
Luo et al. Plant Methods          (2019) 15:154  
https://doi.org/10.1186/s13007-019-0544-3

METHODOLOGY

A high-throughput quantification of resin 
and rubber contents in Parthenium argentatum 
using near-infrared (NIR) spectroscopy
Zinan Luo, Kelly R. Thorp and Hussein Abdel‑Haleem*

Abstract 

Background: Guayule (Parthenium argentatum A. Gray), a plant native to semi‑arid regions of northern Mexico and 
southern Texas in the United States, is an alternative source for natural rubber (NR). Rapid screening tools are needed 
to replace the current labor‑intensive and cost‑inefficient method for quantifying rubber and resin contents. Near‑
infrared (NIR) spectroscopy is a promising technique that simplifies and speeds up the quantification procedure with‑
out losing precision. In this study, two spectral instruments were used to rapidly quantify resin and rubber contents 
in 315 ground samples harvested from a guayule germplasm collection grown under different irrigation conditions 
at Maricopa, AZ. The effects of eight different pretreatment approaches on improving prediction models using partial 
least squares regression (PLSR) were investigated and compared. Important characteristic wavelengths that contrib‑
ute to prominent absorbance peaks were identified.

Results: Using two different NIR devices, ASD  FieldSpec®3 performed better than Polychromix Phazir™ in improving 
 R2 and residual predicative deviation (RPD) values of PLSR models. Compared to the models based on full‑range spec‑
tra (750–2500 nm), using a subset of wavelengths (1100–2400 nm) with high sensitivity to guayule rubber and resin 
contents could lead to better prediction accuracy. The prediction power of the models for quantifying resin content 
was better than rubber content.

Conclusions: In summary, the calibrated PLSR models for resin and rubber contents were successfully developed for 
a diverse guayule germplasm collection and were applied to roughly screen samples in a low‑cost and efficient way. 
This improved efficiency could enable breeders to rapidly screen large guayule populations to identify cultivars that 
are high in rubber and resin contents.

Keywords: Parthenium argentatum, Guayule, Resin, Rubber, Near‑infrared (NIR) spectroscopy, Partial least squares 
regression (PLSR), Bioenergy crop

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Guayule (Parthenium argentatum A. Gray), com-
monly grown in semi-arid regions, is a promising crop 
to produce natural rubber (NR). NR cannot be replaced 
completely by synthetic rubber because NR possesses 

high-performance properties in resilience, impact resist-
ance, abrasion, and heat dispersion, among other desira-
ble properties [1–3]. Almost all the current NR in the US 
is imported from countries in southeastern Asia, where 
Hevea brasiliensis is widely planted. To increase NR pro-
duction to meet increasing demands, stabilize econom-
ics, and avoid disease threats to Hevea in Southeast Asian 
countries, guayule is considered to be a top alternative 
resource for domestic rubber production. Additionally, 
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guayule can generate NR latex with much lower Type I 
Hev-b protein, which is important to reduce allergic reac-
tions to medical products–a major problem in the appli-
cation of Hevea rubber [2, 4].

Resin and rubber are the two major industrial compo-
nents in guayule, which are obtained using a sequential 
solvent extraction protocol in two steps: treating with 
polar solvent (acetone, ethanol) to extract resin followed 
by a non-polar solvent (hexane, cyclohexane, chloro-
form, etc.) to extract rubber [2, 5–8]. Accelerated solvent 
extraction (ASE) has been used in analytical chemistry 
in recent years to accurately determine chemical com-
ponents [9]. The application of ASE to quantify resin and 
rubber content in guayule has been previously published 
[2, 10]. Compared to other solvent-based methods such 
as Soxhlet and a high-speed homogenizer (Polytron) [5, 
6], ASE shortened extraction time by using high temper-
ature and nitrogen pressure while requiring low solvent 
volumes [2, 8, 11]. However, despite these improvements, 
using traditional wet chemistry methods to determine 
chemical contents are time-consuming, labor-intensive, 
and expensive [12]. The methods to quantify the chemi-
cal compositions after extraction procedures are not eas-
ily scaled-up to hundreds or thousands of samples, which 
is the level required for germplasm evaluation in plant 
breeding programs. Thus, inexpensive, high-through-
put, and rapid quantification methods are needed to 
determine biopolymer components for guayule genetic 
improvement.

Near-infrared (NIR) spectroscopy, based on vibration 
properties of organic molecule chemical bonds and their 
interactions with NIR radiation, is a technique used for 
rapid, reliable, and non-destructive prediction of chemi-
cal components in plants, animal products, food, and 
pharmaceuticals [12–16]. In the last several decades, NIR 
spectroscopy has been applied to determine resin and 
rubber content in guayule [2, 4, 6, 17, 18]; however, these 
studies were either too early to use advanced multivariate 
data analysis approaches or the sample size of varieties/
accessions was small with a very limited range of rubber 
and resin contents. Moreover, no previous studies made 
comparisons between different NIR instruments with 
varying spectral ranges and resolution. Given these lim-
itations, the objectives of this study were to (1) develop 
PLSR models using NIR spectroscopy to estimate rubber 
and resin content for a guayule germplasm containing 56 
different accessions; (2) identify optimal pretreatment 
approaches and ranges of wavelengths for obtaining the 
most robust and reliable PLSR models; and (3) compare 
two NIR spectral instruments in prediction accuracy 
of PLSR models for the estimation of rubber and resin 
content.

Materials and methods
Plant Materials
A total of 49 and 56 guayule accessions (49 were included 
in 56 accessions) from a USDA germplasm collection 
were planted under water-stressed and non-stressed field 
conditions, respectively for 2.5 years with each accession 
replicated three times [19]. Finally, a total of 315 guayule 
samples were harvested from water-stressed (147) and 
non-stressed (168) field plots at Maricopa, Arizona, USA. 
Trials were irrigated differentially to reach suitable stress 
levels following the soil water depletion model described 
by Hunsaker and Elshikha [20]. Two homogenous plants 
from each plot were harvested in spring of 2018. Har-
vested plants were dried in an open area then chipped 
using Troy-Bilt Model 47321 Chipper/Shredder (Garden 
Way, Inc., Troy, New York) with a 9.53-mm round-holed 
screen. After drying, the chipped samples were ground 
using a hammer mill with a 6-mm screen (Model W6H, 
Schutte-Buffalo Hammermill, LLC, Buffalo, NY). The 
samples were then fine-ground using a Model 4 Wiley 
mill to pass the material through 2-mm sieves (Thomas 
Scientific, Swdesboro, NJ). The dried and ground samples 
were stored in small sealed plastic bags at 4  °C to limit 
risk of oxidation.

Accelerated solvent extraction (ASE) for rubber and resin 
quantification
Fine dried ground samples weighing 1 ± 0.0005  g were 
loaded into stainless steel cells (11 mL) of an ASE (Model 
200, Dionex Corp., now ThermoFisher Scientific Inc., 
Waltham, MA), which was equipped with an auto-sam-
pler carousel, a solvent controller that accommodated 
up to four different solvents, and a collection tray that 
allowed up to 24 samples to be sequentially extracted 
[2, 10]. The entire machine was connected to a nitrogen 
tank. All ASE extraction cells were prepared uniformly. 
A cellulose microfilter (20-mm diameter) was first placed 
at the bottom of each cell, which was then filled with dry 
ground samples mixed with diatomaceous earth (DE). 
Glass collecting vials (250 mL) were placed into the col-
lection tray. The first cell, as a control, was only filled 
with DE. Extraction was performed under the follow-
ing conditions (Table 1): Each sample was first extracted 
with acetone at 100  °C and 1500 psi of nitrogen, with a 
heating time of 5  min, static extraction time of 10  min, 
purge time of 60 s, and flush volume 100%, followed by 
cyclohexane extraction at 140  °C under the pressure of 
1500 psi of nitrogen, heating time of 7 min, static extrac-
tion for 20 min, purge time of 60  s, and a flush volume 
of 100%. Three static cycles were applied to each extrac-
tion stage. Following this, the extractant was transferred 
into a pre-weighed glass vial (250  mL). Evaporation of 
the solvent from the extract was done in a fume hood at 
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room temperature for 2  weeks and dried in an oven at 
55 °C for 24 h before weighing again. Three samples were 
randomly selected from each ASE batch (11 samples) for 
moisture content estimation, which was determined by 
drying a 5-g sample at 105  °C in an oven for 24  h, and 
then kept 8 h in a desiccator before weighing. The mois-
ture content values of each batch were averaged and used 
to adjust rubber and resin contents for further use with 
the following adjustment formula:

NIR spectroscopy analysis
Five near-infrared (NIR) spectral scans were collected 
for each dry ground sample using an ASD  FieldSpec®3 
spectrophotometer (Malvern Panalytical, Cambridge, 
UK) and a handheld Polychromix Phazir™ model Phazir 
1624 spectrophotometer (Polychromix Inc., Wilmington, 
MA, USA) under ambient temperature. The dry ground 
samples were stirred and remixed during the scanning 
intervals. For the ASD scans, the “Muglight” attachment 
was used with the spectrophotometer, which provided 
a light source and specialized tray for holding samples 
during spectral data collection. For the Polychromix 
device, samples were placed in a plastic laboratory boat 
with the instrument resting on top of the sample. Stand-
ard reference targets were scanned after scanning every 
fifth sample and tenth sample for ASD  FieldSpec®3 and 
Polychromix Phazir™, respectively. The reference target 
for the ASD was a small 99% Spectralon disk designed to 
fit in the sampling tray of the Muglight attachment. For 

(1)
Adjusted resin = % dry resin content

× (1− % moisture content)

(2)
Adjusted rubber = % dry rubber content

× (1− % moisture content)

the Polychromix Phazir™, the reference target covered 
the bottom of a weighing pan to avoid light leaking as 
provided by the manufacturer and used according to the 
manufacturer’s recommendation. Spectral data of 2151 
wavelengths were obtained from the ASD  FieldSpec®3 
with the reflectance ranging from 350 to 2500  nm at 
1 nm interval, while spectral data of only 100 wavelengths 
were obtained from the Polychromix Phair™ with reflec-
tance ranging from 1600 to 2400  nm at 8  nm intervals. 
As for the reflectance spectra obtained from the ASD 
 FieldSpec®3, only the wavelengths between 750 and 
2500 nm were used for further analysis since this range 
covers the NIR region.

Chemometrics and data analysis
Spectral data pretreatment
The Unscrambler  X® software (v.10.5, Camo Software 
AS) was used to perform data pretreatment and estab-
lish partial least squares regression (PLSR) models for 
rubber and resin contents. As a first step to identify 
and remove outliers, the spectral data was subjected to 
principal component analysis (PCA). PCA provided a 
score plot to show the degree of similarity and difference 
among the samples [21]. From PCA, Hotelling’s  T2 and 
Q-residuals explained how far a projection of the sam-
ple is away from the origin, and whether the pattern of 
variables for a sample deviates largely from the model 
[22]. The samples with both high Hotelling’s  T2 values 
and Q-residuals (if any) were detected as outliers and 
removed before further analysis. Spectral pretreatments 
were intended to suppress various adverse effects coming 
from physical properties of the sample, technical errors 
during measurements or, simply, instrument noise [21]. 
In our experiment, eight different types of pretreatments 
were applied to the spectral data to test and compare 
their effects on the performance of PLSR models, par-
ticularly through improvements in the signal-to-noise 
ratio and in the prediction accuracy. These eight different 
pretreatments included the following: smoothing using 
a median filter with segment size of 3, normalization by 
the mean, baseline correction, standard normal variate 
(SNV), de-trending (DT) with polynomial order of two, 
and Savitzky-Golay (SG) first and second derivative cal-
culation. The SG 1st and 2nd derivatives with the win-
dow size of 11 (smoothing points = 23) were applied for 
the spectra obtained from ASD  FieldSpec®3, and the SG 
1st and 2nd derivatives with a window size of 6 (smooth-
ing points = 13) were applied for Polychromix Phazir™. 
The functions of these pretreatments are described as 
follows. The median filter was a nonlinear low-pass fil-
ter that removed high-frequency noise and preserved 
edges in the sample spectrum [23, 24]. Normalization 
normalized residuals by transforming data to reach a 

Table 1 Two-step accelerated solvent extraction 
(ASE) method for  the  extraction of  resin and  rubber 
in Parthenium argentatum 

Preheat 0 min Pressure 1500 psi

Step 1: acetone extraction

 Heat 5 min Temp 100 °C

 Static 10 min Acetone 100%

 Flush% 100% Cyclohexane 0

 Purge 60 s Cycles 3

Step 2: cyclohexane extraction

 Heat 7 min Temp 140 °C

 Static 20 min Acetone 0

 Flush% 100% Cyclohexane 100%

 Purge 60 s Cycles 3
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linear relationship between samples. Baseline correction 
removed baseline offsets from the spectral data [25]. SNV 
reduced scattering interferences or (physical) variabilities 
between samples (i.e. centers at a zero mean intensity 
and unified standard deviation) [21, 25]. In this way, SNV 
corrected intensities and baseline deviations due to light 
scattering possibly generated by impurities or density 
fluctuations in the samples [25]. De-trending (DT) was 
a polynomial baseline correction method for suppress-
ing the baseline shifts and curvilinearity in spectra [26]. 
The SG derivatives removed baseline shifts and separated 
broad and overlapping NIR bands without significantly 
increasing spectral noise [21, 27].

Multivariate data analysis
Validation was used for the assessment of the PLSR 
results. Cross-validation (CV), or internal validation, 
divides a dataset into several subsets (or segments) with 
each one containing a certain amount of samples [28]. 
In one epoch, the first subset of data was used for train-
ing the model, and the remaining subsets were used for 
model testing. For every epoch, the training and testing 
data subsets were different. External validation (EV), 
however, divides a dataset into two different complemen-
tary subsets: one for training and another one for testing 
[28]. In our study, CV and EV were carried out for water-
stressed (DRY), non-stressed (IRR) and combined (ALL) 
datasets (Fig.  1). Each of the three datasets was divided 
into two subsets, calibration (CAL) and validation (VAL), 
comprising 80% and 20% of the original samples, respec-
tively. The VAL subsets were constructed by selecting 
every fifth scan of each sample and were used as a test 
set to evaluate the robustness of the developed model. 
The VAL subsets were only used in EV as testing subsets 

while CAL subsets were used as training sets for both CV 
and EV. The stability and robustness of the models were 
improved by removing non-significant variables through 
the Martens’ uncertainty test during CV [29]. For the 
ALL dataset, 1260 and 315 data points were assigned 
to the CAL and VAL subsets, respectively. For the DRY 
dataset, CAL and VAL subsets contained 588 and 147 
data points, respectively, while the IRR dataset contained 
672 and 168 data points under CAL and VAL subsets, 
respectively. In the CV, the CAL subset was used for 
model training and testing, where 20, 17 and 18 segments 
with each segment containing 63, 34 and 37 samples were 
used for ALL, DRY and IRR dataset, respectively. In the 
EV, the CAL to VAL subsets with a ratio of 4:1 were used 
for model training and testing. For all the above divisions, 
PCA was conducted to check the effects of different irri-
gation conditions and the homogeneity of sub-datasets. 
The Unscrambler  X® software (v.10.5, Camo Software 
AS) was then used for the establishment of all the follow-
ing partial least square regression (PLSR) models.

The performance of the PLSR models was determined 
by the following statistical parameters:

where  yi represents the measured values and fi represents 
the predicted values. A  R2 closer to 1 means a better fit of 
the measured values  (yi) to the regression line, and root 
mean square error (RMSE) determines the precision of 
the calibration model [30].Additionally, the residual pre-
dicative deviation (RPD) was calculated as:

A higher RPD value demonstrates a greater prediction 
power of the model [30]. In agricultural applications, 
especially for the materials that are more complicated in 
physical nature, RPD greater than 2.0 can be applied to 
rough screening and RPD greater than 3.0 can be inter-
preted as good in control quality of NIR models [31].

Finally, the optimal pretreatment approach was 
selected based on the above statistical parameters and 
used to compare the spectral data with varying wave-
length ranges between two different NIR machines. An 
interpretation of the regression coefficients of the devel-
oped models was undertaken to determine the important 
chemical components contributing to rubber and resin 

(3)

R2(coefficient of determination) =

∑

i

(

yi − fi
)2

∑

i

(

yi − ȳ
)2

(4)RMSE =

√

√

√

√

n
∑

i=0

(

fi − yi
)2
/n

(5)RPD =

Standard deviation of measured extracts

RMSE

Fig. 1 Diagram of the datasets used in cross validation (CV) and 
external validation (EV) processes
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contents. Based on this, calibration models were further 
upgraded using only the partial and characteristic wave-
length regions from previous PLSR models.

Results and discussion
Rubber and resin contents
Phenotypic variations were observed for adjusted rubber 
and resin content in guayule accessions grown under dif-
ferent irrigation conditions (Table 2). In general, guayule 
accessions grown under stressed conditions had higher 
resin and rubber content compared to non-stressed con-
ditions. The resin content of plants grown under stress 
conditions ranged from 8.33% to 21.03% with an aver-
age content of 13.92%, while plants grown under non-
stressed conditions had resin content ranging from 5.85 
to 17.44% with an average of 11.62%. Likewise, the rubber 
content of plants grown under stressed conditions ranged 
from 1.16 to 9.68% with an average of 3.94%, while under 
non-stressed conditions, the rubber content ranged from 
0.61 to 5.84% with an average of 2.83%. The observation 
of higher rubber content under dry conditions coincided 
with previous studies [20, 32].

Principal component analysis
The total of 1575 spectra obtained from ASD  FieldSpec®3 
were divided into two groups based on different sce-
narios: one was based on irrigation conditions (DRY and 
IRR) and another was based on calibration set (CAL) 
and validation set (VAL). The PCA results were shown 
in Fig.  2 to analyze the spectral variability between dif-
ferent sample groupings. The first, second and third PC 

accounted for 74.2%, 21.1% and 3.0% variations of raw 
spectral data, respectively. In total, the first three PC 
represented 98.3% variation of the raw spectral data. All 
samples in the DRY dataset distributed evenly in the IRR 
dataset (Fig.  2a). Likewise, all the samples in the CAL 
dataset distributed evenly in the VAL dataset (Fig.  2b). 
Thus, the division of the samples was homogenous and 
can be used for the following spectral analysis.

PLSR models based on whole wavelengths
The prediction models established for resin and rubber 
quantification using eight different pretreatments under 
two different validation methods were compared in 
Tables  3 and 4. In general, the pretreatments improved 
the power and precision for rubber and resin predictions 
compared to no pretreatment. Even though both CV and 
EV concede a considerable confidence level in suppress-
ing overfitting problems for PLRS models [33], external 
validation (EV) in the current study generated better cali-
bration models than cross validation (CV) when the same 

Table 2 Descriptive statistics for  adjusted resin 
and  rubber obtained from  accelerated solvent extraction 
(ASE)

N, the number of samples in the dataset; Max, maximum; Min, minimum; SD, 
standard deviation

DRY + IRR DRY IRR

Adjusted resin (%)

 N 1575 735 840

 Mean 12.70 13.92 11.62

 Max 21.03 21.03 17.44

 Min 5.845 8.33 5.85

 SE 0.08 0.11 0.10

 SD 3.05 2.90 2.77

Adjusted rubber (%)

 Mean 3.35 3.94 2.83

 Max 9.68 9.68 5.85

 Min 0.61 1.16 0.61

 SE 0.04 0.06 0.05

 SD 1.52 1.54 1.31

Fig. 2 Principal component analysis (PCA) scores for two scenarios. 
a PCA distribution between DRY and IRR datasets; b PCA distribution 
between DRY and IRR datasets
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pretreatment was used. This can be indicated by higher 
R2

(

R2
p > R2

cv

)

, smaller RMSE  (RMSEp < RMSEcv), smaller 
standard error (SEP < SECV), and higher RPD 
 (RPDp > RPDcv) (Tables 3 and 4). Similar results were also 
observed by previous studies in the estimation of bio-
chemical methane potential (BMP) [30] and stem water 
potential (ψstem) for the variety-specific model [33]. When 
under the same validation context (e.g. EV), the pretreat-
ment combination of standard normal variate (SNV), de-
trending (DT) and Savitzky–Golay 2nd derivative resulted 
in the most precise and robust PLSR model as compared 
to other pretreatments, indicating the efficiency of SNV in 
removing multiplicative interferences of scattering and 
particle size, of DT in suppressing baseline shifts and cur-
vilinearity in diffuse reflectance spectra, and of Savitzky–
Golay 2nd derivative in improving deconvolution of some 
overlapping spectral peaks to unveil hidden information 
under these peaks [30, 34]. Reliable models have also been 
constructed when the combinations of all or part of the 
three pre-processing approaches (i.e. SNV, DT, 2nd deriv-
ative) were used in previous studies [30, 35–37]. However, 
exceptions occurred with CV for resin content (Table 3), 
where the SNV + DT and smoothing + baseline + normal-
ization resulted in the highest R2

cv values for ALL and IRR 
datasets, respectively. This indicated that variations may 
occur when the same pretreatment approach was used for 
different datasets or under different validation processes.

Acetone and cyclohexane extracts (or resin and rubber)
The PLSR models for resin and rubber content were 
constructed by using NIR spectra obtained from rapid 
measurements in dry ground guayule stems. After the 
combination of SNV, DT and Savitzky–Golay 2nd deriva-
tive preprocessing, the  R2 and RPD values for predicting 
adjusted resin were slightly higher than that for adjusted 
rubber (Tables 3 and 4), indicating that the models estab-
lished for resin were more robust and precise than for 
rubber. From Tables 3 and 4, the R2

cv values for resin con-
tent were 0.729, 0.822 and 0.688 in ALL, DRY and IRR 
dataset, respectively, while the R2

p values were 0.764, 0.829 
and 0.765 with  RPDp values of 2.055, 2.415 and 2.065 for 
the three datasets, respectively. Likewise, for rubber con-
tent, the R2

cv values after pretreatment of SNV, DT and 
Savitzky–Golay 2nd derivate were 0.733, 0.756, and 0.728 
in ALL, DRY and IRR dataset, respectively, while the 
R2
p values were 0.756, 0.78 and 0.755 with  RPDp values 

of 2.024, 2.128 and 2.020 for the three datasets, respec-
tively. The greater the RPD value is, the more reliable the 
model will be [31], indicating that models established for 
resin were more robust and reliable than for rubber, and 
the models established separately for the samples grown 
under different conditions (i.e. DRY and IRR) could bet-
ter reflect and differentiate the predicting power for the 

traits of interests. To illustrate, under both CV and EV, 
the  R2 and RPD values from the DRY dataset were higher 
than putting all the dry and irrigated samples together 
while  R2 and RPD values from the IRR dataset were lower 
than the ALL dataset, meaning that putting all the sam-
ples from different growing conditions together might 
mitigate or weaken the predictive power and accuracy 
of models. Undeniably, our NIR models seem not as 
powerful as the ones  (R2 > 0.95) established by previous 
researchers [2, 4, 6, 18, 38]; however, the previous studies 
on rubber-producing plants were all based on a limited 
number of accessions and large numbers of NIR scans, 
and this technical strategy might lead to overestimation 
of the stability and accuracy in the prediction of PLSR 
models. In contrast, our models were based on 56 differ-
ent accessions representing a USDA guayule germplasm 
collection and included wild and improved genetic mate-
rials that were planted under different growth conditions 
[19]. Thus, these models could be more representative 
for general use in predicting guayule resin and rubber.

Comparisons between two different NIR instruments
A comparison between two commonly used NIR instru-
ments (ASD  FieldSpec®3 and Polychromix Phazir™) was 
made after the determination of the optimal pretreatment 
method, which was the SNV + DT + Savitzky–Golay 2nd 
derivate under EV context (Table  5). Not surprisingly, 
the ASD models with both whole wavelengths (750–
2500 nm) and partial wavelengths (1100–2400 nm, 1600–
2400 nm) generated significantly better predictive power 
than Polychromix models (1600–2400  nm), which can 
be seen from higher R2

p and  RPDp values in Table 5. This 
study is the first one that compares two commonly used 
NIR instruments for resin and rubber quantification. The 
better models established from ASD  FieldSpec®3 than 
Polychromix Phazir™ data were probably due to different 
signal/noise ratio, different ways that the samples were 
presented during measurements, the different stability of 
equipments or different spectral resolutions between two 
instruments Bangalore et al. [44].

In general, reflectance at different wavelengths depended 
on and were closely associated with the structures of 
chemical components. The original reflectance plot was 
provided (Fig.  3a). The second derivative of reflectance 
for guayule resin highlighted prominent peaks centered 
at 1184, 1385, 1668, 1690, 1886, 1914, 2248, 2278, 2297, 
and 2324 nm, while the sharp peaks and valleys for guay-
ule rubber occurred at 1205, 1389, 1410, 1686, 1716, 1736, 
1781, 1883, 1914, and 2260 nm (Fig. 3b, c). The similarity 
of prominent wavelengths for resin and rubber (Fig.  3d) 
was confirmed by the significant Pearson’s correlation 
coefficient between resin and rubber content in guayule 
(p = 0.038). However, this result contradicted the previous 
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Fig. 3 Important characteristic wavelengths contributed to partial least squares regression (PLSR) models for predicting resin and rubber content 
in guayule samples grown under dry condition. a The original absorbance spectra plot for all the scanned samples using ASD  FieldSpec®3 
spectrophotometer; b Second derivative of NIR reflectance spectra from ASD  FieldSpec®3 spectrophotometer for resin content; c Second derivative 
of NIR reflectance spectra from ASD  FieldSpec®3 spectrophotometer for rubber content; d Resin and rubber calibration beta coefficients from ASD 
 FieldSpec®3 spectrophotometer as a function of wavelengths
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results where the absence of high correlation between 
resin and rubber was observed despite common load-
ings [2]. The NIR spectrum obtained from samples grown 
under different irrigation conditions (i.e., DRY and IRR), 
even though with varying regression coefficients across 
wavelengths (Additional file 1: Table S1), generated simi-
lar peaks and valleys at the above spectral regions, which 
showed significant contributions to the calibration mod-
els for resin and rubber content in guayule (Fig.  3b, c). 
The wavelength regions between 1140 and 1250  nm and 
1360–1450 nm were correlated to the second overtone of 
C–H stretching [39], where the peaks at 1184, 1385  nm 
for resin and 1205, 1389, and 1410  nm for rubber were 
located. The wavelengths from 1640 to 1800 have been 
described as the first overtone of C–H stretching combi-
nation bands [40], where the peaks at 1668, 1690 nm for 
methyl groups in resin and 1686, 1716, 1736, 1781 nm for 
polyisoprenes in rubber were located. Similarly, Suchat 
et al. [2] and Black et al. [6] also found principle absorption 
bands within these ranges. Meanwhile, the bands from 
2200 to 2440 nm with peaks centered at 2248, 2278, 2297 
and 2324 nm for resin as well as 2260 nm for rubber could 
be due to the C–H stretching/C–H deformation combina-
tion [40] caused by surrounding molecules of rubber par-
ticles in guayule. In accordance, previous studies [2, 6] also 
identified prominent vibrations within the ranges of C–H 
stretch and deformation combination of  CH2 from lipids, 
and C–H/C=O stretch combination of aldehyde structure 
[39]. This is not surprising because lipids help form one 

of the major membrane components surrounding rubber 
particles [41] and aldehydes serve as functional groups 
bonded to natural rubber [42]. In addition, the prominent 
peaks occurring at 1886 and 1914  nm for resin as well 
as 1410, 1883, and 1914  nm for rubber were likely to be 
located within the O–H stretch first overtone within the 
ranges of 1400–1460 nm and 1900–1960 nm, which were 
associated with the absorption by water molecules.

PLSR models based on selected characteristic wavelengths
The best correlative PLSR models were developed within 
the range of 1100–2400  nm for resin and rubber under 
ALL, DRY and IRR datasets except for rubber in IRR 
dataset, where the range of 1600–2400  nm generated 
the best PLSR model (Table 5, Fig. 4). With this selected 
range, the R2

p for resin and rubber for the DRY dataset 
were improved to 0.846 and 0.793 with  RPDp of 2.542 and 
2.195, respectively. Likewise, the R2

p for resin and rubber 
for the IRR dataset were improved to 0.768 and 0.757 
with  RPDp of 2.079 and 2.030, respectively. In general, the 
PLSR models for guayule resin and rubber for the DRY 
dataset were again better than the IRR dataset, and the 
models for guayule resin were again more powerful than 
rubber. However, the PLSR models based on the charac-
teristic wavelengths (i.e. 1140–1250 nm, 1360–1450 nm, 
2200–2440  nm) were slightly less powerful than those 
based on the partial range (1100–2400  nm) (Table  5). 
Selecting a few characteristic wavelengths doesn’t 
always help improve model prediction precision. Similar 

Fig. 3 continued
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results were also observed by Kopicky [17], in which the 
best model was constructed within the range of 1100–
1800  nm instead of the characteristic wavelengths for 
rubber content. However, more optimization techniques 
such as genetic algorithms (GA), stepwise elimination 
(SE), simulated annealing (SA), and generalized simu-
lated annealing (GSA) can be implemented with PLS or 
internal PLS (iPLS) to improve the accuracy of predic-
tions for selected characteristic wavelengths [43–45]. The 
principle behind iPLS is to split the spectra into smaller 
equidistant subintervals and develop PLS models on each 
subinterval [43, 46]. Future research is needed to further 
optimize the selected characteristic wavelengths.

Conclusion
We have successfully constructed reliable high-through-
put PLSR models for the determination of resin and 
rubber in dry, ground, guayule biomass using NIR 
spectroscopy. The prediction power of the models for 
resin content were better than rubber content and the 

increased spectral resolution of data from the ASD 
 FieldSpec®3 improved the prediction accuracy as com-
pared to data from the Polychromix Phazir™. Samples 
collected from different growing conditions are sug-
gested to be separated for independent model estab-
lishment. In general, the established models might be 
used in the future to form a simple, low-cost and effi-
cient pipeline to maximize the phenotyping efficiency 
in determining guayule rubber content. The established 
models could enable guayule breeders to efficiently 
screen large populations for individuals with superior 
traits of interests.
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