 1  m which is not 
strictly fixed in order to create more variations in the 
images. For camera settings, the ISO value is 1600 and 
the exposure times are 1  ms under sunny weather con-
ditions and 1.25  ms under cloudy weather conditions. 
The resolution of raw images is 4000 × 6000 pixels. There 
are 652 images under different lighting conditions which 
were manually labelled with bounding boxes. Among 
them, 100 images are randomly selected as a test data-
set and 100 images are randomly selected as a validation 
dataset. The remaining 452 images are used as a training 
dataset. All the images were resized to 800 × 1200 pixels. 
In this way, the resized images do not change their aspect 
ratio and are suitable for training based on our computa-
tion resources.
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Synthetic image generation
Training a deep neural network with adequate perfor-
mance generally requires a large amount of data. This 
is labour-intensive and time-consuming to collect and 
label. To overcome this problem, we generated syn-
thetic images based on the training dataset from the 
formerly collected field images. The process of syn-
thetic training image generation is depicted in Fig.  1. 
Seventy-seven images were selected as original source 
images. All these images contained either a sugar beet 
(51) or a C. sepium object (26). Their excess green 
(ExG) vegetation index [23] grayscale images were 
obtained using Eqs.  (1) and (2). Equation  (2) is used 
to normalize R, G and B channel. Next, we converted 
the ExG grayscale images into binary mask images with 
Otsu’s algorithm [24]. Afterwards, the object images 
and their masks were transformed using a set of ran-
domly chosen parameters. Rotation (from 0 to 360° 
with a 15° step), zoom (from 0.5 × to 1.5 × with 0.1 
step), shift (from −  100 to 100 pixels with a 15-pixel 
step both in the horizontal and vertical directions) and 
flip (horizontal or vertical direction) operations were 
applied. The base image and their corresponding masks 
were subjected to flip (horizontal or vertical direc-
tion), limited rotation (0 or 180°) and limited zoom 
(from 1 × to 1.8 × with 0.1 step) operations to keep the 
soil background information. The object mask image 
(Boolean data type) was used as a logic control image. 
If the logic value in the object mask image is true, the 
pixel in the base image was replaced by the pixel from 
the object image. Otherwise, there is no replacement 

in the base image. After all the pixels from the object 
images were added to the base images, their brightness 
was adjusted using Gamma correction [25]. Gamma 
values varied from 0.5 to 1.5 with 0.2 step. In our study, 
we generated 2271 synthetic images in total. They are 
comprised of 1326 (51 × 26) images with sugar beet and 
C. sepium plants, 676 (26 × 26) images with C. sepium 
and C. sepium plants and 269 images with sugar beet 
and sugar beet plants. These synthetic images will be 
only used for training deep neural networks. The less 
images (269) with sugar beet and sugar beet plants were 
generated compared to the other two type images (1326 
and 676), because the balance of different object num-
bers (sugar beet and C. sepium) is better to keep for the 
benefits of training deep neural network after consider-
ing most field images only contain sugar beet plants in 
the training dataset. The examples of real field images 
and synthetic images are shown in Fig.  2. There is no 
occlusion in base images and object images. However, 
the synthetic images could contain overlapped plants 
(see Fig. 2 bottom right image) as the object (sugar beet 
or C. sepium) was randomly placed in the base images 
in this pipeline, thus better representing the real sce-
nario of field conditions.

(1)ExG = 2 ∗ g− r− b

(2)

r =
R

G + R+ B
, g =

G

G + R+ B
, b =

B

G + R+ B

Fig. 1  The process of synthetic image generation
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where R, G and B are the red, green and blue channel 
pixel values, respectively.

Deep neural network architecture
The deep neural network architecture used in this study 
is depicted in Fig. 3. It is similar to the tiny YOLOv3 (You 
Only Look Once) framework, a lighter and faster version 
of YOLOv3 [26]. In our case, there were only two object 
classes. The sugar beet objects generally had similar sizes 
in fields as they were sown in the same time. Thus, we 
reduced the number of detection scales to two scales 
instead of three scales in YOLOv3. This change speeded 
up inference time. Furthermore, we modified the route 
for feature concatenation and added two more convolu-
tional layers for better feature fusion. Before feeding the 
image data into networks, all the images were resized 
to 608 × 608 spatial resolution to fit the network archi-
tecture. The network first comprised 5 convolution and 
max-pooling blocks. The number of convolutional filters 

in each block, starting with 16 filters, was doubled com-
pared to the former block. The 5 max pooling layers 
resulted in a total down-sampling by a factor of 32. At the 
end of convolution and max pooling block, the dimen-
sion of the feature map was 19 × 19 × 256. A series of 
convolution operations were then carried out to obtain 
the final features (19 × 19 × 21), a 3-dimensional tensor 
encoding coordinate of the bounding box, object and 
class predictions, for initial object detection. One of the 
most notable features of YOLOv3 is to detect objects at 
different scales. In our network architecture, it detects 
objects at two different scales with 19 × 19 and 38 × 38 
grids, respectively. In the tail of the network, we took the 
feature map from the previous 15th layer as input for a 
convolutional layer with 128 filters and then upsampled 
it by 2×. Subsequently, the upsampled features were con-
catenated with the earlier feature map resulting from 
a convolutional layer in the last convolution and max 
pooling block. Then two more convolutional layers were 

Fig. 2  The examples of real and synthetic images (top row: real images, bottom row: synthetic images)
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added to fuse this merged feature map, finally obtaining a 
similar tensor (38 × 38 × 21) for detection at the second 
scale. Compared to tiny YOLOv3, we adapted the order 
of the former layer to concatenate with the upsampled 
layers to keep the fine grained features and added more 
layers in decoder part for better fusion low-level features. 
In our network, instead of using the default anchor box 
sizes, we calculated our own anchor box sizes based on 
clustering of object bounding box sizes from the labelled 
training dataset. K-means clustering [26] approach was 
used to determine the 6 anchor box sizes for our detec-
tion at the two different scales, each scale with 3 anchor 
boxes. There are three parts, bounding box error for L1 , 
object confidence error for L2 , and classification error for 
L3 , in the loss function Lloss [27]: 

 where the weight constants αcoord , αnoobj are 5 and 0.5, 
respectively. αcoord is ten times of αnoobj in order to focus 
more on detection. S is the number of the grid cell and B 
is the number of bounding box at each scale. ωobj

ij  denotes 
that the jth bounding box in the grid cell i is responsi-
ble for this prediction. The value is 1 if there is an object 
in cell and 0 otherwise. ωnoobj

ij  is the opposite of ωobj
ij  . c 

L1 = αcoord

S2∑

i=0

B∑

j=0

ω
obj
ij

[(
xi − x̂i

)2 + (yi − ŷi)
2
]

+ αcoord

S2∑

i=0

B∑

j=0

ω
obj
ij

[(√
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√
ŵi

)2
+ (

√
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ĥi)

2
]
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S2∑

i=0

B∑

j=0

ω
obj
ij (Ci − Ĉi)

2
+ αnoobj

S2∑

i=0

B∑

j=0

ω
noobj
ij (Ci − Ĉi)

2

L3 =
S2∑

i=0

ω
obj
i

∑

c∈classes

(pi(c)− p̂i(c))
2

Lloss = L1 + L2 + L3

is the classes. ωobj
i  is 1 when the particular class is pre-

dicted, otherwise the value is 0.xi,yi, wi and hi are the 
centroid coordinate, width and height of the correspond-
ing responsible anchor box. Ci is the confidence score of 
object pi(c) is the classification loss. The parameters with 
hats are the corresponding estimated values.

Transfer learning
Transfer learning uses partial weights from a pre-trained 
model on a new problem to overcome any potential overfit-
ting due to the lack of sufficient training data. It has been 
demonstrated that the first layer of deep neural networks 
extracts some generic features like edge and colour features 
[28] so that they are generally applicable to other com-
puter vision tasks. Therefore, weights from these layers are 
expected to be more valuable when optimising the algo-
rithm than randomly initialized weights in the networks 
[29]. In our study, we used the weights from the pre-trained 
model (darknet53), trained on the ImageNet dataset, a 
public dataset containing millions of natural images, to 
train the proposed, Tiny and YOLOv3 models. The Adam 
optimizer [30] with the initial learning rate 0.02, then drop-
ping this value by 0.1 at every 20,000 iterations, was chosen 
to minimize the loss function. The batch size was set to 64. 
Data augmentation such as random scaling and cropping, 
and randomly adjusting exposure and saturation was also 
used during all the training process to reduce the risk of 
overfitting.

Evaluation metrics
For object detection applications, mean average precision 
(mAP) is a standard metric for evaluation of model per-
formance. In our case, we calculated the average preci-
sion (AP) of sugar beet and C. sepium classes separately, 

Fig. 3  Deep neural network architecture
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and then averaged over APs of these two classes to calcu-
late mAP value (Eq.  5) to check the overall performance 
of a model. Precision is a ratio of true object detections to 
the total number of objects that a model predicted. Recall 
is a ratio of true object detections to the total number of 
objects in the dataset. In our case, to be the true object 
detections, the area of the overlap, also called intersection 
over union (IoU, Eq. (3)), between the predicted bounding 
box and ground truth bounding box should exceed 0.5. The 
AP, calculated by Eq. 4, is precision averaged across all the 
values of recall between 0 and 1, namely the area under the 
PR curve [31]. An approximation of the area is calculated 
via Riemann summation. Note that both precision and 
recall metrics vary with IoU thresholds. In our case, we set 
the model threshold as 0.5 (at IoU = 0.5) and then combine 
all the detections from all the test images to draw a preci-
sion-recall (PR) curve. mAP50 and AP50 denote that the two 
values were achieved under the condition of IoU = 0.5. 

where areaBp is the area of the predicted bounding box, 
and areaBgt is the area of ground truth bounding box.

where N  is the total number of images in the test data-
set,M is the number of classes, P(k) is the precision value 
at k images and �recall(k) is the change of the recall 
between k and k − 1 images.

Results
Model performance
The training loss curve of the proposed deep neural net-
work is shown in Fig. 4. As we can see, the training loss 
dropped sharply at the beginning of the training stage, 
and then the loss value slowly converged at around 0.18 
after 22,000 batch iterations (527 epochs). We evaluated 
the performances of the developed model in the valida-
tion dataset at different batch iterations (Fig.  5). It is 
shown that the mAP50 obtained the highest value (0.839) 
in 26,000 iterations. After 26,000 iterations, the mAP50 
started to slowly decrease as the model tends to be over-
fitting in the validation dataset, though the training loss 
still drops a little. We used the weights (26,000 iterations) 
to evaluate the developed model in the test dataset. Fol-
lowing the same procedure to other models, Table  1 

(3)IoU =
areaBp ∩ areaBgt

areaBp ∪ areaBgt

(4)AP =
N∑

k=1

P(k)�recall(k)

(5)
mAP =

M∑
m=1

AP(m)

M

sums up the performances of the other networks in the 
test dataset. In general, the proposed network achieved 
the highest average precision (AP50) of C. sepium detec-
tion (0.761). Although the YOLOv3 obtained the high-
est mAP50 (0.832) and the maximum AP50 value of sugar 
beet (0.938), it did not show good capability in C. sepium 
detection (0.726), which is the priority and most impor-
tant consideration in SSWM.  

In terms of averaged inference time, all the trained net-
works were tested on a Linux server with an NVIDIA 
Titan X Pascal GPU (12G memory). The YOLOv3 model 
cost on average 40.75 ms to predict an 800 × 1200 image 
in test data. However, the tiny YOLOv3 and the proposed 
network performed much faster predictions, with detec-
tions in the same spatial resolution images at 6.39 ms and 
6.48  ms, respectively. This can be attributed to the use 
of a less deep network architecture, thus the number of 
parameters needed to be tuned were far fewer than the 
YOLOv3 network. Figure  6 displays the precision-recall 
curves of sugar beet and C. sepium of the proposed 

Fig. 4  Loss curve of the proposed detection network

Fig. 5  mAP50 values of the developed model in the validation 
dataset at different batch iterations
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network in the test dataset. The specific detection results 
of these three networks in 5 typical field images are pro-
vided in Fig. 7.

Synthetic images
In this study, we used 2271 images for training the mod-
els and some examples are given in Fig. 8. Table 2 displays 
the effect of adding synthetic images. It can be seen that 
the overall mAP50 metric increased from 0.751 to 0.829 
with the added synthetic images. The contributions come 
from the improvement of C. sepium detection increasing 
from 0.587 to 0.761. 

Anchor box
The default anchor box sizes in the tiny YOLOv3 model 
were [10, 14], [23, 27], [51, 34], [81, 82], [135, 169] and 
[334, 272]. We used k-means clustering to calculate the 6 
anchor box sizes based on our own training data set. The 
6 anchor box sizes used for training are [14, 20], [32, 38], 
[56, 40], [75, 90], [185, 168] and [364, 222], respectively. 
The effect of anchor box for training is given in Table 3. 
We can see that the detection results (mAP50 = 0.829) 
with the own calculated anchor box sizes are slightly 
better than the results (mAP50 = 0.823) from the default 
anchor box sizes.

Discussion
Transfer learning with adaptive learning rates was used 
to train our neural network, leading the training loss to 
sharply decrease at the beginning, before finally con-
verging at a low loss value. In terms of weight initializa-
tion, the experiment [29] has shown that initializing the 
deep learning models with pre-trained weights from 
ImageNet leads to better accuracy in many cases. When 
training a deep neural network, data is a crucial compo-
nent to reduce the risk of overfitting. We generated more 
than 2000 synthetic images for training based on con-
ventional image processing techniques. Previous stud-
ies [32, 33] have presented other approaches to generate 
images for object detection and segmentation. Moreover, 
Generative Adversarial Networks (GANs) [34], inspired 
by game theory, is also a promising deep learning based 
approach to generate synthetic images for training neu-
ral networks [35]. Open source rendering software such 
as Blender [36] could be employed to generate synthetic 
images from 3D models [37]. Back to our approach for 
synthetic images generation, several ways can be done for 
improving the quality of synthetic images. For example, 
the selected base images and object images were taken 
under same view and lighting conditions. This could 
assure that the added objects fit well in the background 
of base images.

Small object detections can be a very challenging 
problem, especially when using deep neural networks 
with pooling layers, due to the loss of spatial resolution. 
Increasing resolution of the input images is a direct way 
to alleviate that problem but it is usually constrained 
by the network architecture used and computation 
resources available. The proposed network detects 
objects at two different scales. The second scale is capa-
ble of detecting small objects because the feature maps 
are upsampled and then concatenated with the previous 
feature map, which contains fine-grained features for 
small object detections. Besides, Ren et  al. [38] adapted 
Faster-RCNN for small object detection in remote sens-
ing images. We also find that the detection results were 
improved by generating synthetic images based on con-
ventional image processing techniques.

Under field conditions, most sugar beets generally pre-
sent relatively homogeneous appearances as their seeds 
were sown at the same time. However, C. sepium can 
present significant differences in colour, size, morphol-
ogy and texture. Thus, the variations of C. sepium plants 
shown in Fig. 9 are far more than sugar beet crop. This 
is likely why all the networks in our study provide bet-
ter sugar beet detection than C. sepium. For row crops 
like sugar beet, maize and potato, inter-row weeds can 
be detected after crop line detection [7]. These detected 
inter-row weeds have the potential to be used as training 

Table 1  Detection performances of  the  different models 
in the test dataset

Italic values indicate the best values compared to others

Model Average 
inference 
time (ms)

mAP50 C. sepium 
AP50

Sugar beet 
AP50

YOLO V3 40.75 0.832 0.726 0.938

YOLO V3-tiny 6.39 0.810 0.705 0.914

Proposed 6.48 0.829 0.761 0.897

Fig. 6  Precision-recall curves of sugar beet and C. sepium (bindweed) 
in the proposed network
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samples for intra-row weed detections. Kazmi et al. [39] 
used conventional image processing algorithms and 
explored hand-crafted features with traditional machine 
learning techniques for creeping thistle weed detec-
tion in sugar beet fields. Although good accuracy was 
achieved with only using colour information, the use 

of hand-crafted features makes it difficult to guarantee 
the robustness of the developed model under chang-
ing environmental conditions and variations in plant 
development. In contrast, deep learning methods can 
extract hierarchical features and learn very complex 
functions with a large amount of data provided [12]. 

Fig. 7  Detection results comparison in the test dataset. From top to bottom, the first row is the input images. The second row is the ground truth of 
the input images, the third row is detection results from the YOLOv3, the forth row is detection results from the tiny YOLOv3 and the last row is the 
detection results from the proposed networks
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Detecting weeds under different weather conditions is 
not the main challenge when using deep learning-based 
models because of the use of data augmentation such as 
random exposure and saturation adjustments or train-
ing with a large number of images collected in different 
weather conditions. It is more difficult to accurate detect 
weeds under heavy overlapping, and variable object size 

and shape scenarios. Suh et  al. [40] discussed the clas-
sification of sugar beet and volunteer potato under field 
conditions using a VGG-19 modified neural network. 
A classification accuracy of 98.7% (inference time less 
than 0.1  s) was obtained, which exceeded previously 
reported accuracies by Nieuwenhuizen et al. [41] and Suh 
et  al. [42] with hand-crafted features and conventional 

Fig. 8  Examples of the synthetic images

Table 2  Detection results with  the  different training 
dataset

Italic values indicate the best values compared to others

Training data mAP50 C. sepium AP50 Sugar beet AP50

Original field images 0.751 0.587 0.915

Synthetic images 0.698 0.504 0.891

Original and synthetic 
images

0.829 0.761 0.897

Table 3  Detection results from  different Anchor box size 
sets

Anchor box size mAP50 C. sepium AP50 Sugar beet AP50

Default 0.823 0.756 0.890

Own calculated 0.829 0.761 0.897 Fig. 9  C. sepium representations in the field
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machine learning algorithms. However, the proposed 
approach [40] did not lead to the precise detection of vol-
unteer potato in field images because it is a classification 
task without detecting individual plants in crop fields. 
The approach used in this study is capable of detecting C. 
sepium plants of various sizes. Compared to other studies 
[8, 19, 22] that used a hood or artificial lighting for image 
acquisition, our study targets weed detection under 
uncontrolled environments. It is difficult to directly com-
pare the performance of the developed model as different 
datasets and metrics are used in different studies. To the 
best of our knowledge, this study is the first to detect C. 
sepium in sugar beet fields. Though a proper comparison 
is lacking, it seems fair to claim that deep learning-based 
C. sepium detection can be made under field conditions.

The own-calculated anchor boxes do not show 
much improvement in mAP50 metric compared to 
the default bounding boxes which can be attributed 
to relatively small differences between calculated and 
default anchor boxes and only 2 object classes in our 
case. However, it is still highly recommended to use a 
k-mean clustering approach to calculate prior anchor 
box sizes for network. It would give networks the range 
of predicted bounding boxes for most objects, leading 
to a more accurate bounding box prediction. In prac-
tice, the choice of a network depends on a trade-off 
between accuracy and inference speed. The proposed 
network achieves a good balance with speed and accu-
racy. The proposed network shows a sizeable advan-
tage in inference speed at only 6.48 ms per image. One 
of the reasons for this is the use of a shallower net-
work architecture compared to the Darknet-53 based 
YOLOv3 [26] and VGG based Single Shot MultiBox 
Detector (SSD) architectures [43]. Another reason is 
the mechanism of employing anchor boxes, which does 
not require a computationally expensive region pro-
posal step when selecting potential object candidates, 
as regional convolutional neural networks (R-CNN) 
[44] do. Although the test is performed on a desktop 
computer with an NVIDIA Titan X GPU, it is still pos-
sible to be implemented on real-time systems with a 
state-of-the-art mobile embedded device like NVIDIA 
Jetson TX [45].

The DSLR Nikon camera provides high spatial resolu-
tion raw images (4000 × 6000) for field data collection. 
In this study, the original images were resized twice to 
608 × 608 pixels before feeding into networks. In this 
aspect, it is not necessary to use a very high resolution 
and costly imaging sensor when developing a vision-
based site-specific spraying field robot with the trained 
deep neural network model. An affordable webcam is 
probably suitable for this prototype development as it 

also meets the resolution requirement and it is easy to 
use and low-cost. In this work, the synthetic images 
contain two objects (weeds or crop), which is still not 
complex enough compared to true field images, despite 
some overlapped plants images generated. More chal-
lenging synthetic images thus need to be introduced for 
training the networks in order to represent near-true 
harsh field conditions. Besides, we only investigated 
the effect of 2271 synthetic images for training net-
works without consideration of other number of syn-
thetic images due to limited number of base and object 
images. It would be helpful to compare results among 
other number of synthetic images (e.g. 3000, 4000, 
5000) to determine the optimal number of synthetic 
images for training neural networks. Barth et  al. [46] 
discussed the effects of synthetic data size for model 
performances. Furthermore, it is interesting to inves-
tigate which crop growth stages result in the optimal 
prediction results.

Our object detection results are denoted as bound-
ing box formations. The coordinate information of 
bounding boxes in the image could be used to estimate 
actuator action time in the real world when developing 
a target spray platform with a machine vision system. 
Other than field vehicle platforms for weed manage-
ment, drone-based platforms are also gaining popular-
ity for weed mapping in precision farming [7, 21]. To 
put this study into perspective, the future works will 
be done on SSWM prototype development based on 
the deep learning algorithms. Besides, pixel-wise crop/
weed segmentation based on fully convolutional net-
works (FCNs) is also worthwhile to be explored as it 
provides more precise predictions on decision bound-
ary compared to object detections with bounding 
boxes. In terms of synthetic data, other ways like using 
GANs will be explored as well in the future.

Conclusion
In this paper, we developed a pipeline to generate syn-
thetic images from collected field images. There were 
2271 synthetic images and 452 field images in total for 
training. Moreover, we designed a deep neural network 
based on the tiny YOLO architecture for C. sepium 
and sugar beet detection. We recommend calculating 
anchor box sizes based on an application-specific data-
set instead of using the default values when employing 
YOLO-based neural networks. The added synthetic 
images in the training process improved the perfor-
mance of the developed network in C. sepium detec-
tion. Comparing to other networks like YOLOv3, we 
conclude that our network achieved a better trade-off 
between speed and accuracy. Specifically, the average 
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precisions (AP50) of C. sepium and sugar beet were 
0.761, 0.897, respectively with 6.48  ms inference time 
per image (800 × 1200) on an NVIDIA Titian X GPU 
environment. The trained model could be deployed in 
a mobile platform (e.g., unmanned aerial vehicles and 
autonomous field robots) for weed detection and man-
agement. Finally, based on the speed and accuracy 
results from our network, we believe that the advance-
ment of new deep learning architecture and mobile 
computing device, together with a large amount of field 
data will significantly contribute the development of 
precision agriculture like site-specific weed manage-
ment (SSWM) in the coming years.
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