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Abstract 

Background:  Almond is an emerging crop due to the health benefits of almond consumption including nutritional, 
anti-inflammatory, and hypocholesterolaemia properties. Traditional almond producers were concentrated in Califor‑
nia, Australia, and Mediterranean countries. However, almond is currently present in more than 50 countries due to 
breeding programs have modernized almond orchards by developing new varieties with improved traits related to 
late flowering (to reduce the risk of damage caused by late frosts) and tree architecture. Almond tree architecture and 
flowering are acquired and evaluated through intensive field labour for breeders. Flowering detection has traditionally 
been a very challenging objective. To our knowledge, there is no published information about monitoring of the tree 
flowering dynamics of a crop at the field scale by using color information from photogrammetric 3D point clouds and 
OBIA. As an alternative, a procedure based on the generation of colored photogrammetric point clouds using a low 
cost (RGB) camera on-board an unmanned aerial vehicle (UAV), and an semi-automatic object based image analysis 
(OBIA) algorithm was created for monitoring the flower density and flowering period of every almond tree in the 
framework of two almond phenotypic trials with different planting dates.

Results:  Our method was useful for detecting the phenotypic variability of every almond variety by mapping and 
quantifying every tree height and volume as well as the flowering dynamics and flower density. There was a high level 
of agreement among the tree height, flower density, and blooming calendar derived from our procedure on both 
fields with the ones created from on-ground measured data. Some of the almond varieties showed a significant linear 
fit between its crown volume and their yield.

Conclusions:  Our findings could help breeders and researchers to reduce the gap between phenomics and genom‑
ics by generating accurate almond tree information in an efficient, non-destructive, and inexpensive way. The method 
described is also useful for data mining to select the most promising accessions, making it possible to assess specific 
multi-criteria ranking varieties, which are one of the main tools for breeders.

Keywords:  Low-cost camera, Volume and 3D mapping, Colored point clouds, Object-based image analysis (OBIA), 
Remote sensing, Woody crop
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Background
Almond (Prunus dulcis (Mill.) D.A. Webb) is an emerg-
ing and valuable crop due to the health benefits of 
almond consumption, including nutritional, anti-inflam-
matory, and hypo-cholesterolemia properties [1], and to 
the wide range of applications of almond by-products, 
e.g., almond shells are burned as fuel, and almond hulls 
are used as livestock feed [2], which increases almond’s 
potential profitability. Almond producers were tradition-
ally concentrated in California, Australia, and Mediter-
ranean countries; however, almond is currently grown in 
more than 50 countries. Together with its health prop-
erties, other explanations for the expansion of almond 
growth are the favorable market conditions given by 
good almond prices and fruit deficiency in Europe (https​
://faost​at.fao.org), and the necessity of increasing the sus-
tainability and diversification of agricultural production 
in many areas of the world. An example of the last point 
is the Mediterranean Basin, where the olive monoculture 
can be complemented by almond [3]. In fact, almond is 
a useful alternative crop because its agricultural machin-
ery can be shared by both kinds of orchards, since their 
harvest and cultural practices are carried out on differ-
ent dates (olive is harvested in winter and almond in late 
summer).

Different almond tree ages and sizes can affect the yield 
of every cultivar in high-yielding breeding programs [4], 
and temperatures below ‒ 1  °C recorded in late frosts 
can cause cold damage during almond tree flowering 
and early fruit development [5]. For these reasons, the 
characterization of almond tree architecture and also of 
an appropriate flowering time are critical for breeders 
to develop new varieties adapted to cooler climates to 
achieve a stable and long-lasting high yield. Monitoring 
of flowering time is also one of the most important agro-
nomic tasks in almond breeding, because in order to use 
cultivars for cross-pollination to achieve successful polli-
nation, the flowering times of two varieties must coincide 
[6]. Consequently, a main objective for almond breeders 
has been to develop new genotypes with improved desir-
able traits related to tree architecture and high yield, 
which is directly related to reproduction and late flower-
ing, thereby avoiding late frosts that negatively affect pro-
duction in early flowering cultivars [7]. The main interest 
for breeders is based on the following:

	(i)	 Tree architecture: Describes the tree form by defin-
ing the spatial organization of different tree struc-
tural components [8]. Tree geometry can influ-
ence the behavior of almond varieties by affecting 
the fruit-bearing habit, tree size and form, or light 
penetration and capture by the canopy [9]. The 
growth pattern and size of an almond variety are 

also important because of their influences on cul-
tural techniques such as tree spacing, training, and 
pruning systems and their consequent effects on 
production level as well as crop production costs 
[10].

	(ii)	 Traits related to reproduction: The aim is to ensure 
a high and stable yield. This is an important fea-
ture of varieties in the evaluation of the productive 
potential and its value as a commercial cultivar [7].

	(iii)	 Flowering: As stated before, late blooming is a pri-
mary objective in almond breeding programs. Late 
flowering varieties are less likely to be affected by 
frost during flowering, which causes premature 
crop loss or decrease [11]. The creation of late and 
very late flowering varieties makes almond produc-
tion in cold inland areas possible, where almond 
growing was impossible with the old almond early 
flowering varieties [12].

Gülcan [13] described and coded the standard almond 
descriptors for breeders including flowering, tree hab-
its, tree vigor, branching intensity, and nut size, among 
others. All of these traits are evaluated through inten-
sive field labor in phenotyping experiments to select 
the varieties with the most desirable traits. However, in 
some instances, not all trees or all features of a screen-
ing experimental field can be timely characterized and 
measured, often due to a lack of resources or workforce. 
Another problem related to the use of field measure-
ments is that tree crown volume calculation is usually 
based on the use of volume equations of geometric mod-
els such as cones, ellipsoids, hemi-spheres, or ovoids [14]. 
This fact causes the estimations to be inaccurate because 
of the lack of fit of these geometric solids to the irregular 
tree crowns due to the branches and the more complex 
internal configuration. To solve these problems related to 
the lack of access to efficient phenotyping capabilities to 
scrutinize the quantitative traits related to varieties, effi-
cient sensors and workflows that can map the geometric 
properties and phenological stages of trees growing in 
experimental orchards are needed [15].

In recent years, the use of Unmanned Aerial Vehicles 
(UAVs) has allowed the acquisition of images with high 
spatial resolution and overlap, which enables the gen-
eration of accurate 3D models using photogrammetry 
and structure from motion (SfM) techniques for differ-
ent geomatic applications [16, 17]. One of the emerging 
applications of 3D models derived from UAV imagery 
using Digital Surface Models (DSMs) is their use in 
agriculture in woody crops for mapping the geometric 
traits of individual trees such as olives [18] and vine-
yards [19, 20]. However, volume tree monitoring using 
3D point clouds rather than DSMs has become a relevant 

https://faostat.fao.org
https://faostat.fao.org
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advancement because photogrammetric techniques from 
UAV images can yield a 3D point cloud similar to that 
produced by LiDAR (light detection and ranging) systems 
[21]. But also because the 3D point clouds allow the map-
ping of complex and highly variable structures, such as 
tree orchards in vineyards [19, 22] and lychee trees [23]. 
Recently, Torres-Sánchez et  al. [24] accurately mapped 
almond tree height using 3D point clouds (R2 = 0.94 and 
RMSE = 0.39 m in comparison with field data). The high 
accuracy they achieved allowed them to generate 3D 
maps for the volume of every tree as well as the volume 
growth to design site-specific treatments (pruning, fun-
gicides) adapted to the necessities of every tree according 
to its size. They concluded that point clouds outperform 
DSMs in 3D reconstruction of trees since a DSM only 
represents the upper part of the crown, while in a point 
cloud the lower part can also be depicted. Point clouds 
are real 3D models because they can store more than a 
single height value (Z) at each coordinate (X, Y), while 
DSMs are defined as 2.5 datasets as they only can repre-
sent a Z value at each 2D coordinate [25].

In terms of efficiency, the UAV platforms are con-
sidered efficient and inexpensive tools [26]. It has been 
argued that the cost of UAV imagery is lower than that 
of on-ground technologies based on depth cameras 
or LiDAR, and they can cover larger areas [27]. They 
reported that, although every technique provided reliable 
and similar results for volume calculation in vineyard, the 
cost of acquisition was always higher than that of aerial 
imagery. In addition, Rueda Ayala et  al. [28] evaluated 
aerial and on-ground methods to characterize grass ley 
fields in terms of pasture biomass, concluding that UAV-
based plant height and volume estimation offers major 
advantages over on-ground technologies. Namely, UAV 
can be properly classified as a non-destructive sampling 
method, while the on-ground methods are not fully non-
destructive in the case of absence of pathways to walk 
through the field without damaging the crop.

Due to their affordability and efficiency in producing 
a large amount of high-quality geospatial data collection 
in a short period of time, UAVs and their associated 3D 
models are a powerful tool for field phenotyping stud-
ies to relieve the bottleneck by providing a rapid field 
evaluation of a large number of trials for crop breeding 
programs [26, 29]. Most of the research about the use 
of UAVs as sensing platforms for field-based phenotyp-
ing has been focused on herbaceous crops such as wheat 
[30, 31], sorghum [32], cotton [33], or maize [34]. Less 
research has been addressed their use for woody crop 
phenotyping, which has been developed in olive for the 
measurement of tree height and crown diameter [35, 36]. 
Yang et al. [26] reviewed the use and opportunities pro-
vided by UAV imagery for field-based crop phenotyping. 

They reported that the 88.5% of the surveyed literature 
about UAV-based phenotyping was published in the 
last 5  years, which confirms that UAVs have become 
an important tool in field phenotyping. They also dis-
cussed that there is still potential for wider applications, 
and although automated characterization of flowering 
dynamics at the field-scale is essential for evaluation of 
the breeding process, none reference for monitoring 
flowering was reported, which shows the need for the 
development of accurate UAV image analysis procedures 
for flowering characterization.

One of the challenges for the timely generation of accu-
rate information from 3D data from UAV platforms for 
field-based phenotyping programs is the implementa-
tion of robust and automatic image analyses to avoid 
errors due to subjective manual tasks [26, 29]. Object-
based image analysis (OBIA) has showed its efficiency 
and accuracy for the classification and extraction of 
information from high spatial resolution imagery [37]. 
The elemental analysis units of OBIA are not pixels but 
objects, which are groups of adjacent pixels with homog-
enous spectral values. In summary, OBIA combines 
the spectral, topological, and contextual information of 
these objects to address complicated classification issues. 
OBIA has addressed the significant challenge of automat-
ing image processing in agricultural [18, 38-41], grass-
land [42, 43], and forest scenarios [44, 45]. OBIA is also 
being applied to non-image-based sources such as LiDAR 
point clouds [46, 47], and UAV-derived photogrammetric 
point clouds [24].

As a part of a broader research project, the work 
presented herein is a continuation of [24] in which 
UAV photogrammetric point clouds were automati-
cally created to isolate individual almond trees and 
quantify their geometrical properties (tree height, 
length, width, projected area and volume). Once the 
workflow had been designed and duly validated by 
Torres-Sánchez et  al. [24], the next step was to focus 
on testing its ability to efficiently phenotype almond 
varieties in two breeding trials during a complete 
growing cycle. Therefore, one of the objectives of this 
investigation was to demonstrate the suitability of a 
previously reported workflow for almond phenotyp-
ing that was not published before. A new methodology, 
consisting of the use of colors from the point cloud to 
test the capacity for semi-automatic flowering detec-
tion, was also developed. Our work was evaluated by 
comparing the previous cited procedures with on-
ground measurements in two almond fields included 
in a breeding program through the following specific 
objectives: (i) automatic detection of the phenotypic 
differences among almond varieties; (ii) the creation 
of ranking varieties using different geometrical tree 
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crown properties; (iii) the creation of a flowering cal-
endar, the estimation of flower density, and the com-
parison between the estimated and observed flowering 
calendar and dynamics; and (iv) studying the relation-
ship between tree yield and crown volume. To the best 
of our knowledge, there have been no previous reports 
about the monitoring of all tree flowering dynamics 
and flower density of a crop at the field scale using 
UAV-imagery and remote sensing techniques. The 
impact of this research is also supported by the use 
of color information from photogrammetric 3D point 
clouds using a low-cost RGB sensor on-board an UAV 

for the timely, accurate, and semi-automatic detection 
of the flowering cycle. Our main objective was to show 
that the whole technological and methodological pro-
tocol involved is applicable for successful phenotyp-
ing of a set of almond varieties in the framework of an 
almond breeding program.

Materials and methods
Study area
The experiment was carried out in two experimental 
almond orchards (Fig. 1b) located in Andalusia (Southern 
Spain) which were included in a wide almond breeding 

Fig. 1  Study area: a General view on 2 March, 2017 showing the differences of flowering among almond varieties in the same or contiguous rows; 
b maps of fields 1 and 2, respectively, the blue rectangles depict the grouping of trees belonging to the same variety
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program created with the aim of studying the flowering 
date and the adaptation of almond varieties to different 
conditions in the Andalusian region. The orchards had 
tree spacings of 6 × 7  m and were drip-irrigated with a 
deficit irrigation strategy. Trees were trained in open 
vase, one the most common and suitable training systems 
for almond orchard typology.

Field 1 (341,106 O; 4,190,820 N in ETRS89 UTM 30 N) 
had an area of 0.63 ha with very deep silt loam soil, and 
it was almost totally flat. The trees were planted in 2000 
with a total of 12 Spanish, Italian, and French varieties: 

Antoñeta (An), Cambra (Ca), Cristomorto (Cr), Ferra-
duel (Fd), Ferragnes (Fg), Glorieta (Gl), Guara (Gu), Lau-
ranne (La), Masbovera (Mb), Marta (Mt), Supernova (Su), 
and Tuono (Tu). The field was arranged in a randomized 
design with six blocks where there were two adjacent 
trees of every variety, i.e., two trees per elementary plot. 
This resulted in 142 trees, due to there being two missing 
trees. Field 2 was on a hillside with a slope of 10% with 
loam soil, and an area of 0.82 ha (366,883 O; 4,111,348 N 
in ETRS89 UTM 30 N). The trees were planted in 2012. 
This field had the same six almond varieties as in field 
1, plus six different varieties: An, Belona (Be), Constanti 
(Co), Fd, Fg, Gu, La, Marinada (Ma), Soleta (So), Tarraco 
(Ta), Tu, and Vairo (Va). The experimental setup con-
sisted of four blocks in a randomized design with four 
adjacent trees of every variety. Due to there being seven 
missing trees, this field had 185 trees.

With the objective of monitoring the almond trees, a 
set of UAV flights and on-ground measurements were 
carried out several times during the 2017 growing period, 
allowing temporal information about the different varie-
ties to be gathered. Table 1 shows the dates of data acqui-
sition and the corresponding crop stage for every field, 

Table 1  Date and  growth stage of  every acquisition data 
day during 2017

Stage Month Day

Flowering and leaf devel‑
opment

March Field 1: 1, 9, 16
Field 2: 2, 8, 15, 20, 28

Crown fully developed 
and with mature nuts

June Field 1: 22
Field 2: 21

Post-harvest September Field 1: 25
Field 2: 26

Fig. 2  Set of on-ground images showing the flowering and canopy dynamics of the same almond tree in field 2 during the different flight and field 
measurement dates in March and June: a 03-02-2017; b 03-08-2017; c 03-15-2017; d 03-20-2017; e 03-28-2017; f 06-21-2017
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and Fig. 1a illustrates the differences in flowering among 
varieties in field 2, whereas Fig.  2 shows the flowering 
and canopy evolution of one of the trees on the differ-
ent dates. It can be seen that the almond tree located to 
the left of the main tree displayed in Fig.  2a presented 
more intensive flowering, showing a different blooming 
stage typical of breeding programs when a collection of 
different varieties was tested (Fig. 1a). There were more 
acquisition data dates in field 2 due to its almond varie-
ties showing a wider flowering calendar range.

Three‑dimensional point cloud generation
The 3D point clouds used for the monitoring of the geo-
metric characteristics of every almond tree were created 
by applying photogrammetric and computer vision tech-
niques to the images acquired with an UAV. The imagery 
was taken with a low-cost, commercial, off-the-shelf 
camera (Olympus PEN E-PM1, Olympus Corporation, 
Tokyo, Japan) equipped with a 14–42  mm zoom lens 
that was fixed to a 14 mm focal length for this study. The 
camera was mounted in the UAV, a quadcopter model 
(MD4-1000, microdrones GmbH, Siegen, Germany), fac-
ing downward for nadir capture. The flight routes were 
designed with forward and side laps of 93% and 60%, 
respectively, and the flight altitude was 50 m, which led 
to a ground sampling distance of 15.3  mm. According 
to previous investigations, this configuration is the opti-
mum one to achieve the 3D reconstruction of woody 
crops [48]. All the flights were done on sunny days with 
low wind speeds (< 6 km h−1).

A white Spectralon® panel (Labsphere Inc., North Sut-
ton, NH, USA), a grey panel, and a black panel (Sphere-
Optics GmbH, Uhldingen, Germany) of 0.45 × 0.45  m 
were placed in the middle of the fields to take into 
account the light changes along the different flight dates 
(Fig. 3). The Spectralon, grey, and black panels had reflec-
tance in the visible range of about 97%, 43%, and 5%, 
respectively.

The photogrammetric software used for the genera-
tion of the 3D point clouds was Agisoft PhotoScan Pro-
fessional Edition version 1.2.4, build 1874 (Agisoft LLC, 
St. Petersburg, Russia). The process was fully automatic, 
with the exception of the manual localization of 5 ground 
control points taken with a real time kinematic (RTK) 
GPS linked to a reference station from the GNSS (Global 
navigation satellite system) network from the Institute 
for Statistics and Cartography of Andalusia (IECA), 
Spain. The estimated accuracy of the GNSS-RTK system 
was 0.02  m in planimetry and 0.03  m in altimetry. The 
point cloud was saved in “.las” format, a public file format 
for the interchange of 3D point cloud data. More infor-
mation about the processing parameters of the software 
can be read in [24].

Almond tree characterization
The geometric features of every tree, such as the crown 
projected area, tree height, and crown volume, were 
derived using the OBIA algorithm that was previously 
developed for almond trees trained in open vase in [24]. 
The validation of the algorithm showed that the com-
parison between tree height estimation and measured 
tree heights produced an R2 of 0.94; and all the accuracy 
measures for tree crown delineation were over 0.9 in a 
range from 0 to 1.

As part of a broader research project, the work herein 
presented is a continuation of that research, since once 
the workflow was designed and duly validated, the next 
step was primarily focused on testing its ability to effi-
ciently phenotype almond varieties in breeding programs 
(“OBIA algorithm for crown architecture” section). 
The next step was to create a new procedure consisting 
of the use of color from the point cloud to monitor the 
flowering calendar (“Flowering detection” section). Both 
objectives aimed to generate the required information to 
quantify the canopy geometry at different phenological 
stages and to monitor the flowering dynamics for pheno-
typing each tree variety.

OBIA algorithm for crown architecture
As stated in [24], the OBIA algorithm for the characteri-
zation of every almond tree size and geometry does not 
require user intervention and can be divided into the fol-
lowing successive, automatically executed steps: (i) digital 
terrain model (DTM) generation; (ii) tree crown deline-
ation; (iii) point cloud slicing; and (iv) almond tree 3D 
characterization. The only inputs in these steps were the 
point cloud and a shapefile delimiting the studied field. 
The algorithm output was a vector file that was ready 
to be used in any geographic information system and 
included the crown limits of every tree and, as associ-
ated information, its crown volume, maximum height, 

Fig. 3  White, black, and grey reference panels in field 2 on 2 March 
2017
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projected area, length, and width. This information could 
be also exported as an ASCII table including the previ-
ous information plus the central coordinates for each 
tree. The programming language Cognition Network 
in eCognition Developer 9 software (Trimble GeoSpa-
tial, Munich, Germany) was used to develop the OBIA 
algorithm.

Flowering detection
A new methodology based on the use of point colors to 
test the capacity for flowering detection was developed. 
The basic idea was to use the color of the almond flow-
ers for semi-automatic flowering estimation by com-
paring the brightness of the flowers with the brightness 
of the reference panels. Some authors have reported 
the use of a single color feature for flower detection 
in images. For example, Carl et  al. [49] used informa-
tion from the blue band, and Richardson et al. [50] used 
the relative brightness of the red channel. CloudCom-
pare 2.8 (EDF R&D and Telecom ParisTech, Grenoble, 
France) software was used for point cloud processing 
in this section, and the analysis was only applied to the 
point clouds from March, since there were no flowers 
in June or September. In a first step, the brightness lev-
els of all the points in the point clouds were calculated 
using Eq. (1), where R, G, and B were the digital num-
bers for the red, green, and blue bands of the points, 
respectively:

Then, the average brightness of the points correspond-
ing to grey and white reference panels was calculated, 
which allowed the different light conditions on the differ-
ent flight dates to be taken into account. The points with 
brightness levels equal to or higher than the panel aver-
age brightness and with a height over the DTM higher 
than 1  m were classified as flower points. As the limits 
of each tree were known based on the OBIA algorithm 
involved in “OBIA algorithm for crown architecture” sec-
tion, the number of flowers inside each almond crown 
was extracted. The flower density (number of flowers 
m−3) was calculated by dividing the number of points 
identified as flowers inside a tree crown by its volume.

Data analysis
All of the following statistical analyses were carried out 
using JMP software (SAS, Cary, NC, USA).

Flowering detection
The dates of the beginning and end of blooming 
and full blooming for each variety were registered 

(1)Brightness =
R+ G + B

3
.

according the BBCH Monograph (2001) through vis-
its twice a week to the experimental fields as follows: 
(i) beginning of flowering (about 5% of flowers open); 
(ii) full flowering (50% of flowers open); (iii) end of full 
flowering (90% of flowers open and first petals fall); 
(iv) end of flowering (5% of flowers and 95% of petals 
fallen); and (v) end of flowering (all petals fallen). The 
goodness evaluation of the flowering estimations was 
done by comparing the temporal trend of the flower 
density with the flowering evolution as observed on 
every field.

Ranking varieties
One of the main interests of phenotyping studies is to 
elaborate ranking varieties for a concurrent compari-
son of the target traits for the different varieties [51, 52]. 
The OBIA estimations of tree height and crown volume 
were used to create a ranking of varieties’ sizes through a 
comparison of means with the Tukey HSD test (p < 0.05). 
These rankings were created in both fields by using every 
almond tree height measured using a clinometer in Sep-
tember the same day of the flight, which allowed the 
height rankings from the OBIA algorithm and the corre-
sponding field data to be compared.

Estimated yield and volume
Yield data were collected in both fields at harvest time, 
the first and second fortnights of August, for fields 1 and 
2, respectively. The harvest was done mechanically using 
a tree shaker. The harvest weight could not be recorded 
on an individual basis due to labor costs and time con-
straints. Consequently, the raw harvests of adjacent trees 
of the same variety were grouped for weighing. Taking 
into account the number of blocks in every field and the 
fact that the trees of the same variety were grouped in 
every block, there were six yield values per variety in field 
1, whereas there were four yield values per variety in field 
2. The yield values in field 1 averaged two trees, while in 
field 2, they averaged four trees. The relation between the 
average tree volume obtained by the OBIA algorithm and 
the average yield was evaluated by calculating the deter-
mination coefficient (R2) and the significance of the linear 
fit for each date, field, and variety.

Results and discussion
Flowering detection
Figures 4 and 5 show the high level of agreement between 
the flower density (number of flowers  m−3) estimations 
and the blooming calendar observed on both fields. 
Although the average brightness of the points corre-
sponding to grey and white reference panels was calcu-
lated, the results presented and discussed in this section 
were produced using the grey panel as the brightness 
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reference, since it better covered the white and purple 
range of almond flower colors that different varieties 
can show, as assessed by Gülcan [13]. In addition, the 
flower density values estimated using the white panel 
did not adjust to the blooming calendar as its brightness 
values were too high and its use as a threshold resulted 
in a scarce number of points being classified as flowers 
(data not shown). Underwood et al. [53] applied a fixed 
color threshold to images for flower detection in almond 
trees by using a mobile robotic ground scanning system; 
however, they admitted the need to use a more advanced 
method that would take into account variations in illumi-
nation. For this reason, a variable threshold based on the 
reflectance of the grey reference panel was used in this 
research, which allowed the generation of more accurate 
results.

The maximum values of flower density for all the vari-
eties agreed with the full blooming period observed in 
field 1 and all flower density values obtained by the UAV 
imagery on 16 March were near zero when the bloom-
ing period had finished (Fig. 4). In field 2, the maximum 
flower density in 9 out of 12 varieties was coincident with 
the full blooming period (see 8 March, Fig. 5). In two of 
the varieties with no agreement (Ma and Ta), the differ-
ences between the maximum estimated flowering and full 
bloom observed were only 1 and 3 days, respectively. In 
the other variety with no agreement (Va), the difference 
was 6  days. These are considered low differences tak-
ing into account that the blooming period takes around 
20 days for those varieties. In field 2, all varieties showed 
very low flower density values on 15 March, followed by 
a small increase in this value on 20 March. This can be 

Fig. 4  Blooming calendar for field 1. Dark green days indicate full blooming period, and light green days indicate the beginning and ending date 
of blooming. Numeric values report the averaged flower density (number of flowers m−3) for each variety, red bold values are the maximum flower 
density for each variety

Fig. 5  Blooming calendar for field 2. Dark green days indicate full blooming period, and light green days indicate the beginning and ending date 
of blooming. Numeric values report the averaged flower density (number of flowers m−3) for each variety, red bold values are the maximum flower 
density for each variety
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explained by the intense rainfall registered on 14 March 
that could have provoked the fall of petals. Although, tak-
ing into account the characteristic continuous blooming 
of almonds, some trees could have bloomed again after 
this rainfall because their flowering period was not over, 
indicating the suitability of the procedure for continu-
ous monitoring of flowering. Underwood et al. [53] also 
reported analogous flowering dynamics on a daily time-
scale since the number of flowers increased due to con-
tinuous blooming and decreased due to falling petals. 
Four out of the six common varieties in both fields (Fd, 
Gu, La, Tu) showed similar flowering tends, i.e., maximal 
flower densities in the UAV imagery taken on the 8th and 
9th of March.

Hand counts for flower density are difficult to obtain in 
a single day for large numbers of almond trees, because 
each tree contains upwards of 10,000 flowers [53]. For 
this reason, traditional flowering studies in almonds 
have been based on careful data acquisition from two 
branches (1 year old shoots and spurs) per tree selected 
at random on a subset of trees inside the orchard and by 
counting flower bud density (bud  cm−1) in a length of 
1 m [54]. The relatively small number of individual sam-
ple trees used in former studies on the flower density is 
a constraint compared to the information obtained per 
every tree by using the point clouds and the fully auto-
matic OBIA algorithm. Therefore, one of the main results 
of the approach proposed in our study is that it allows 
the estimation of flower density of all trees in an orchard 
in a very efficient way. However, as previously reported 
by Underwood et  al. [53], it was not possible to evalu-
ate the absolute accuracy of the flower estimations due 
to the lack of direct data reporting the total number of 
flowers in the almond tree crowns. Additionally, this 
information about flowering density and the creation of 
flowering dynamics or calendars is of crucial importance 
for almond phenotyping due to three main reasons: (i) it 
can be performed on a single day per sampling period by 
using a low-cost camera on-board a UAV platform; (ii) 
one of the most important objectives in almond breed-
ing is the creation of ranking varieties for late-blooming 
that are able to avoid late-winter/early-spring frosts 
which affect almond production because of its very early 
flowering season [55]; and (iii) the flowering density is 
related to the productive potential and consequently, to 
the commercial value of a new variety [7]. It can be also 
stated that when frost risks are low, as happens in Cali-
fornia, the breeders tend to have a prevalence of cultivars 
with low or medium flower density, probably to reduce 
the problems of fruit quality decrease related to a higher 
percentage of double kernels [56]. In contrast, in regions 
with high frost risks in early spring (e.g., Spain), a high 
flower bud density has been considered a positive trait 

for cultivar evaluation as it compensates for flower dam-
age and ensures an acceptable crop yield [56].

Previous approaches analyzed UAV imagery in woody 
scenarios to map the flowering of the invasive plant Aca-
cia longifolia using random forest to test a biocontrol 
agent, or Robinia pseudoacacia to quantify the habitat 
potential for honeybees (Apis mellifera) [49, 57], or in 
herbaceous crops such as oilseed rape (Brassica napus) 
to determine the flower fraction and flower number [58, 
59]. However, to our knowledge, this is the first time that 
the flowering density of a crop has been detected using 
color information from photogrammetric point clouds. 
Furthermore, this is the first time that the entire bloom-
ing dynamics of a woody crop have been monitored using 
an UAV with relevant implications in the breeding pro-
gram, since a high variability in flowering time and flower 
density could be accurately monitored.

The advantage of using a low-cost sensor-based UAV 
for crop phenotyping was shown in our study, as cover-
age of the whole field could be achieved in 7 and 10 min 
for fields 1 and 2, respectively. Using a mobile robotic 
ground scanning system, Underwood et al. [53] scanned 
both sides of the almond rows in the morning and after-
noon, taking considerably more time for all sampling 
trees. They also discussed that the commercial imple-
mentation of their sensing strategy would require lower 
cost platforms (e.g., a bolt-on sensor located in the farm 
vehicles) than the custom-made robot they used.

Ranking varieties
Ranking varieties for height
As stated previously, the creation of ranking varieties is 
one of the most used tools in breeding programs to select 
the most preferred varieties according to the trait under 
study. Therefore, considering that the differences in 
height among the varieties were consistent for UAV-esti-
mated and field-measured heights in fields 1 and 2, two 
ranking varieties for height were constructed, and a com-
parison between both rankings was done for both kinds 
of measurements (Figs.  6, 7). The selection of the four 
tallest varieties in field 1 was coincident for the OBIA 
and the traditional methodologies (Gl, Ca, Fg, Fd; Fig. 6), 
although these four varieties were not exactly in the same 
order. Concerning the detection of the four smallest vari-
eties, there was full agreement in variety selection and its 
ranking position for three of them (Su, La, Gu). In field 2 
(Fig. 7), the differences in height were lower than in field 
1, probably because the trees were only 5 years old, and 
the phenotypic differences in tree height were less devel-
oped than in field 1. The statistical study of the height 
data showed less significant differences for the on-ground 
data than for the UAV data. However, there was coinci-
dence in the selection of the tallest five varieties (Ta, Gu, 
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Co, Va, Fd), although not in its position. The agreement 
between manual and OBIA ranking was minor in the 
selection of the three smallest varieties, with the coinci-
dence of two of them (Fg, Ma).

The workflow proposed in this work was able to detect 
the phenotypic variability in height in the experiment 
and to generate ranking varieties with a high degree of 
similarity to the one created from traditional on-ground 
measured data in research fields with trees of different 
ages. The main advantage of the proposed workflow in 
comparison with traditional manual measurements is its 
efficiency. As reported in [24], orchards, like field 1, can 
be analyzed in 1 day by a single person (including UAV 
flight, 3D model generation, and analysis) allowing the 
extraction of accurate information of crucial relevance 
in breeding programs, such as height, area, position, 
volume, crown length and width, and flower density, for 
every tree.

Ranking varieties for volume
In addition to the ranking varieties based on tree height, 
the output of the OBIA algorithm allowed the creation 

of ranking varieties based on the differences in tree vol-
ume for every variety. Figures 8, 9 show the differences in 
fields 1 and 2. There were differences in the ranking order 
of some varieties depending on the studied variable. 
For instance, Fd was the fourth tallest variety in field 1 
(Fig. 6), but it was in eighth position in the volume rank-
ing (Fig.  8). In field 2, Ma was the penultimate variety 
in relation to height, but it was in eighth position in the 
volume ranking (Fig.  9). The differences in the order of 
ranking illustrate the differences in canopy architecture 
among varieties, showing that the genetic factors con-
trolling phenotypic traits are highly conditioned by the 
environmental conditions of each screening site; that is, 
a variety can show a different growing habit in different 
years and locations [60].

The interpretation of information derived from the 
geometric features is complex. For example, if a variety 
has an upright growing habit [13], but it does not have 
a voluminous crown and its foliar density is low, it could 
mean that it has weak branching intensity development, 
which is related to a lower flower bud density. This poten-
tial low flower density could be also relevant to assess the 

Fig. 6  Boxplots for the measured and estimated height of the almond trees in field 1 by variety, where the points indicate outliers. Different letters 
indicate significant differences (Tukey HSD test, p < 0.05)
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possibility of enduring a late frost during bloom, because 
the presence of a high number of flowers increases their 
ratio of survival after a frost, consequently affecting the 

productivity parameters [54]. The information about the 
geometric crown features of the different varieties can 
be also useful to select the best planting pattern (e.g., a 

Fig. 7  Boxplots for the measured and estimated height of the almond trees in field 2 by variety, where the points indicate outliers. Different letters 
indicate significant differences (Tukey HSD test, p < 0.05)

Fig. 8  Boxplots for the estimated crown volume of the almond trees in field 1 by variety, where the points indicate outliers. Different letters indicate 
significant differences (Tukey HSD test, p < 0.05)
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variety with a high volume crown needs a higher tree 
spacing) or to choose between varieties according to the 
required pruning system, which influences the produc-
tion costs. Other specific multi-criteria to rank varieties 
based on tree features generated by the OBIA algorithm 
could be created, as has been done with tree height and 
volume (Additional file 1).

Estimated yield and volume
The study of the temporal relationship between the esti-
mated volume and the raw harvest weight showed that 

some varieties have significant R2 values (R2 > 0.7 with 
p < 0.05) (Tables 2, 3). In field 1, the An and Su varieties 
showed a significant linear fit between the two variables 
in March during the flowering leaf development stage. 
The crown volume and yield were well related for Cr in 
June when the almond trees were mature. The Ca and La 
varieties also had significant correlations, although these 
varieties had an R2 value of < 0.7. In field 2, four varieties 
(Be, Fd, La, and Va) showed highly significant R2 values 
in March, while Gu and So had good relations in both 
March and June. All of these coefficients suggest that the 
canopy volume is related to the yield, although the lin-
ear relationship is different for each variety. This trend 
indicates that the tree canopy volume during flowering 
extracted from UAV imagery may be a good indicator of 
yield estimation, although a wider sample size covering 
more data from harvest and years is needed to produce 
consistent conclusions.

Grouping the data from the different varieties for a 
single linear relationship between volume and yield 
did not work out, and the R2 values obtained were 
below 0.20 in all dates for both fields. This is in agree-
ment with [53] who lumped the yield and volume 
obtained using an on-ground LiDAR system together 
and obtained a linear relationship for a set of almond 
varieties of R2 < 0.39. In contrast, they reached a R2 
value of > 0.7 for all four studied varieties for the linear 
fit between the tree estimated volume and yield dur-
ing the flowering stage. They extrapolated their data 
for yield prediction in the whole orchard, although 
they did not validate their results. According to Hill 
et  al. [4], other canopy features, such as the size of 
almond trees considering the cross-sectional area 

Fig. 9  Boxplots for the estimated crown volume of the almond trees in field 2 by variety, where the points indicate outliers. Different letters indicate 
significant differences (Tukey HSD test, p < 0.05)

Table 2  Crown volume relationship with  yield for  field 
1 (six samples per  variety, and  each sample is  the  mean 
of two trees)

Italic values indicate significant relationships with R2 > 0.7

ns not significant
**  p < 0.05, *p < 0.10

Varieties 01 March 09 March 16 March 22 June

An 0.76** 0.43 0.40 0.22

Ca 0.42 0.05 0.56* 0.59*

Cr 0.44 0.10 0.68** 0.80**

Fd 0.00 0.09 0.21 0.02

Fg 0.01 0.30 0.01 0.01

Gl 0.17 0.12 0.11 0.02

Gu 0.13 0.21 0.18 0.12

La 0.18 0.65* 0.56* 0.67**

Mb 0.07 0.02 0.03 0.07

Mt 0.28 0.38 0.26 0.11

Su 0.73** 0.65* 0.40 0.39

Tu 0.02 0.00 0.14 0.01
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and assuming a circular section, can be used to esti-
mate the almond yield. They also listed a set of recom-
mended measures required for a good estimation of 
yield. In [61], an R2 value of 0.8 was achieved between 
the yield and tree crown volume of orange trees using 
an ultrasonic sensor, although when the linear fit was 
extrapolated for yield prediction, they obtained an R2 
value of < 0.42 in the validation.

The detected density of flowers could also be tested 
for yield prediction. However, there are external fac-
tors that can distort its relation with the yield, such as 
the availability of pollinators, the amount of fruits that 
a tree can bare [62], and intense rains or late frosts that 
can harm the flowers, having a negative influence on 
the activity of pollinating insects [55]. Furthermore, 
Underwood et  al. [53] reported that the absence of 
relationship between detected flowers and yield could 
be reasonable due to the large number of factors influ-
encing pollination and fruit set. They also suggested 
that adding flower densities to the modeling of yield 
based on almond volume does not provide additional 
benefit.

Future research will focus on the acquisition of more 
detailed yield data to improve the linear fit between 
the detected crown volume and the yield, which could 
help to elucidate the date with the best R2 values. All of 
this information could be used to generate yield pre-
diction models for the studied almond varieties that 
would be useful to ease orchard management, plan 
the harvest labor, or to prepare post-harvest tasks 
such as drying and storage. Yield prediction could also 

be used to apply variable rate fertilization or other 
inputs depending on the predicted yield, which would 
result in more efficient management of an orchard, as 
reported in an apple orchard by [63].

Conclusions
Two almond phenotyping trials with trees of different 
ages were evaluated throughout a complete growing cycle 
using an approach based on two steps: (i) the generation 
of photogrammetric point clouds from images acquired 
with a low-cost camera on-board a UAV; and (ii) analy-
sis of the point clouds using a fully automatic OBIA 
algorithm. The analysis allowed the extraction and quan-
tification of the following almond features that are of par-
amount importance in almond phenotyping: flowering 
density, tree height, and even, crown volume for every 
tree and variety. The temporal evolution of the flower 
density estimations from the UAV imagery showed a 
high level of agreement with the blooming calendar 
observed from field measurements on both fields. Data 
from the OBIA analysis of the 3D point clouds were use-
ful for detecting the phenotypic variability in the almond 
orchards, and allowed the creation of variety rankings 
with a high degree of similarity to the one created from 
manually measured data. Some of the almond varieties 
were found to show a significant linear fit between crown 
volume and yield. To our knowledge, this is the first time 
that photogrammetric point clouds have been used for 
the detection of flowering in a crop. Furthermore, this is 
the first time that the entire blooming period of a woody 

Table 3  Crown volume relationship with yield for field 2 (four samples per variety, and each sample is the mean of four 
trees)

Italic values indicate significant relationships with R2 > 0.7

ns not significant, X no data
**  p < 0.05, *p < 0.10

Varieties 02 March 08 March 15 March 20 March 28 March 21 June

An 0.04 0.05 0.03 0.08 0.34 0.25

Be 0.39 0.84* 0.40 0.23 0.12 0.37

Co 0.66 0.71 0.60 0.64 0.39 0.42

Fd 0.88* 0.13 0.26 0.97** 0.93** 0.40

Fg 0.00 0.47 0.78 0.66 0.75 0.74

Gu 0.33 0.85* 0.98** 0.92** 0.89* 0.95**

La 0.83* 0.99** 0.99** 1.00** 0.98** 0.77

Ma 0.33 0.74 0.63 0.41 0.61 0.79

So 0.48 0.32 0.84* 0.92** 0.74 0.89*

Ta 0.10 0.38 0.01 0.06 0.16 0.06

Tu x X X X X X

Va 0.96** 0.83* 0.92** 0.71 0.52 0.06
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crop has been monitored and that consistent variety 
rankings are created using a UAV-imagery.

From the results achieved in this research work, it 
can be said that the suitability for almond phenotyping 
of the proposed UAV-based workflow has been dem-
onstrated, which has not been reported in any previ-
ously published research. The main advantage of this 
workflow in comparison with traditional and laborious 
approaches is the ability to generate a large amount of 
useful data in a timely manner with reduced field work 
in an efficient, non-destructive, and inexpensive way. 
This technological and methodological tool could be 
adapted to provide technical support to promote com-
mercially feasible applications of UAV in crop pheno-
typing of other woody crops (e.g., apple, peach, olive) 
for other researchers or breeding companies. In addi-
tion, the mapped geometric tree features can be used 
as a baseline tool for site-specific almond tree manage-
ment according to the crown architecture parameters 
in case of a fungal foliar disease (e.g., red leaf blotch of 
almond, Polystigma amygdalinum) or other negative 
canopy circumstance occurring during the breeding 
program.

Future investigations could be focused on the devel-
opment of comparative analyses of almond ranking 
varieties to test their growing habits, flowering dates, 
and yields over multiple locations and years to select 
the best performing and stable genotypes. Consider-
ing that our work was on almond trees trained as single 
trunk open vase (i.e., discontinuous canopy), next work 
could focus on continuous canopy (narrow hedgerow), 
since breeders may need to study and produce cultivars 
that are also suitable for use in this type of cropping 
system.
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