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Abstract 

Background:  Cultivar recognition is a basic work in flower production, research, and commercial application. 
Chinese large-flowered chrysanthemum (Chrysanthemum × morifolium Ramat.) is miraculous because of its high 
ornamental value and rich cultural deposits. However, the complicated capitulum structure, various floret types and 
numerous cultivars hinder chrysanthemum cultivar recognition. Here, we explore how deep learning method can be 
applied to chrysanthemum cultivar recognition.

Results:  We propose deep learning models with two networks VGG16 and ResNet50 to recognize large-flowered 
chrysanthemum. Dataset A comprising 14,000 images for 103 cultivars, and dataset B comprising 197 images from 
different years were collected. Dataset A was used to train the networks and determine the calibration accuracy 
(Top-5 rate of above 98%), and dataset B was used to evaluate the model generalization performance (Top-5 rate of 
above 78%). Moreover, gradient-weighted class activation mapping (Grad-CAM) visualization and feature clustering 
analysis were used to explore how the deep learning model recognizes chrysanthemum cultivars.

Conclusion:  Deep learning method applied to cultivar recognition is a breakthrough in horticultural science with the 
advantages of strong recognition performance and high recognition speed. Inflorescence edge areas, disc floret areas, 
inflorescence colour and inflorescence shape may well be the key factors in model decision-making process, which 
are also critical in human decision-making.
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Background
Chrysanthemum × morifolium Ramat., which originated 
in China, has high ornamental and commercial value in 
the floriculture industry around the world [1–3], and its 
major production areas cover China, Japan, the Nether-
lands and South Korea [4]. The Chinese large-flowered 
chrysanthemum cultivar group is one of the largest cul-
tivar groups of chrysanthemum [5]. The growing num-
ber of new chrysanthemum cultivars bred around the 
world has made it harder to recognize, even if profes-
sional researchers may confuse chrysanthemum cultivar, 

which caused severe loopholes in the management and 
protection of chrysanthemum resources. Many difficul-
ties have been encountered in the cultivar recognition of 
large-flowered chrysanthemums, due to the large num-
ber of cultivars [2, 5] (Fig.  1a), the complex capitulum 
structure, the various floret types [6–8] (Fig. 1b), and the 
highly heterozygous genetic background [9, 10]. Thus, it 
is extremely challenging to recognize chrysanthemums 
accurately and rapidly.

In previous studies, the traditional morphologi-
cal method, the comprehensive mathematical statis-
tics method and molecular markers were used to solve 
the large-flowered chrysanthemum recognition prob-
lem. The traditional method utilized human decision-
making based on various morphological characteristics, 
e.g., flower diameter, colour, florescence and flower type 
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[11–13]. Numerical taxonomy and multivariate statisti-
cal analysis made the recognition process more objec-
tive and quantitative [3, 14–16], but required labourious 
and time-consuming manual measurements. Molecular 
markers have the potential to recognize cultivars with 
similar morphological features [17], but required labo-
ratory testing over long periods of at least half a day. At 
present, the rapid recognition of large-flowered chrysan-
themums is difficult to achieve.

Image-based deep learning methods have been increas-
ingly applied in the plant recognition field [18, 19] with 
the high-speed development of machine learning, which 
used machine self-learning from massive image data to 
identify the key features [20]. Compared with previous 
manual measurement methods, image capture could 
quickly transform plant morphological information to 
two-dimensional image information, thus it substantially 
simplified the process of plant phenotypic data collec-
tion [21]. Deep convolutional neural network (DCNN) 
has been used to identify thousands of plant species. 
Two deep learning architectures, namely, GoogLeNet 
and AlexNet, and 8189 images were used to recognize 
102 flower species [22]. Flower recognition applications, 
such as Flowers Partner [23], Flower Recognition [24] 
and XingSe [25], could recognize more than 4000 plant 
species based on the deep learning framework. Increases 
in data availability, along with advances in DCNNs, have 
made the related approaches more accurate, faster, and 
cheaper; hence, these approaches have the potential to 
significantly contribute to solving the problem of flower 
recognition. Well-trained automated plant recognition 
systems are now considered to be comparable to human 
experts in labelling plant on different images [26].

In this paper, we trained a DCNN classifier and used it 
to recognize large-flowered chrysanthemum cultivars. To 
the best of our knowledge, the perspective affects the rec-
ognition results. A balanced dataset, namely, dataset A, 
was constructed from 14,000 images of 103 cultivars. The 
images in dataset A were captured by using an automatic 
image acquisition device to photograph from predefined 
perspectives. Each image was reviewed via manual exam-
ination to ensure the accuracy of cultivar recognition. 
Dataset B was constructed from 197 images that were 
captured in previous years and was used to evaluate the 
model generalization performance, and the feature dis-
tribution of cultivars was observed via T-distributed sto-
chastic neighbour embedding (T-SNE). In addition, the 
gradient-weighted class activation mapping (Grad-CAM) 
method and feature clustering were used to interpret the 
deep learning model’s decision-making process from the 
human perspective. In the study, the main objective was 
to establish an image-based DCNN classifier for chrysan-
themum recognition that would provide high reference 
value for flower cultivar recognition and plant classifica-
tion research.

Methods
Image dataset A
Cultivar selection and plantation
The experimental material is traditional Chinese large-
flowered chrysanthemum cultivar group. 103 cultivars 
were selected (see Additional file 1: Fig. S1), and some of 
them were similar in terms of morphology (Fig.  2). The 
cultivar naming standard of the Chinese Chrysanthe-
mum Book was utilized [5].

Fig. 1  Complexity of chrysanthemum recognition. a Thousands of large-flowered chrysanthemum cultivars. b The chrysanthemum capitulum 
structure: (i) ray floret and (ii) disc floret
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Plantation work was carried out in the nursery of Bei-
jing Forestry University (Beijing, China) from April 2017 
to September 2017. Our cultivation was single-flower 
cultivation with 10 samples per cultivar. The process 
included cutting, pot changing, and colonization [8]. 
Water, fertilizer, insects, and disease control measures 
were supplied during this period.

Image acquisition
An automatic image acquisition device, which was 
designed by our researchers and the GreenPheno Com-
pany (Wuhan, China), was used to acquire images (80–
200 images per cultivar) from October 2017 to December 
2017. The flowerpot was placed on a horizontal rota-
tion platform (Additional file  1: Fig. S2), and the rota-
tion angle could be controlled by a computer. When the 
device rotation stopped, the flowerpot was automatically 
captured by three cameras from the top, oblique and 
side views. Because the cultivar height ranged from 0.5 
to 1.5 m, we designed a special mode to ensure that the 
image was focused. First, the flower height was deter-
mined by the side-view camera. Then, top-view and 
oblique-view cameras automatically moved up or down 
to maintain a specified focusing distance from the top of 
the flower. Additional details about this device are pro-
vided in Additional file 1: Figs. S2 and S3.

After image acquisition, all the images were manually 
annotated by two researchers over a month, and locally 
unfocused images were cleaned accordingly.

Dataset construction
Chrysanthemum dataset A (Fig.  3a) contains 14,000 
images (PNG format) of 103 cultivars of Chinese large-
flowered chrysanthemum that were captured in 2017. 
Preserving the percentage of samples for each class, we 

randomly divided all images into subsets (training, vali-
dation and testing).

Image dataset B
Chrysanthemum dataset B contains 197 images (2–3 
images per cultivar) of the same cultivars as in dataset A 
(Fig. 3b). The images were captured by our group with a 
digital camera (Canon EOS 750D) in 2008–2010 and in 
2016. Compared to the cultivars in 2017, the same cul-
tivars in those years had different cultivating conditions 
and climatic environment, which led to subtle changes 
in dataset B. In addition, the images that were captured 
via manual shooting have higher flexibility compared to 
machine shooting. To measure the model generalization 
performance, 197 images were imported into the estab-
lished classifier.

DCNN approach
Devices
The DCNN models were trained on the Ubuntu 16.04 
system on an NVIDIA TitanV GPU (Intel Xeon Gold 
5120) hardware platform using the Deep Learning GPU 
Training System (DIGITS) software, which was devel-
oped by NVIDIA.

Framework
Two pre-trained networks, namely, VGG16 and 
ResNet50 [27, 28], which were the models in the Ima-
geNet Large Scale Visual Recognition Competition (ILS-
VRC) in 2014 and 2015, were selected for the detection of 
a suitable model for chrysanthemum recognition.

In contrast to many common classification tasks of 
classifying images of various species, such as the Ima-
geNet task, our objective was to classify the images of 
one species into various cultivars. Hence, the model 
must extract the fine features of the callosity patterns 

Fig. 2  Similar cultivars in terms of morphology. a–c, b–d, e–g, and h–j are similar cultivars. The cultivar names are a ‘Baifenshizi’, b 
‘Qiongdaoshanyou’, c ‘Zilangfengguang’, d ‘Zilongwoxue’, e ‘Tangyuqiushi’, f ‘Jinfomian’, g ‘Jinshitou’, h ‘Tangyujinqiu’, i ‘Yulingguan’, and j ‘Baisongzhen’
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regardless of the image perspective. Dataset A is a small 
dataset with only 14,000 images. A common and highly 
effective approach for deep learning on small image data-
sets is to use a pre-trained network or transfer learning. 
A pre-trained network is a saved network that was previ-
ously trained on a large dataset, typically on a large-scale 
image-classification task. The spatial hierarchy of features 
that was learned by the pre-trained network is used to 
effectively serve as a generic model of the visual world; 
hence, its features can be used for many computer vision 
problems, even completely different classification tasks 
than the tasks for which it was trained [29]. There are 
two ways to use the pre-trained network: feature extrac-
tion and fine-tuning. Feature extraction was adopted in 
our DCNN. DCNN is composed of feature extractors 
and classifiers. The feature extractors that are learned by 
the pre-trained network have been proven effective in 
many computer vision problems. Therefore, a classifica-
tion model can be built on the basis of the pre-trained 
network. In Fig. 4, VGG16 or ResNet50 acts as a feature 
extractor. The classifier is comprised of two fully con-
nected layers (each includes 4096 hide units), a global 
averaging pooling layer and a dropout layer (0.25). The 
activation function is ReLU.

We used VGG16 and ResNet50 as the base archi-
tectures of the network. Although VGG16 is an older 
model that is far from the current state of the art and 
is heavier than many recent models, its architecture is 
simple, and it is easy to understand how the network 
obtains its final classification decision for a specified 

image. ResNet50 is famous for obtaining remarkable 
results on various image classification and object detec-
tion tasks. In some respects, ResNet50 is a state-of-the-
art method.

Training
DCNN requires a constant input dimensionality. 
Hence, the flower objects were cropped out from the 
original images (6000 × 4000 pixel), and the processed 
images (2000 × 2000 pixel) were down-sampled to a 
fixed resolution. We trained our DCNN models on 
the raw RGB values of the pixels. To obtain fixed-size 
(224 × 224 pixel) DCNN input images, the rescaled-
size (256 × 256 pixel) training images were randomly 
cropped (one crop per image per iteration). To further 
augment the training set, the crops underwent random 
transformations, including rotation, translation, shear-
ing, and random RGB colour shifting.

Via the transfer learning approach, a classification 
model could be built on the basis of the pre-trained 
network. Two pre-trained networks (VGG16 and 
ResNet50) were used to compare the classification 
results. Training used a batch size of 64 with a learn-
ing rate of 0.01 and was terminated after 20 epochs. 
The learning rate adjustment method was the STEP 
method. As an optimizer for our training algorithms, 
stochastic gradient descent (SGD) was used. After the 
training set image was completed, it was verified. The 
set was tested once in batches.

Fig. 3  Sample images from dataset A (a) and B (b)
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Evaluation
As our dataset was completely balanced, we could sim-
ply calculate the Top-1 and Top-5 accuracies for each 
cultivar as the averages across all images of the test set. 
Top accuracies have been widely used to evaluate DCNN 
models in computer vision and image classification; 
e.g., nearly all papers that present DCNN models that 
were evaluated on the ImageNet dataset presented their 
results in terms of both the Top-1 and Top-5 accuracies. 
Therefore, we applied the Top accuracies to our DCNN 
classifier that was trained on the Chrysanthemum data-
set. The Top-1 accuracy is the percentage of predictions 
for which the top prediction matches the ground-truth 

label; to calculate this value, the total number of correct 
predictions is divided by the number of data points in the 
dataset. When working with Chrysanthemum dataset, 
which included many class labels with similar character-
istics, we could examine the Top-5 accuracy as an exten-
sion of the Top-1 accuracy to evaluate the performance 
of our network (Fig. 5).

T‑SNE
T-SNE could be used to observe the distribution of the 
chrysanthemum dataset. T-SNE is a method for rep-
resenting the spatial distribution of features [30], and it 
projects high-dimensional data into two-dimensional or 

Pre-trained network Batch Normalization

3×3 Convolutional Global averaging pooling

ReLU Full connected + ReLU

Dropout Softmax

Output
Predicted
Cultivar

DCNN

Fig. 4  DCNN framework. Batch normalization was used to improve the performance and stability of DCNN. Dropout prevented DCNN from 
overfitting. Global average pooling can adapt to any input image size

Fig. 5  VGG16 model recognition. a An input image. b The feature extraction visualization results of each convolutional (conv), pooling and fully 
connected (fc) layer in VGG16 after transfer learning. c The Top-k results
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three-dimensional visualizations to observe the depth 
features of the cultivars in a spatial distribution, which 
is used to visually assess the model classification perfor-
mance. The main strategy is to use the joint probability 
distribution pij with symmetry to represent the distances 
between the sample points in the high-dimensional 
space [30]. In this paper, we used the T-SNE algorithm 
to observe the distribution of the high-dimensional fea-
tures of each image. We extracted the 4096-dimensional 
features from the 7th layer (fc7) of the chrysanthemum 
recognition model (VGG16 as a pre-trained network) for 
each image in the dataset training set (11,200 images), 
and we visualized the high-dimensional features in two-
dimensional space. The perplexity was 50 and n_iter was 
2000.

Grad‑CAM visualization
DCNNs are often described as ‘black-boxes’; they learn 
feature representations that are difficult to interpret in 
a human-readable form. However, the behaviours of 
DCNNs may be interpreted via Grad-CAM visualization 
[31]. This approach has been applied to image analysis of 
soybean plant disease leaves [32]. The main strategy of 
this approach was to extract the information of the last 
feature map of the convolutional network (VGG16 as a 
pre-trained network) to weight the corresponding gradi-
ent to produce a location map for displaying key recogni-
tion areas in the image [31]. Via Grad-CAM visualization, 
we could determine which parts of a chrysanthemum 
image were important when it was identified as belong-
ing to a specified class.

Feature clustering analysis
A 4096-dimensional feature was extracted in the 7th acti-
vation layer of the model (VGG16 as a pre-trained net-
work) from each of the 103 cultivar images (5 images per 
cultivar), and the features of 5 images were averaged for 
each cultivar. The features could reflect the understand-
ing of model regarding each cultivar image. Hierarchical 
clustering analysis was conducted on the features of 103 
cultivar images using MATLAB 2014a (MathWorks, MA, 
USA). The calculated distance was set as the cosine dis-
tance, the measurement method was ward and the clus-
tering method was the shortest-distance method.

Results
Model accuracy performance
Top-k accuracy rate indicators on dataset A were used to 
the model evaluation. Table 1 lists the calibration accura-
cies of the VGG16 and ResNet50 networks. The results 
demonstrate that the recognition accuracies are suffi-
ciently high.

Model generalization performance
The generalization performance is the recognition per-
formance of the DCNN model on new images. Dataset 
B, which differs substantially from dataset A, was used to 
measure the model generalization performance. Accord-
ing to Table 2, the two network structures achieved high 
recognition accuracies. ResNet50 achieved an accuracy 
of 69.86%. Figure 6 presented the cases that correspond 
to the Top-5 recognition results. Many cultivars in the 
Top-5 prediction list were highly similar morphology, 
especially in terms of flower colour.

Feature distribution
The distribution of the features were extracted from the 
various cultivar images by the model that was based on 
the ResNet50 network. The features of the images of 
the same cultivar had strong aggregation characteristics 
(Fig. 7); hence, the features could accurately describe the 
various chrysanthemum cultivars.

Model decision‑making process analysis
According to the heat maps that were generated by the 
Grad-CAM method (Fig.  8), the model paid substantial 
attention to inflorescence edge areas and disc floret areas, 
and it paid little attention to the leaves and the black 
background. For the cultivars whose centre disc florets 
were visible (Fig.  8a), the model focused on the centre 
disc floret areas, followed by the inflorescence edge areas. 
For the cultivars whose centre disc florets were invisible 
(Fig.  8b), the model focused on the inflorescence edge 
areas. In summary, the inflorescence edge areas and disc 
floret areas were the key recognition positions.

Clustering analysis was carried out on the 103 cultivar 
image features, which are presented in a tree diagram 
(Fig.  9). When the distance was 1.8 to 2.2, 103 cultivar 

Table 1  Top-1 and Top-5 calibration accuracies for VGG16 
and ResNet50 on dataset A

Pre-trained network Top-1 (%) Top-5 (%)

VGG16 89.43 98.59

ResNet50 95.39 99.51

Table 2  Top-1 and Top-5 accuracies for VGG16 and ResNet50 
on dataset B

Pre-trained network Top-1 (%) Top-5 (%) Analysis time 
per image 
(ms)

VGG16 51.93 78.21 10

ResNet50 69.86 88.19 15
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image features were clustered into two categories, which 
had little readily observable morphology regularity 
between the corresponding cultivar images (Fig.  9a). 
When the distance was 1 to 1.2, the cultivars with simi-
lar colour were clustered together, especially white and 

yellow cultivars (Fig.  9a). When the distance was 0.6 to 
0.8, the cultivars with similar flower shape were clustered 
together (Fig. 9b–d). In summary, the inflorescence col-
our and shape were highly correlated with the features 
that were extracted by the model.

Fig. 6  Top-5 recognition results. On the top of each image, the cultivar name is specified, such as ’Bingjingyujie’; on the bottom, the recognition 
accuracy is specified

Fig. 7  Feature distribution maps. Each point represents a high-dimensional feature of an image and each colour represents a label of cultivars
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Discussion
Advantages of image‑based deep learning method
Plant morphological identification is conducted by 
the naked eye via qualitative comparison to identify 
the differences in shape among species. It is difficult to 
transform species information into data for statistical 
mathematical analysis [33]. Compared with traditional 
morphological data collection methods, the image acqui-
sition method has the advantages of high speed, high effi-
ciency and ability to carry large amounts of information, 
thereby substantially simplifying the process plant phe-
notypic data collection [21, 34].

Deep learning method is a potential research method 
for identifying plants [35–38]. Compared to inter-species 

recognition [39], cultivar recognition with high intra-
class variability and small inter-class differences is a 
more challenging task. Compared to traditional methods, 
which take at least half a day, the DCNN models took 
10 ms (VGG16) and 15 ms (ResNet50) to analyse a sin-
gle chrysanthemum image (Table 2), rapidly. In addition, 
the DCNN that is utilized in this paper can recognize 
cultivars with high similarity in terms of morphology, 
whereas applied shallow learning methods [40, 41] per-
formed poorly on similar chrysanthemum cultivars. In 
addition to birds [42], cats and dogs [43] and other clas-
sification tasks, this paper demonstrates that the deep 
learning method also performs well in the classification 
of chrysanthemum cultivars.

Fig. 8  Heat maps of eight large-flowered chrysanthemum images. a Cultivars whose centre disc florets are visible and b cultivars whose centre disc 
florets are invisible. Eight cultivars of chrysanthemum are shown in i–viii. In each heat map, the warmer the pixel’s colour, the more attention the 
model pays to it. The red areas represent the most critical recognition areas of the model
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Fig. 9  Clustering analysis of features of 103 cultivar images
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New challenges of chrysanthemum recognition
Although deep neural networks have high recognition 
accuracy, their lack of decomposability into intuitive and 
understandable components renders them difficult to inter-
pret [44]. As the large-flowered chrysanthemum phenotype 
is highly complex, traditional morphological methods must 
be combined with multiple traits [3, 14, 16]. How does the 
deep learning model recognize chrysanthemum? We found 
that the inflorescence centre and edge areas are important 
recognition areas and that chrysanthemum images with 
similar colour or flower shape are always clustered in the 
same class. This paper reports our initial attempt at clus-
tering analysis. Although our paper did not define the key 
recognition features of large-flowered chrysanthemums, it 
demonstrated a fruitful exploration process.

Since hardly any professional chrysanthemum data-
set was available online, we established a high-defini-
tion large-flowered chrysanthemum image database by 
recording, storing and sorting chrysanthemum images, 
which has important significance and value for chrysan-
themum image research. A large set of image data is the 
training basis of a deep learning model. Moreover, the 
plant phenotype may change with the spatial and tempo-
ral conditions. By continuously photographing the same 
chrysanthemum, we found that some cultivars’ pheno-
types dramatically changed during their flower opening 
process, as shown in Fig. 10. Therefore, researchers must 
collect phenotypic images of the same cultivar in various 
states, which will pose new challenges in the chrysanthe-
mum recognition task in the future.

Conclusions
A new method for large-flowered chrysanthemum cul-
tivar recognition is proposed in this paper. The ideal 
application is that by uploading a single chrysanthemum 
image to our system, researchers can quickly obtain the 
Top-5 cultivar information for predicting the cultivar 
name with the corresponding cultivar images from the 
system. In addition, newly uploaded images could be 
reused as input samples for the next iteration, which con-
tinuously improves the generalization performance of the 
model.
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