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METHODOLOGY

Computer vision and machine learning 
enabled soybean root phenotyping pipeline
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Abstract 

Background:  Root system architecture (RSA) traits are of interest for breeding selection; however, measurement of 
these traits is difficult, resource intensive, and results in large variability. The advent of computer vision and machine 
learning (ML) enabled trait extraction and measurement has renewed interest in utilizing RSA traits for genetic 
enhancement to develop more robust and resilient crop cultivars. We developed a mobile, low-cost, and high-reso-
lution root phenotyping system composed of an imaging platform with computer vision and ML based segmenta-
tion approach to establish a seamless end-to-end pipeline - from obtaining large quantities of root samples through 
image based trait processing and analysis.

Results:  This high throughput phenotyping system, which has the capacity to handle hundreds to thousands of 
plants, integrates time series image capture coupled with automated image processing that uses optical character 
recognition (OCR) to identify seedlings via barcode, followed by robust segmentation integrating convolutional auto-
encoder (CAE) method prior to feature extraction. The pipeline includes an updated and customized version of the 
Automatic Root Imaging Analysis (ARIA) root phenotyping software. Using this system, we studied diverse soybean 
accessions from a wide geographical distribution and report genetic variability for RSA traits, including root shape, 
length, number, mass, and angle.

Conclusions:  This system provides a high-throughput, cost effective, non-destructive methodology that delivers 
biologically relevant time-series data on root growth and development for phenomics, genomics, and plant breeding 
applications. This phenotyping platform is designed to quantify root traits and rank genotypes in a common environ-
ment thereby serving as a selection tool for use in plant breeding. Root phenotyping platforms and image based 
phenotyping are essential to mirror the current focus on shoot phenotyping in breeding efforts.

Keywords:  RSA, Root, Phenotyping, Phenomics, Computer vision, Machine learning, Breeding, Soybean, Time series, 
Image analysis
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Background
Over the past century, classical and technology-driven 
breeding techniques have aimed to achieve higher seed 
yield in major crops. The increase in seed yield comes 
concomitantly with a focus on improving the agronomic, 

disease protection and other perceptible traits that are 
expressed and observable above ground. Root system 
architecture (RSA), or the spatial arrangement of the root 
and its components [1], functions to provide water and 
nutrient acquisition, nutrient storage, anchorage and to 
foster plant–microbe interactions such as nodulation in 
N-fixing crops, which are relatively inconspicuous yet 
fundamental to plants’ performance and are indirectly 
selected traits in breeding programs particularly for non-
tuber or root crops [2]. Root structure also correlates to 
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environmental advantages, such as nutrient acquisition 
[1, 3], drought [4–7], flood tolerance [8], and lodging 
resistance [9].

Plant breeders have continually modified the above-
ground features of the plant as these have been the easier 
to select; however, the hidden-half of the plant warrants 
further investigation for major agronomic crops includ-
ing soybean (Glycine max L. Merr.), maize (Zea mays L.), 
wheat (Triticum aestivum L.) and rice (Oryza sativa L.) 
[5, 10]. This limitation in selecting for root phenotypes in 
soybean and other pulse, oilseed and cereal crop species 
arises from the difficulty of root trait measurement, and 
therefore the inability to study and utilize root architec-
ture, morphology, topology, distribution within the soil, 
response to environmental stimuli and growth over time 
[1, 11–14]

Root structure correlates to environmental advantages, 
such as nutrient acquisition [1, 3], drought [4–7], flood 
tolerance [8], and lodging resistance [9]. Root phenotyp-
ing and further research is hindered due to wide techno-
logical gap in our ability to collect, observe and quantify 
important root trait data which is exacerbated by trait 
genetic complexity [15–18], phenotypic expression com-
plexity [19], morphometric nature of their expression 
[20], and environmental interaction including soil struc-
ture [20], nutrient availability [3], temperature [21], water 
[22], interactions with other plants [2, 23] and microbes 
[24].

Researchers have generally taken one of three strategies 
to approach root phenotyping: including (1) controlled 
laboratory methods [18, 25, 26], (2) moderately con-
trolled greenhouse methods [27, 28] and (3) minimally 
controlled field methods [29–32]. While the complex-
ity of environment becomes more relevant to field scale 
production and physiological relevance with field meth-
ods, controlled laboratory methods are amenable to large 
scale phenotyping and throughput; therefore, researchers 
continue to explore ways to bridge the gap of lab versus 
field methods [11]. The existing major impediment is the 
high labor and time costs in the field for root trait phe-
notyping [29, 32]. This motivates our research to enable 
automation and increase throughput of root trait studies. 
The ability to study larger sample sizes will provide excit-
ing opportunities to understand the role of RSA and its 
and application in future research.

Breeding for root system architecture (RSA) traits
Root system architecture is a complex of polygenic traits 
consisting of sub-root system parameterizations such as 
root growth habit, total root length, primary root length, 
root number, root angle, root thickness, root length den-
sity (root extension and distribution), root surface area, 
and are paramount in improving plant performance 

and seed yield [2, 23]. Monocot and dicots have distinct 
morphological parameters that are used to classify their 
roots into fibrous and taproot growth types, respectively. 
Due to the difficulty associated with the measurement of 
RSA traits and the high level of morphological plasticity 
of roots in soil [33–36], breeding programs rarely utilize 
RSA traits as a method of selection [5]. Furthermore, RSA 
traits remain elusive in plant breeding selection practices 
due to the RSA plasticity caused by environmental varia-
tion, lack of cost effective field plot root extraction proto-
cols, and limited appropriate phenotyping platforms and 
tools [5, 37]. Identification of genes which control QTL 
(quantitative trait loci) for RSA has come with minimal 
success demonstrating that further genetics research is 
needed [38, 39].

Researchers have noted diversity of RSA within crop 
species such as maize [40], soybean [5, 41–44], com-
mon bean (Phaseolus vulgaris L.) [45], rice [26, 46] and 
wheat [47]. It is important to note that the North Ameri-
can soybean genepool is very narrow [48], therefore the 
expected gain from RSA traits could be high and reward-
ing, but will rely on the identification and incorporation 
of genetic diversity [49–51].

Before plant breeders can select for RSA traits, availa-
ble genetic and phenotypic diversity needs to be explored 
and characterized. Therefore, accurate and efficient 
quantification of root architecture traits and diversity as 
well as associated physiological processes, is a pertinent 
requirement for addressing breeding objectives. For-
tuitously, in the current era of phenomics and big data 
there is a continual advancement in high-throughput 
phenotyping (HTP) methods that can enhance research-
er’s ability to assess above and below ground organs and 
traits. New technological innovation in computers, sen-
sors, robotics and data analytics, including computer 
vision [52, 53], automation [54], remote sensing [55], ML 
[56] and deep learning (DL) [57] have allowed breed-
ers and researchers to capture high resolution and high 
dimensional attributes of diverse phenotypic data non-
destructively on a vast spatio-temporal scale [56, 58, 59]. 
These include primarily above ground traits [60–65] and 
to a lesser extent, root related traits [66–68]. However, 
continual efforts are needed to decipher the genetics of 
root traits to realize the genetic potential of root trait 
driven breeding. With phenomic information on both 
root and shoot traits, plant scientists will be empowered 
to deploy above and below ground phenotypes optimized 
to targeted climactic conditions and agronomic manage-
ment techniques.

Technological challenges in RSA trait phenotyping can 
be divided into two major components: (1) root extrac-
tion from soil (for review, see [69]), and (2) imaging 
and computer aided feature (trait) extraction [70]. This 
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dictates a need for advances in imaging protocols, com-
puter vision and ML for trait extraction. Conventional 
approaches for root examination include field extrac-
tions [32], soil coring [13, 71] and minirhizotrons [72], 
but advances in X-ray computed tomography [68, 73, 
74], magnetic resonance imaging (MRI) and positron 
emission tomography (PET) [21, 75], and 3D imaging 
approaches [26, 76, 77] have helped obtain higher reso-
lution root trait data. The low throughput and high cost 
often prevent integration of these approaches in large 
scale genetic material screening [11, 12, 59, 69, 78]. At 
the onset, a reduction of cost and time are imperative 
to scaling plant phenotyping methodologies and require 
standardized protocols. There is little standardization 
on physical platforms (hardware) used for image based 
root phenotyping. However, for image analytics, several 
software tools are currently available that extract data 
through analyses of high resolution digital images with 
advanced computer analysis. This non-exhaustive list 
includes: archiDART [79], ARIA [80], DART [81], DIRT 
[82], EZ-Rhizo [83], GiA Roots [84], GLO-Roots [85], 
RhizoChamber-Monitor [86], RootNav [87], RootRea-
der2D, RootSystemAnalyzer [88], RooTrak [68], Root-
Trace [89], SmartRoot [66]. These freeware such as ARIA 
(Automatic Root Image Analysis), have been developed 
to be faster and more adaptable to the alternative indus-
try standard software WinRHIZO [80]. Advances in 
computer vision and image analytics have made feature 
extraction efficient, effective, accurate, and potentially 
non-destructive. The recent software are also multi-
functional due to their ability to perform fast processing 
based on digital images, generation of information on 
various traits, with higher throughput [80].

Recent coupling of computer vision with ML has 
facilitated the generation of software tools that include 
automated learning for image preprocessing, image pro-
cessing and feature extraction that will aid to reduce 
measurement variability and remove subjectivity and 
biases. Alone, computer vision enables software to iden-
tify objects and structures within images; while ML has 
been deployed to learn and classify those objects or struc-
tures [90]. In recent root architecture studies, researchers 
trained their model to recognize and differentiate root 
tips from 2D images in an automated process [91]. Other 
studies used a random forest based approach to replace 
missing trait values in highly noisy root images [92]. Nev-
ertheless, with the strides being made in software, data 
processing, and phenotyping protocols, a methodology 
is needed that is low-cost, scalable, and robust to diverse 
phenotypes and experimentation to begin standardizing 
RSA trait acquisition.

In this paper, we describe hardware, software and 
analytical solutions for an end-to-end controlled 

environment soybean root phenotyping pipeline. The 
main objectives were to develop: (1) a low barrier to entry 
system facilitating the growth and imaging of hundreds 
of plants, (2) a computer vision program to automate 
image capture and curation, (3) image segmentation 
using heuristic and ML approaches and (4) a software 
tool to automate the extraction of a multitude of seedling 
RSA traits. The final product is an end-to-end pipeline 
with a fully automated software complete with tunable 
image thresholding and image based trait extraction. To 
summarize, the pipeline provides non-destructive evalu-
ation of a large number of soybean genotypes in con-
trolled conditions in a rapid manner at lowered cost of 
phenotyping alleviating the phenotyping bottleneck thus 
enhancing research and breeding progress related to 
RSA. We envision that this combination of phenotyping 
platform and data analytics will meet the needs of vari-
ous users regardless of technical experience.

Methods
Plant material
For this study, 292 genotypes comprising a subset of the 
USDA soybean core collection and a subset of Soybean 
Nested Association Mapping (SoyNAM) parents were 
selected and were previously genotyped [93, 94]. For the 
purpose of this manuscript, we restrict our analyses and 
results presentation to 115 maturity group II (MG 2) gen-
otypes to target the local Iowa environment for within 
maturity group comparisons. These genotypes consisted 
of a wide range in geographical origin (12 countries) and 
growth habit (determinate, semi-determinate, indetermi-
nate) along with various other morphological and seed 
quality traits to meet our requirement for a diverse set of 
lines to test during hardware and software development.

Growing protocol
Motivated by previous research, we present a hardware 
system that is affordable and simple to construct, requir-
ing few materials [95–98]. Seedlings are grown on the 
pouch-and-wick system [95] consisting of flat blue blot-
ter germination paper (Anchor Paper Co., Minneapolis, 
MN), which creates high contrast with the yellow roots 
facilitating higher quality computer based root identi-
fication and segmentation [96]. A total of 4,088 seed-
lings were grown on blue blotter germination paper, 
suspended from the rungs of the shelving platform in a 
standard 1.75  m2 growth chamber during the course of 
the experiment (Fig.  1). The seedlings were phenotyped 
at three time points leading to 12,264 images that were 
a part of the overall experiment and a basis of software 
development for image processing and feature extraction.

The standard 175 cm by 100 cm growth chamber (Con-
trolled Environments Ltd, Winnipeg, Canada) contains 
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standard metal grate shelves (1.3  cm by 35  cm slots) 
which double as a support framework for suspending 
the germination paper above a water reservoir allow-
ing for 2.5 cm of each paper unit to be submerged. The 
growth chamber could house up to 400 seedlings in 200 
slots (corresponding to 228 seedlings m2). The growth 
chambers were set at 25  °C during a 16 h day, 22  °C for 
an 8 h night. Light intensity of the growth chambers was 
measured at 300 and 350 µmol photons m−2 s−1 respec-
tively, as measured by a Li-250A light meter (Li-Cor Bio-
sciences, Lincoln, NE, USA).

Ten seedlings were germinated using a paper roll 
assay (Fig.  1a, b) [99], of which two representatives of 
healthy seedlings were chosen at 5  days after germina-
tion and transplanted to the blue blotter germination 
system (Fig.  1c) [100] minimizing the variability associ-
ated with seed source of plant introduction lines [101] 
and the effect of poor or delayed germination [95]. When 
working with such diverse soybean plant introduction 
landraces seed uniformity and viability can be a hurdle. 
Specifically germination differences within genotypes 
was often substantial as displayed in Fig.  1c. To reduce 
variability across the experiment, 14 seedlings were 
grown and phenotyped for each genotype during the 
duration of this study. The apparatus and methodology of 

the germination paper roll assay is further presented in 
Additional file 1: Video S1 [102].

A blue blotter germination paper sheet cut to 30  cm 
× 45  cm with perforations made at 2.5  cm from top of 
the page was used in the experiment. The large sized ger-
mination paper allowed for undisturbed root growth for 
up to 12 days. Each sheet of blue paper was wetted and 
subsequently folded along the perforation to place one 
selected 5-day old seedling allowing for shoot penetra-
tion through the perforation. Thereafter, a wetted brown 
germination sheet was placed on top of the blue blotter 
paper and emerging radicle to isolate and adhere to each 
root to retain moisture (Fig.  1d). The thin brown paper 
is non-porous, preventing root penetration and allow-
ing for easy removal prior to imaging. This procedure 
was repeated for the second seedling, after which the two 
seedlings of one genotype were affixed together using two 
binder clips. Each group of blue paper and brown germi-
nation paper combination housing two separated seed-
lings (hereon called, growth pouch unit) was suspended 
vertically via binder clips in slots between the labeled 
grates of the growth chamber with the lower 2.5  cm of 
blue paper submerged into water (Fig.  1e). Additional 
water was manually added to the reservoir as needed. 
Image capture began 6  days after germination, 1  day 

Fig. 1  Root phenotyping platform. a 10 seeds per genotype rolled into germination paper. b Plants germinate in growth chamber and removed 
at 5 days. c Two representative seedlings are selected from each roll for transplantation onto labeled moist blue germination paper. d Single, 
transplanted seedlings are covered with moist brown germination paper and sandwiched together creating one experimental unit. e Experimental 
units are bound with binder clips, each placed between the metal rungs of a growth chamber with the bottom 2.5 cm submerged in water. f At 
6 days, 9 days and 12 days, experimental units are individually removed, split, imaged, automatically rotated, renamed via an image processing 
algorithm and saved to the server database, and replaced into the growth chamber
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after transplanting, with consecutive images captured 
at 9  days and 12  days. The apparatus and methodology 
of the transplantation from brown to blue germination 
paper is further presented in Additional file 2: Video S2 
[103].

Imaging platform and protocol
The imaging platform consists of a utility cart, frame-
work for camera mounting, and computer connectiv-
ity for image storage and file management. The imaging 
stage was fabricated using rugged, adjustable 80/20 alu-
minum T-slot extrusion (80/20 Inc., Columbia City, 
IN) (Fig.  1f ) to provide a customizable, rigid structural 
framework including camera and light mounting to pro-
vide consistent image quality. Sensors included an 18 
megapixel Canon Rebel T5i digital SLR camera (Lens: 
EF-S 18–55 mm f/3.5–5.6 IS II) (Canon USA, Inc, Mel-
ville, NY) mounted to a gimbal tripod head affixed to a 
T-slot extrusion crossbeam 60  cm directly above the 
imaging stage with the camera’s frame set to a consist-
ent position at each imaging day. Additionally, the cam-
era was positioned at a sufficient distance to capture the 
maximum length of a root at 12  days, as identified in 
preliminary experiments. The camera was set at a con-
sistent white balance, focal length and maximum reso-
lution to ensure high image quality (100 pixels per cm). 
The USB cable connected the camera to computer allow-
ing for direct image transfer and live view of the imag-
ing stage. To provide consistent illumination, two softbox 

photography lights (with four bulbs: 70 watts, 5500  K 
CFL) (Neewer; Shenzen, China) extending out from the 
stage at a height of 90  cm from the cart top base were 
directed at the imaging stage from opposite sides. The 
imaging platform was constructed on an Uline utility cart 
(Uline, Pleasant Prairie, WI), creating a compact mobile 
imaging station. The phenotyping platform consisted of 
off-the-shelf material and the total cost (excluding cam-
eras and laptop) was less than $200. The remote capture 
software, Smart Shooter 3 [104] on a Dell Latitude E7470 
laptop (Dell, Round Rock, TX), was used for a live view 
of the stage followed by triggering the camera for image 
capture. Plastic labels were affixed to each paper which 
included a unique barcode for each plant (Fig. 2).

Images were captured remotely via laptop computer 
using software automating the image file renaming via 
the in-frame barcode and current date. Smart Shooter 
3 optimized the system’s throughput by renaming each 
image at acquisition using Object Character Recognition 
(OCR), reducing time and eliminating user input labor 
and human error [104]. Image files were directly saved to 
a cloud-based database system. An additional computer 
monitor was affixed to the platform to facilitate manual 
inspection of captured images. A list of system compo-
nents can be found in Additional file 3: Table S1.

To capture images, each growth pouch unit was 
removed individually from the growth chamber grates, 
binder clips were removed, and blue paper and seedling 
combination were separated (Additional file  4: Video 

Fig. 2  Time series growth of a single soybean plant with images taken at a 6 days, b 9 days and c 12 days after germination. Images were captured 
remotely via a laptop computer using software automating the image file renaming via the in-frame barcode. Smart Shooter 3 optimized the 
system’s throughput by renaming each image at acquisition using Object Character Recognition (OCR), reducing time and eliminating user input 
and human error. Image files were directly saved to a cloud-based database system. An additional computer monitor was affixed to the platform to 
facilitate manual inspection of captured images
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S3) [105]. Individual seedlings were placed on a 30 cm × 
50 cm blue acrylic sheet for easier handling. Brown ger-
mination paper top sheet was removed and slight user 
adjustment of some roots was required to ensure that 
the computer algorithm could detect differences between 
multiple roots converging in parallel. A thin stainless 
steel laboratory spatula was used to lift and separate two 
side-by-side growing roots with an effort to reduce the 
movement and thus morphological change of the root 
and eliminate root damage. Root images were captured 
using a fixed digital SLR camera and a laptop computer 
as seen in Additional file 4: Video S3 [105]. After imag-
ing, the growth pouch unit was reassembled and placed 
back into the growth chamber for the time series imag-
ing pipeline. Seedling RSA analysis was conducted using 
a revised version of ARIA software (Table  1) [80]. To 
image approximately 300 seedlings, 3 to 5 h were needed 
dependent on number and experience of technical staff 
and growth stage of the seedling. The handling and imag-
ing steps exposed the root to light up to 3 min.

Image processing
Our platform was constructed to allow for post-capture 
automation, eliminating the requirement of image crop-
ping and other image-preprocessing steps. An enhance-
ment over the original release, ARIA 2.0 automatically 
detects the primary root allowing automated batch pro-
cessing requiring minimal user input. In addition, ARIA 
2.0 provides heuristic, k-means and convolution neu-
ral network (CNN) based segmentation functionality. 
The color segmentation method is based on a heuris-
tic approach on the HSV (hue, saturation, value) color 
space (Additional file 5: Video S4). ARIA 2.0 provides a 
graphic user interface allowing for an optional quality 
check, manual adjustment and subsequent identification 
of problematic images. In our experience, the heuristic 
color segmentation was not successful for all images in a 
batch due to subtle differences caused by light reflection 
from infrequent over saturation of the blue germination 
paper. A ML approach was implemented to overcome 
the constraint of problematic images while providing full 
automation. The CNN based segmentation was built on 
a convolutional auto-encoder (CAE) architecture and 
implemented via MATLAB 2018b Deep Learning Tool-
box (MathWorks, Inc., Natick, MA). CAE have been 
used as a robust method to segment features of object 
from a complex and cluttered background [89, 107]. To 
train our auto-encoder, we utilized the manual color seg-
mentation method to generate a training data set. A set 
of randomly selected ~ 2450 images (20% of the dataset, 
including problematic and non-problematic images) 
across the three time points, were segmented and used 
to train the CAE (Fig.  3). The encoder segment of the 

final network architecture comprises three convolutional 
layers (32 feature maps of size 3 × 3 for each layer). In 
addition, two pooling layers of size 2 × 2 were deployed 
for downsampling the features and reducing the compu-
tational load. The Rectified Linear Unit (ReLU) function 
was used as the activation function. The learning rate was 
initialized with 0.001 using Adam optimization. Train-
ing was performed using a total of ~ 2100 samples with 
an additional 100 randomly selected validation samples, 
and testing was conducted on 250 random samples. We 
trained the model using a NVIDIA Tesla K20 installed on 
the CyEnce computing cluster at Iowa State University. 
Using a combination of binary cross entropy and Jaccard 
loss as loss function, the model was validated by fivefold 
cross-validation resulting in F1 score and IOU of 0.8824 
and 0.8725, respectively. To further validate the model, 
a subset of 298 images segmented by both the heuristic 
and CAE methods resulted in a mean correlation of 0.91 
across 23 ARIA 2.0 extracted root traits (Additional file 3: 
Table S2).

Analysis
The original release of ARIA software measures length, 
surface area, volume and was validated through corre-
lation with WinRHIZO Pro 9.0 (Regent Instruments, 
Quebec, Canada) [80]. Updated validations were con-
ducted using ImageJ (https​://image​j.nih.gov/ij/) and 
GiARoots [84] software. To assess broad sense herit-
ability, 115 soybean genotypes belonging to soybean 
maturity group II with fourteen replications (geno-
types were randomly assigned to the growth chamber) 
were grown in growth chambers and RSA traits were 
measured. Outliers that fell outside the interquartile 
range were identified for each trait for each genotype 
and were eliminated prior to calculating best linear 
unbiased predictors (BLUPs). The model used (Eq.  1) 
where yik is the response variable of the ith genotype at 
the kth block (i.e., growth chamber used), μ is the total 
mean, gi is the genetic effect of the ith genotype, bk is 
the block effect, and eik, is a random error following 
N(0, σ2

e). All factors were considered random effects. 
Broad sense heritability was calculated on an entry-
mean basis using Eq.  2, where σ2

g is the genotypic 
variance, n is the number of replications = 14. Tukey’s 
Honest Significance Difference (HSD) groupings were 
calculated from the experimental data (alpha = 0.05, 
rep = 14 per genotype) where q = the relevant critical 
value of the studentized range statistic and n* is the 
number of scores used in calculating the group means 
of interest using the HSD.test function of the agrico-
lae package in R (Eq.  3). Genetic coefficient of varia-
tion (CVG) for each trait was calculated using Eq.  4. 
Pearson’s correlation coefficients between traits were 

https://imagej.nih.gov/ij/
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calculated using the ‘stats’ package in R. A Kolmogo-
rov–Smirnov test, a nonparametric test of continuous 
probability distributions, was used to test statistical 
differences in directionality on root branching angle at 
each of the three time points after germination.

(1)yik = u+ gi + bk + eik

(2)H2 =
σ
2
g

σ
2
g + σ

2
e
n

Table 1  Root system architecture (RSA) traits captured by ARIA 2.0 software

Trait name Symbol Unit Trait description

Total root length TRL cm Cumulative length of all the roots in centimeters

Primary root length PRL cm Length of the Primary root in centimeters

Lateral root length LRL cm Cumulative length of all lateral roots in centimeters

Mean lateral root length MSL cm Mean length of all lateral roots in centimeters

TRLUpper TRLUpper cm Total root length of the upper one third

TRLLower TRLLower cm Total root length of the lower two third

Perimeter PER cm Total number of network pixels connected to a background pixel

Depth DEP cm The maximum vertical distance reached by the root system

Width WID cm The maximum horizontal width of the whole RSA

Diameter DIA cm Diameter of the primary root

Lateral root branches LRB Count Number of lateral root branches

Nodes of lateral roots NLR Count Number of nodes of lateral roots

Independent root branches IRB Count Number of independent lateral root branches

Lateral root tip RTA​ Count Number of lateral root tips

Median MED Count The median number of roots at all Y-location

MaximumR MAX Count The maximum number of roots at all Y-location

Maximum number of roots MNR Count The 84th percentile value of the sum of every row

Network area NWA Count The number of pixels that are connected in the skeletonized image

Convex area CVA cm2 The area of the convex hull that encloses the entire root image

RhizoArea RHZO cm2 Length of 2 mm surrounding the TRL

TRArea TRArea cm2 Area of the RSA as observed in the 2D projected view

Primary root surface area PRA cm2 Surface area of the primary root

TRAUpper TRAUpper cm2 Total root area of the upper one third

TRALower TRALower cm2 Total root area of the lower two third

Volume VOL cm3 Volume of the primary root

Lateral root branching angle LBA Angle Lateral root branching angle near the primary root node

Lateral root angles LRA Angle Root angles along the extent of all lateral roots

Lateral root tip angle RTA​ Angle Root angle at lateral root tips

Width/depth ratio WDR Ratio The ratio of the maximum width to depth

Solidity SOL Ratio The fraction equal to the network area divided by the convex area

Bushiness BSH Ratio The ratio of the maximum to the median number of roots

Length distribution LED Ratio TRLUpper/TRLower

LRL by PRL LSLPL Ratio Number of the Lateral root per unit length of the Primary root

Center of mass COM Ratio Center of gravity of the root/Depth

Center of point COP Ratio Absolute center of the root regardless of root length/Depth

Center of mass (Top) CMT Ratio Center of gravity of the top 1/3 of the root (Top)/Depth

Center of mass (Mid) CMM Ratio Center of gravity of the middle 1/3 root (Middle)/Depth

Center of mass (Bottom) CMB Ratio Center of gravity of the bottom 1/3 root (Bottom)/Depth

Center of point (Top) CPT Ratio Absolute center of the root regardless of root length (Top)/Depth

Center of point (Mid) CPM Ratio Absolute center of the root regardless of length (Middle)/Depth

Center of point (Bottom) CPB Ratio Absolute center of the root regardless of root length (Bottom)/Depth
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Calculating lateral root branch count and measurement 
of root angles
RSA traits added to ARIA 2.0 include automated selec-
tion of the taproot, completely eliminating user-input, 
root measurement of root angles and lateral root 
branch count, which has been suggested as an impor-
tant topological trait [1, 106]. Root branch counts were 

(3)

Tukey’s Honest Significant Difference = q

√

MSE

n∗

(4)CVG =
√
VG

X

conducted using three different methods including: (1) 
lateral root branch count (LRB), nodes of lateral roots 
(NLR), and independent lateral root branches (IRB) 
(Fig.  4a–c) to determine the most informative and 
accurate way to study this trait. Lateral root branch 
count (LRB) was determined by first taking the skele-
tonized root in which the primary root is first removed. 
A sliding window with a five pixel width was moved 
across the root. The maximum number of individual 
root segments from each group (left or right of the pri-
mary root) were recorded. Nodes of lateral roots (NLR) 
were identified on the root skeleton using pixels that 
have more than two neighboring pixels (network analy-
sis). The original black and white image is then dilated 
by 10 pixels, false or spurious branch points were 

Encoding Layers Decoding Layers

128×128256×256
64×64 128×128 256×256Convolution Convolution Convolution ConvolutionConvolution

Pooling Pooling Un-Pooling Un-Pooling

Original Image Original Label

3088×4623 3088×4623

256×256 256×256

Fig. 3  Convolutional Auto-Encoder with 32 feature maps of size 3 × 3 for each layer with two pooling layers of size 2 × 2 that were deployed for 
downsampling

Fig. 4  Lateral root branch count measured using three different methods a lateral root branch count (LRB), b count of nodes of lateral roots (NLR), 
and c independent lateral root branch count (IRB). The LRB method showed better correlation to ground truth data (R2 = 0.88 (LRB), R2 = 0.79 (NLR) 
and R2 = 0.76 (IRB))
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identified and removed. The number of branch points 
after removing the false points was outputted.

Three algorithms of root branching angle were auto-
matically quantified: (1) the lateral root branching angle 
(LBA), (2) lateral root angle (LRA), and (3) lateral root tip 
angle (RTA). The spatial distribution of the angles were 
shown with normalized vertical (soil) depth. The depth 
was normalized with the total root length. Measurement 
of root angles were generated within a 100 × 100 pixel 
window using a Fourier transform (to reduce noise), then 
a Hough transform algorithm was used to measure the 
angle of each segment (Fig.  5). The mean angle of each 
segment was placed into one of 45 bins of 2° increments 
from 0° to 90° (0° being vertical). For each algorithm, the 
lateral root angle of the highest frequency within each 
100 × 100 pixel window was reported. ARIA 2.0 data 
output consisted of a tally of root segments for each algo-
rithm allowing for simple visualization.

Root shape classification
Two approaches were taken to extract root profiles from 
segmented root images, (1) mean boundary distance and 
(2) convex hull boundary. This dimension reduction pro-
cesses distills images into simple numbers to allow for 
further phenotyping based applications. Fourier coeffi-
cients at multiple harmonics from 1 to 100 (Additional 
file 6: Figure S1) were used to create root shape profiles 
enabling the user to select which profile was most appro-
priate [107].

Biomass weights
Shoot and root biomass weight was collected from plants 
at 12 days after being dried at 70 °C for 48 h. For each gen-
otype, 100-seed weight (g) was recorded from the seed 
sources used for these experiments, and was obtained by 
counting random 100 seed for each genotype.

Clustering algorithms (PCA and LDA)
Principal components analysis (PCA) and linear discri-
minant analysis (LDA) were used to visualize possible 
clusters of genotypes that form based on RSA traits. Lin-
ear discriminant analysis (LDA) finds a linear combina-
tion of RSA traits (explanatory variables) to discriminate 
between genotypes, the response variable. Principal com-
ponents analysis (PCA) and LDA were performed using 
JMP ver. 13.1 (SAS Institute).

Results
The end-to-end phenotyping pipeline consisted of the 
following main components: (1) a simple phenotyp-
ing platform capable of growing hundreds of plants, (2) 
automated image processing and curation system, (3) 
high fidelity image segmentation using both heuristic and 
ML approaches, and (4) root trait extraction software 
workflow and demonstrated through data analysis of 115 
diverse soybean breeding lines. Using this pipeline 12,264 
images were generated from 4088 plants. The image 
acquisition and processing rate varied depending on the 
number of technical persons available. This platform was 
used in single or multiple user modes, from individuals to 

Fig. 5  Three methods to identify lateral root angle including a lateral root branching angle (LBA), b lateral root angle along the entirety of each 
branch (LRA), and c lateral root tip angle (RTA)
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teams of four, providing flexibility in time and labor man-
agement. Duration of image capture for 292 roots ranged 
from 3 to 5 h with throughput increased with younger 
roots and experienced technical staff. We present the 
capabilities of this root trait phenotyping pipeline to 
investigate the RSA diversity using test case samples con-
sisting of diverse soybean genotypes from MG 2 using 
the heuristic segmentation approach and more in-depth 
study of three genotypes (PI 417,138, PI 643,146, PI 
479718B) using the CAE segmentation approach for vari-
ous RSA traits and visualize results for this diversity for 
the main traits (Fig. 6).

We evaluated the relationship between root traits and 
genotype descriptors including country of origin, stem 
termination and genetic diversity (Additional file  3: 
Table  S3). A PCA plot was created using the genomic 
SNP data to further explore the associations between the 
continuous root trait data and discrete metadata (Addi-
tional file 6: Figure S2). Genotype was a significant source 
of variation for each trait (Additional file  3: Table  S4). 
Heritability estimates increased concurrently with addi-
tional replicates and were highest for root and shoot dry 
weights (0.99) (Additional file 6: Figure S3).

Validation of measurements
We reevaluated the updated ARIA framework by con-
ducting manual benchmark validation. The fidelity of the 
measured traits depends on the accurate count of the pix-
els on the images, which was validated through primary 
root length measurements reported by ARIA 2.0 and 
confirmed manually with ImageJ software (R2 = 0.999) 
(Additional file  6: Figure S4). Furthermore, there was 
high correlation between traits extracted from a set of 
300 heuristically segmented root images using GiARoots 
[84] software and ARIA 2.0 ranging between R2 = 0.659 
(BSH) to R2 = 0.998 (CVA) with a mean of R2 = 0.916 
(Additional file 3: Table S5).

ARIA 2.0 software was used to compare three meth-
ods of counting lateral root branches. The LRB method 
showed better correlation to ground truth data (R2 = 0.88 
(LRB), R2 = 0.79 (NLR) and R2 = 0.76 (IRB)). Correlation 
between ImageJ manually extracted angles and ARIA 
2.0 measurement of root tip angles was conducted to 
validate our approach after outliers were removed with 
a R2 = 0.9025 (Additional file 6: Figure S5). Minimal root 
angle diversity was noted among the three genotypes 
(Additional file  6: Figure S6). A Kolmogorov–Smirnov 
test was used to detect statistical differences in direction-
ality on root branching angle at each of the three time 
points. When comparing between genotypes, significant 
differences (p < 0.05) were seen at 6 days between geno-
types A and B and genotypes A and C (Additional file 3: 
Table S6).

Using root images segmented with the CAE approach, 
three genotypes PI 417,138 (genotype A), PI 643,146 
(genotype B), PI 479718B (genotype C)) were further 
assessed. These three genotypes displayed diversity in 
several biologically relevant RSA traits (TRL, PRL, LRB, 
WID, TRArea, and LED (length distribution)) (Addi-
tional file  6: Figure S7). Genotype A was distinct from 
B and C for each of the six traits except for LED (a root 
trait based on a ratio of TRLUpper/TRLLower) it did not 
differ from genotype B and 9 days and 12 days (Table 2). 
Genotypes B and C differed from each other at 6 days for 
LED, at 9 days for all six traits, and at 12 days for TRL, 
WID, TRArea and LED. Shoot dry weight and root dry 
weight BLUPs were highly correlated (R = 0.86; geno-
types = 115). The majority of RSA traits had significant 
correlation with both shoot and root dry weight (Addi-
tional file 3: Table S7).

Root shape classification
Root profiles were extracted from images and using Fou-
rier coefficients were expanded into a shape spectrum. 
Figure  7a displays pseudo-outline (i.e., mean boundary) 
of normalized values from three genotypes to highlight 
root shape variation. A similar approach was taken using 
convex hull area (CVArea) as an input (Fig.  7b). Mean 
boundary and convex hull boundary analyses identified 
interesting divergences in root shape between genotypes. 
PCA and LDA were used to evaluate the contributions 
of RSA traits between genotypes at multiple growth 
stages using the output of ARIA 2.0 at 6 days, 9 days, and 
12 days. LDA revealed distinct clustering patterns, where 
observations of three genotypes at three separate time 
points after germination created nine groupings (Addi-
tional file  6: Figure S8a). The PCA based on root shape 
defining traits at 9  days and 12  days creates three clus-
ters while the results at 6 days are not as definitive (Addi-
tional file 6: Figure S8b).

Discussion
In this paper, we describe end-to-end hardware and 
software solutions for a soybean root phenotyping pipe-
line (Fig. 8). This phenotyping platform provides a non-
destructive evaluation pipeline with high repeatability, 
ease of use and scalability, capacity for hundreds geno-
types in a short period of time at a lowered cost and a 
level of automation that will meet the needs of plant 
breeding. The seedling growth apparatus requires mini-
mal supplies, expense, and experience to set up. ARIA 
2.0 graphic based user interface is simple, straight-for-
ward and builds on previous work [80]. Improvements 
to ARIA include additional functionality including more 
RSA traits, including root shape and multiple segmen-
tation approaches. Despite the original release of ARIA 
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Fig. 6  a Heuristic (i) and CAE (ii) based segmented root images of genotype A (blue), B (red) and C (green) at 6 (top), 9 (center) and 12 (bottom) 
days after germination. b Boxplot of displaying RSA traits of genotypes A (PI 417,138; blue), B (PI 643,146; red) and C (PI 479718B; green). TRL, PRL, 
LRB, WID, TRArea and LED were automatically calculated from the CAE segmented images by ARIA 2.0 (n = 14)
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being an alternative option to established programs 
such as WinRHIZO Pro 9.0, the application was limited 
to binary images and batch processed root images in a 
semi-automatic manner requiring user-input to identify 
the taproot. ARIA 2.0 was developed to address deficien-
cies and build additional functionality, customization and 
automation. The high-throughput root imaging system 
and fully autonomous batch processing of thousands of 
images with ARIA 2.0 allow for an automated imaging 
pipeline. In an effort to capture the essence of a root, we 
integrated a holistic approach which identified root shape 
as a trait in the phenotyping framework using Fourier 
transformations. We created a color segmentation pack-
age that is user-customizable for specific applications. 
The outcome served as a training set which fed into our 
ML segmentation application, reducing time through 
automated handling of problematic images. ARIA 2.0 
software is an open-source application with simple instal-
lation, requiring no other software to operate. Multiple 
methods of root branching angle and counts were added 
to the original software’s extracted root traits. The low 
barrier (cost and technical expertise) to entry and rapid 
image capture and data processing time make this pheno-
typing platform suitable for large scans of diverse genetic 
material, genetic mapping studies, RSA trait studies and 
selection strategies in breeding.

Low‑cost imaging platform
As research in roots has expanded, technologies such 
as high resolution digital cameras and computational 
power have increased along with specialized technicians. 
While we limit the presentation of blue paper for imaging 

background, our preliminary studies were done using 
gellan gum, hydroponics and brown paper cigar rolls 
(data not presented). Pouch-and-wick systems using blue 
germination paper have been routinely used to analyze 
and record root growth in previous studies [25, 95–98]. 
The correlation to root growth between different systems 
or media such as germination paper, hydroponic or gel-
lan-gum and soil suggests there are differences that affect 
the growth of the roots; however, since all genotypes in 
this study were tested under the same system we were 
able to make comparisons between genotypes. The blue 
germination paper approach was deemed most suitable 
as it allowed simultaneous growing and imaging of hun-
dreds of plants nondestructively in a time series manner 
with a minimal person-hour requirement. For soybean, at 
12 days post germination, the taproot of a limited num-
ber of genotypes outgrew the blue paper system; longer 
lengths of paper can be used if the intent is to perform 
post 12 day imaging.

The imaging platform’s efficiency was reduced by root 
convergence as previously identified by Dupuy et al. [97]. 
Slight user adjustment of some roots was required to 
ensure that the computer vision algorithm could detect 
differences between multiple roots converging in paral-
lel. Our preliminary studies concluded that convergence 
was inconsistent between root and genotypes and could 
reduce TRL up to 18% (data not shown) due to the soft-
ware’s inability to identify individual roots out of a mass. 
Therefore, our protocol was developed with minimal 
manual adjustment to reduce convergence. Removal of 
the technician adjustment would decrease the duration 
of image acquisition. Further experiments are needed to 

Table 2  RSA trait mean values obtained from CAE segemented images, Tukey’s Honest Significant Difference (HSD) test 
groupings and  growth rate day−1 for  genotypes A, B and  C for TRL (total root length), PRL (primary root length), LRB 
(lateral root branching count), WID (root width), Area (total root area) and  LED (length distribution, total root length 
of the upper 1/3 of the root image divided by the total root length in the lower 2/3 of the root image

Day TRL (cm) PRL (cm) LRB WID (cm) TRArea (cm2) LED

6 9 12 6 9 12 6 9 12 6 9 12 6 9 12 6 9 12

Genotype A

 BLUP 33.5 121 184.9 16.9 32.1 42.7 18.7 51.4 84.4 3.4 10 13.8 3.1 9.3 14.6 1.1 2.0 2.1

 HSD grouping b c c b c b c c b b c c b c c c b b

 Growth day−1 29.2 21.3 5.1 3.5 10.9 11.0 2.2 1.3 2.1 1.8 0.3 0.0

Genotype B

 BLUP 67.2 216.2 342.9 21.3 36.2 48.1 33.5 71.5 121.3 6.5 16.8 22.3 6.5 19.5 27.6 1.9 2.5 2.2

 HSD grouping a b b a b a b b a a b b a b b b b b

 Growth day−1 49.7 42.2 5.0 4.0 12.7 16.6 3.4 1.8 4.3 2.7 0.2 ‒ 0.1

Genotype C

 BLUP 76.1 255.2 393.3 21.5 37.2 47.6 39.1 75.8 103.8 5.9 18.3 25 6.8 23.6 36 2.1 3.4 3.1

 HSD grouping a a a a a a a a a a a a a a a a a a

 Growth day−1 59.7 46.0 5.2 3.5 12.2 9.3 4.1 2.2 5.6 4.1 0.4 ‒ 0.1
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Fig. 7  a Mean boundary based on five harmonic Fourier descriptors of genotypes A (PI 417,138) (left), B (PI 643,146) (middle), and C (PI 479718B) 
(right) at 6 days (green), 9 days (black), 12 days (red). b Convex hull boundary of root shape developed from Fourier analysis (five harmonic 
descriptors) of the three genotypes at 6 days (green), 9 days (black), 12 days (red) (n = 14)

Fig. 8  Proposed root phenotyping pipeline. a Root phenotyping platform. a Image stage fabricated from aluminum, softbox lights, Canon T5i, 
laptop computer and, LCD monitor to evaluate images quality and image database. b Software scans and renames image automatically using 
barcode. c CNN framework identifies and segments root from background. d ARIA 2.0 extracts RSA traits from root images. e Data analytics 
(genomic selection, GWAS) are performed
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solve the issue of convergence without adding a root pro-
cessing step.

While our system shows promise for a time-series root 
trait data collection, continual work is needed to expand 
the ability to phenotype large number of genotypes in 
a wider time-series manner and also establishing con-
trolled environment and field grown trait relationship.

ML based image preprocessing and image analysis
Plant phenotyping can vary in number of experimental 
treatments and genotypes and thus degrees of complex-
ity [108]. While alternate root image analysis software 
tools exist, our platform implements additional RSA 
traits alongside automated machine learning segmen-
tation to make it feasible for use with large data sets. In 
a step towards full automation from image acquisition 
through analysis, user input is minimized, removing the 
interaction between the user and individual root images 
(such as determining anchor points with ARIA (original 
release) [80] or SmartRoot [66]). The system is capable 
of scaling to both large root systems and large quanti-
ties of root systems. Alternative software, such as Root 
System Analyzer, are capable of using image sequences 
to track growth. However, even the fully automated sys-
tem requires substantial user intervention (data not 
presented) and is more amenable for smaller datasets. 
Traditional image segmentation methods are not gener-
alizable, as users’ needs to trial and error to identify the 
best segmentation model and model input parameter 
(heuristically). More importantly, it is our experience 
that while some (traditional) segmentation models work 
on a good fraction of images, no segmentation model 
works on (nearly) all the images. The end-user then has 
to either make a sub-optimal choice or perform exhaus-
tive quality control. This is where ML approaches like the 
CAE model become attractive. With a small amount of 
annotated data, they can be specifically trained for a spe-
cialized application with minimal subsequent user input. 
We present the end-to-end pipeline we included both 
hardware and software advances for root trait imaging 
and analytics without exclusively focusing on ARIA 2.0 
improvement. ML has become a critical tool to improve 
analysis and quantification of data in plant phenomics 
[56]. Until recently, the use of ML in root phenomics has 
been limited to root tip identification [91, 109] and data 
prediction [92]. Using a CAE for image preprocessing, is 
a new approach in root phenomics, and overcomes cur-
rent challenges in image preprocessing.

RSA trait measurements
The ideal root architecture is dependent on breeding 
objectives as desired architecture may be determined 
by crop, environment, fertility, and water availability 

however are often not well described [1]. Using computer 
vision tools, the creation and collection of RSA traits is 
nearly endless. What is important however, is to collect 
biologically relevant traits. The system described in this 
paper delivers as much information to the user as pos-
sible so that the user can then determine the biologi-
cal usefulness of each trait as per the objectives of their 
studies.

ARIA 2.0 software was used to compare three 
improved methods of counting first-order lateral root 
branches, which were validated using manual assess-
ments of 68 random plants from the three time points 
(6 days, 9 days, and 12 days). Automated identification of 
second-order lateral roots could be an addition of future 
versions of ARIA. Lateral root branch number (LRB) 
had the strongest correlation to the ground truth results. 
NLR and IRB often overestimated the number of roots 
compared to manual counts likely due to the misidenti-
fication of pixel spurs. Misidentification of pixels spurs, 
an erroneous grouping of pixels on the boundary of the 
blue paper which is a product of the segmentation pro-
cess, as roots resulted in false positives. Multiple roots 
growing together in parallel were liable to be counted as 
one, as color-based image segmentation was unable to 
isolate individual roots. One particular improvement to 
ARIA is the measurement of root angles, with respect 
to the direction of gravity, taken in three locations, near 
the primary root, at the root tip and throughout the root 
system as a whole. Previous studies have shown that root 
angle in rice [39, 110], chickpea (Cicer arietinum L.) [111] 
and sorghum (Sorghum bicolor L.) [112] is correlated 
to drought tolerance and root depth. The correlation 
between root angle and drought tolerance was identified 
in rhizotrons [85] because water-deficient Arabidopsis 
roots grow at a steeper angle than well-watered roots [85, 
113, 114]. Aside from root count, primary root volume 
and surface area can also be found in ARIA 2.0. Thick 
roots have been shown to penetrate deeper through soil-
layers [115, 116]. Thin, fibrous roots have shown plas-
ticity in response to drought. Large, thick roots act as a 
conduit pipe and serve a purpose in anchorage however, 
it is the fine secondary and tertiary roots that make up 
the vast network of absorbing area. Plants that opti-
mize root absorption area while minimizing biological 
cost are desirable [36]. The aforementioned traits can 
be identified using the ARIA 2.0 seedling phenotyping 
pipeline, demonstrating the relevance of ML and com-
puter vision based software for the study of RSA traits. 
Furthermore, the presented approach can also be useful 
in learning or describing new traits, and studies on the 
growth and development in a time-series manner. Unlike 
above ground traits, at this time root systems do not have 
a well characterized growth or stages. An understanding 
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of stages and processes is integral to translating root 
development into mathematical growth models, which 
can help develop more efficient plants. Compelling visual 
differences for root shape were uncovered, exhibited by 
heuristically segmented root images of LG05-4832 and 
PI 594457A in Fig. 9. Aided by Fourier descriptors, soy-
bean canopy shapes have been previously described [107, 
117]. Using a similar approach, we observed that these 
methods were sufficient to draw root outlines. This sys-
tem was designed to maximize data acquisition and to 
reduce environmental differences with minimal errors. 
Therefore, this pipeline was effective in root trait stud-
ies to identify most diverse genotypes from a germplasm 
set; however further improvements are needed to enable 
complex organism interaction studies and field grown 
genotype roots sample assessments. For example, the 
image based root phenotyping methods still need addi-
tional technological refinement and advancement to inte-
grate microorganism-root interaction phenotyping and 
studies [11, 12, 118, 119].

Controlled environment studies bring advantages of 
scale and data noise reduction along with cost efficiency 
gains. Since selection of root traits in row crops is one 
of the major challenge for breeding programs, we envi-
sion a two-step approach: (1) using a germplasm and 
pre-breeding step in controlled environment screening 
of root traits similar to this study and previous studies 
[25, 81, 96, 98] to assemble a smaller collection of acces-
sions or experimental lines for further testing, and (2) 
field screening for root traits through direct and indirect 
selection. Since, for most row crop breeding programs, 

the ultimate goal is increase seed yield, indirect selection 
for yield traits will need identification of root traits with 
high heritability and high genetic correlation between 
root traits and seed yield. While advances in phenotyp-
ing and data analytics of above ground traits is gaining 
exponentially, similar advances in root traits are lacking 
due to complexity of phenotyping organs below ground 
and a spatio-temporal scale. Therefore, studies that 
build on expanding the inference scope of root trait are 
needed with connectivity with yield performance. While 
our system shows promise for a time-series root trait 
data collection, continual work is needed to expand the 
ability phenotype large number of genotypes in a wider 
time-series manner and also establishing controlled envi-
ronment and field grown trait relationship. The novelty 
of our work is developing an end-to-end phenotyping 
system, and integration of ML based batch image pre-
processing and root trait feature extraction. We envision 
that approach (1) will help in determining the genetic 
variation for root traits and thereby influencing selec-
tion differential factor of response to selection. This work 
provides insights on root trait diversity from a large col-
lection of the USDA germplasm bank, and one of the 
largest such report on soybean root studies.

Conclusions
This report describes innovation through the develop-
ment of an affordable end-to-end phenotyping system of 
hundreds of plants, and integration of ML based batch 
image pre-processing and root trait feature extraction. 
We have developed a phenotyping pipeline that integrates 

Fig. 9  Root shape profiles based on elliptical Fourier transformation (EFT). Example genotypes of a LG05-4832, b EFT derived root outline of 
LG05-4832 (n = 14), c PI 594457A and, d EFT derived root outline of PI 594457A (n = 14) at 9 days
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image capture, image processing and image analysis of 
growing plant roots in controlled conditions providing a 
high-throughput, cost effective platform yielding biologi-
cally relevant time-series data on root growth and devel-
opment. The outcome of hardware and software solutions 
provided a high quantity, cost-effective, efficient, repeat-
able seedling root phenotyping platform incorporating 
time series growth capture, and a computer vision based 
ARIA 2.0 integrated with ML based image preprocessing 
step. Additionally, we demonstrated the potential of the 
pipeline to capture RSA trait diversity on three selected 
soybean genotypes, which can be expanded to larger gen-
otype set. HTP methods together with phenomics and 
data analytics [120] will give researchers the tools needed 
to decipher the genetics of RSA trait expression to real-
ize the potential of root driven breeding. Further work 
is needed to develop methods for 3D reconstruction, as 
well as methodologies to link and reduce the gap between 
controlled and field experiment root studies. We envi-
sion that approach (1) will help in determining the genetic 
variation for root traits and thereby influencing selection 
differential factor of response to selection and prescriptive 
plant breeding [121] .
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org/10.1186/s1300​7-019-0550-5.
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Additional file 5: Video S4. Color segmentation method of root images 
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Additional file 6: Figure S1. Root shape profiles derived from elliptical 
Fourier transformations (EFT) at multiple harmonics (n = 2 to n = 20). 
Figure S2. PCA plots based on genomic SNP data to further explore 
the associations between (a) country of origin, (b) growth habit, and (c) 
genetic diversity (elite, diverse, landrace). Figure S3. Six RSA traits display-
ing the increase in broad-sense heritability (H2) with each replicate tested 
(n=14). Figure S4. Validation of primary root length (PRL) using Smart-
Root in ImageJ.  Figure S5. Correlation between manual and ARIA 2.0 
root angles. Correlation resulted in an R2 value of 0.9025. Any root angles 
calculated by ARIA 2.0 as being less than 10 degrees were considered 

as being outliers due to a result of very small root segments. Figure S6. 
Root angles of genotype A (PI 417138; blue), B (PI 643146; red) and C (PI 
479718B; green) at 6d (left), 9d (center) and 12d (right) generated from 
heuristically segmented images. The top row relates to LBA; middle row, 
LRA; and bottom row is RTA (all expressed as a percentage of total). 0° 
is the direction of the gravity vector. Figure S7. Overall phenotypic dif-
ferentiation of three example soybean genotypes: A (PI 417138; blue), B 
(PI 643146; red) and C (PI 479718B; green) for TRL (total root length), PRL 
(primary root length), WID (root width), convex area (CVA) LRB (lateral root 
branching count), VOL (primary root volume), LRA (lateral root branching 
angle, LED (length distribution, total root length of the upper 1/3 of the 
root image divided by the total root length in the lower 2/3 of the root 
image), RHZO (rhizosphere area), WDR (width to depth ratio), Root_weight 
(dry root weight at 12 days after germination), Shoot_weight (dry shoot 
weight at 12 days after germination). For every trait each datum is reflec-
tive of one root image (therefore there are 14 data points per genotype). 
The data lines reflect the mean of the data points for respective genotype. 
Heuristically segmented images were used in this analysis. Figure S8. 
Dimension reduction analysis. (a) Linear discriminant analysis works as a 
dimensionality reduction algorithm, is shown using 38 RSA traits to cluster 
genotype A (PI 417138; blue), B (PI 643146; red) and C (PI 479718B; green) 
at 6 (triangle), 9 (plus) and 12 (diamond) after germination (n=14). (b) 
Principal components analysis of the three genotypes at 6, 9 and 12 days 
after germination. The shaded area enclose 90% of each genotype’s data 
points (n=14; generated from heuristic segmented images).
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