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Abstract 

Background:  Predicting impact of plant tissue culture media components on explant proliferation is important 
especially in commercial scale for optimizing efficient culture media. Previous studies have focused on predicting the 
impact of media components on explant growth via conventional multi-layer perceptron neural networks (MLPNN) 
and Multiple Linear Regression (MLR) methods. So, there is an opportunity to find more efficient algorithms such as 
Radial Basis Function Neural Network (RBFNN) and Gene Expression Programming (GEP). Here, a novel algorithm, i.e. 
GEP which has not been previously applied in plant tissue culture researches was compared to RBFNN and MLR for 
the first time. Pear rootstocks (Pyrodwarf and OHF) were used as case studies on predicting the effect of minerals and 
some hormones in the culture medium on proliferation indices.

Results:  Generally, RBFNN and GEP showed extremely higher performance accuracy than the MLR. Moreover, GEP 
models as the most accurate models were optimized using genetic algorithm (GA). The improvement was mainly 
due to the RBFNN and GEP strong estimation capability and their superior tolerance to experimental noises or 
improbability.

Conclusions:  GEP as the most robust and accurate prospecting procedure to achieve the highest proliferation qual-
ity and quantity has also the benefit of being easy to use.

Keywords:  Gene expression programming, Radial basis function neural network, Genetic algorithm, Multiple linear 
regression, Pyrodwarf, OHF, Pear rootstock
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Background
Graft incompatibility and fruit quality are the present and 
future challenges that pear orchards are facing with them 
[1, 2]. In this framework, Pyrodwarf and OHF dwarfing 
rootstocks acquired from Pyrus communis were used. 
Pyrodwarf a hybrid of “Old Home” and “Gute Luise” is 
particularly tolerant to winter cold temperatures, calcare-
ous soils and has a highly significant compatibility with 

all pear varieties. Moreover, it is characterized by a high 
precocity, good productivity, and producing uniform in 
size fruits with pear cultivars [3]. OHF as a cross between 
“Old Home” and “Farmingdale” cultivars, has reason-
ably resistance to fireblight, excellent anchorage and is 
compatible with all pear cultivars [4, 5]. Therefore, many 
problems with pear orchards are largely overcome by use 
of these rootstocks, and based on the above reasons, both 
rootstocks are recommended for high-density planting 
systems. Classic methods for propagation of pear such 
as cutting and layering which have been mostly used, 
are too expensive, time consuming and labor intensive 
[6]. Micropropagation is a reliable technique that plays a 
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decisive role in rapid propagation of pear and research-
ers have claimed considerable success with this approach. 
The responses of pear cultivars to micropropagation are 
significantly variable, so that some cultivars have exhib-
ited disorders like shoot tip necrosis [7], hyperhydric-
ity [8–10], fascination [11] and hooked leaves [9], while 
some of them grow well [12].

According to the previous studies, [13] (MS) is a very 
common medium in pear micropropagation but it is 
not appropriate medium in all cases. That is why recent 
investigations have focused on optimization of the cul-
ture medium [10, 14, 15]. Several studies have been done 
on modifying MS medium by changing the level of plant 
growth regulators (PGRs) [8, 12, 16–18]. Wada et al. [19] 
found that increasing mesos nutrients content of MS 
medium improves multiplication rate in several pear 
cultivars and alleviates some physiological disorders. 
Reed et al. [7] adjusted MS medium by increasing mesos 
levels (1.5 × MS) and reducing nitrogen compounds 
(0.5–0.8 × MS) to produce shoots without physiological 
abnormalities in some pear genotypes. Wada et  al. [20] 
found that some pear cultivars require high NO3

− (52 
to 60  mM), low to moderate NH4

+ (data not shown) 
and high mesos concentrations (1.5 × MS) for the best 
growth results. Another approach for optimization of MS 
medium was performed by [21] who suggested that add-
ing meta-topolin (6–9 µM), an aromatic cytokinin, to MS 
medium increases significantly the multiplication rate 
and shoot quality in OHF-333 (another clonal selection 
of Old Home × Farmingdale).

Due to various nutrition necessities of different plant 
species, it is difficult to obtain an optimized culture 
medium. Therefore, it is important to employ a trustwor-
thy modeling system to achieve the highest growth per-
formance [15].

Biological systems are difficult to understand and 
model, largely due to the complexities of their system 
and non-linear nature; moreover, their dynamic charac-
teristics are poorly understood. Usually, it is difficult to 
clarify biological interactions by traditional models and 
algorithms, particularly in the complex and noisy data 
set. Additionally, many studies have demonstrated that 
plant biology needs more attempts to find developing 
platforms for combining multidimensional data in order 
to draw biological interactions.

In recent decades, several meta-modeling techniques 
have been emerged as promising methods for mod-
eling high dimensional and non-linear processes. Arti-
ficial neural networks (ANN) [22, 23], gene expression 
programming (GEP) [24–26], fuzzy logic (FL) [27] and 
statistical methodologies [20] are the best examples. 
Previous investigations have demonstrated that artificial 
intelligence (AI) based modeling approaches are vastly 

superior in modeling process to all other techniques [15, 
28].

The capability to quickly and effectively emulate non-
linear trends in data operation have helped setting up 
AI technology as a reliable meta-modeling platform for 
surrogate modeling in a wide variety of practical assign-
ment, including science and engineering, because of their 
ability to utilize learning algorithm and detect input–
output relationships in intricate, nonlinear processes. 
Among the numerous aspects of the AI paradigms, ANN 
technique has a wide range of applications in the field of 
plant biology and prediction of bioprocess quantitative 
properties. Successful applications of this approach have 
been reported in many studies. Among others, ANN was 
found as a promising technique to assess the effects of 
mineral nutrients on plant growth and productivity [29]. 
ANN and Response surface method (RSM) were uti-
lized to model and optimize fermentation media and the 
results showed that ANN performed significantly better 
than the RSM methodology [30]. ANN models superi-
ority to traditional statistical analysis was confirmed for 
assessing the plant biological processes [31]. ANN was 
applied to model the effects of cultivar and exogenous 
auxin on in  vitro rooting and acclimatization of some 
grapevine genotypes [32]. Culture media composition 
was modeled by using a hybrid ANN-genetic algorithm 
(ANN-GA) method and compared with regression tech-
niques [10] and the superiority of the ANN-GA over the 
traditional methodology was proved. ANN was found as 
a very accurate method in modeling and predicting the 
composition of G × N15 rootstock proliferation culture 
medium [15].

Radial basis function neural network (RBFNN) is one 
of the most popular feed-forward ANN architectures in 
the literature for forecasting problems, among which the 
back-propagation (BP) algorithm is the most extensively 
used, and is a supervised learning model. The RBFNN 
can be considered as a special three-layer feed forward 
network which has certain advantages including better 
approximation capabilities, fast learning algorithms, sim-
ple network structures, and will not encounter the local 
minima problems [33, 34]. RBFNN can illuminate the 
complex law between the inputs and outputs through a 
fitting process that allows it to approximate any nonlinear 
function [35–38].

Although the reported approaches are fitting for mod-
eling culture media, no approaches have been reported 
to provide effective and clear modeling results as well as 
explicit formulations of the studied phenomenon with-
out presuming previous shape of the relationship [39, 
40]. This induces us to use and suggest a novel method 
to bridge these gaps among contemporary paradigms. 
Genetic programming (GP) [41] is a fairly new soft 
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computing approach for the behavior modeling of struc-
tural engineering problems. GP is an extension of GA 
which searches a program space instead of a data space. 
The main advantage of the GP-based approaches is their 
ability to generate prediction equations without assum-
ing prior form of the relationship. Many researchers have 
employed GP and its variants to discover any complex 
relationships among experimental data [42–44]. Gene 
expression programming (GEP) [45] is a recent exten-
sion to GP. GEP evolves computer programs of different 
sizes and shapes encoded in linear chromosomes of fixed 
length. The GEP chromosomes are composed of multiple 
genes, each gene encoding a smaller subprogram [42]. 
The GEP approach is shown to be an efficient alternative 
to the traditional GP [45, 46].

The researches mentioned above exhibit the poten-
tial of AI methodologies as appropriate modeling tools 
for plant tissue culture. However, the literature survey 
revealed that no investigation has been done to use GEP 
for predicting new culture medium. This gave new impe-
tus to the present study.

The purpose of this paper is to apply two soft comput-
ing techniques namely RBFNN and GEP and to compare 
their prediction accuracy to Multiple Linear Regression 
(MLR) method as well as using GA algorithm aiming to 
predict and optimize pear culture media. The main con-
tributions of this paper are as follows:

•	 Investigating the application of the GEP and RBFNN 
for modeling the effects of macronutrients and hor-
mones on in  vitro culture of Pyrodwarf and OHF 
rootstocks.

•	 Development of GEP-GA models in order to evalu-
ate how Pyrodwarf and OHF microshoots respond to 
the mineral medium based on the number and length 
of new formed shoots obtained from the design of 
Box-behnken.

•	 Finding the optimal culture medium composition 
for maximizing the proliferation rate (PR), the aver-
age shoot length (SL), the quality index (QI), and 
minimizing shoot tip necrosis (STN) and vitrification 
(Vitri) by optimizing the obtained model using GA.

Results
This section evaluates the performances of the proposed 
models by analyzing the accuracy of each modelling 
approach for predicting the plant tissue culture media 
composition to studied fruit tree rootstocks micropro-
pagation. Then GA-optimization of the most accurate 
modeling approach results is evaluated to achieve the 
most appropriate media compositions for each studied 

parameter. A framework of the performed experiments 
to achieve the best model is presented in Fig. 1.

Comparison of MLR, RBFNN and GEP prediction models
The models were developed using MLR, RBFNN and 
GEP methods considering the media components vari-
ables that mainly affect the explant proliferation param-
eters. The MLR predictive model could not explain high 
variability of growth parameters due to the interac-
tion of the variables considered, which may cover the 
media components effects. The mathematical equations 
obtained from GEP method that best approximate the 
growth parameters are given in Table  1. Moreover, the 
R2, RMSE, MARE and MBE statistics of each developed 
model are given in Table 2.

Results of the calculated statistics for output variables 
(PR, SL, Vitri, STN and QI) corresponding to the GEP 
and RBFNN showed a substantially higher accuracy of 
prediction than for MLR models. As, the amounts of cal-
culated R2 for GEP and RBFNN vs. MLR models were: 
PR = 0.992 and 0.957 vs. 0.583, SL = 0.974 and 0.990 vs. 
0.904, STN = 0.961and 0.882 vs. 0.674, Vitri = 0.969 and 
0.883 vs. 0.511 and QI = 0.943 and 0.891 vs. 0.668 in OHF 
and PR = 0.994 and 0.908 vs. 0.315, SL = 0.978 and 0.924 
vs. 0.357, STN = 0.954 and 0.906 vs. 0.855, Vitri = 0.936 
and 0.901 vs. 0.909 and QI = 0.944 and 0.923 vs. 0.902 in 
Pyrodwarf, respectively (Table 2).

Comparing the accuracy results of GEP and RBFNN 
(Table  2) showed that GEP is more accurate in case of 
all studied parameters in both rootstocks except SL 
in OHF (R2 = 0.974 and 0.990, RMSE = 0.14 and 0.22, 
MARE = 0.034 and 0.058 and MBE = 0.012 and 0.040 
for RBFNN and GEP, respectively). Therefore, to find the 
optimized medium for achieving the highest quality and 
quantity in proliferation, we optimized constructed GEP 
models using GA technique.

Fig. 1  Framework of the performed experiments
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GEP models optimization
Finally, the GEP models were analyzed to find the opti-
mum levels of NH4NO3, KNO3, mesos nutrients, 
micro-nutrients and 6-benzylaminopurine (BA) and 
indole-3-butyric acid (IBA) hormones to be used in the 
culture medium for achieving the maximum PR, SL and 
QI, as well as the minimum STN and Vitri occurrence in 
Pyrus rootstocks. The predicted values and the optimiza-
tion of studied growth parameters by the GEP models are 
presented in Table 3.

Comparing observed and predicted outputs showed 
the behavior of the constructed models from investigat-
ing inputs. The GA optimization analysis on the GEP 
model showed that media containing 1.56 NH4NO3, 1.19 
KNO3, 1.75 mesos nutrients, 3.28 micro-nutrients, 2.08 
BA and 0.13 IBA could lead to optimal PR in Pyrodwarf 
(13.0) and media containing 2.00 NH4NO3, 1.19 KNO3, 
0.62 mesos nutrients, 2.13 micro-nutrients, 1.59 BA 
and 0.17 IBA resulted in optimal PR in OHF (9.4). The 

optimal SL in pyrodwarf (5.0 cm) could be obtained with 
media comprising 1.83 NH4NO3, 0.51 KNO3, 1.74 mesos 
nutrients, 2.60 micro-nutrients, 0.60 BA and 0.16 IBA 
and in OHF (5.0) with media containing 0.90 NH4NO3, 
1.35 KNO3, 2.04 mesos nutrients, 3.45 micro-nutrients, 
1.81 BA and 0.10 IBA. Results of our study exhibited 
that media containing 0.93 NH4NO3, 0.50 KNO3, 2.30 
mesos nutrients, 0.64 micro-nutrients, 0.51 BA and 0.07 
IBA and 1.08 NH4NO3, 0.51 KNO3, 1.58 mesos nutri-
ents, 2.36 micro-nutrients, 1.93 BA and 0.15 IBA could 
lead to minimum STN in pyrodwarf (0.00) and OHF 
(0.02), respectively. In Pyrodwarf rootstock (4.0), media 
with 0.50 NH4NO3, 0.50 KNO3, 2.50 mesos nutrients, 
2.76 micro-nutrients, 0.50 BA and 0.05 IBA could result 
in the optimal point for Vitri, whereas in OHF rootstock 
(0.02) the optimal point for Vitri could be achieved with 
media supplemented with 0.50 NH4NO3, 1.27 KNO3, 
1.49 mesos nutrients, 1.52 micro-nutrients, 1.31 BA and 
0.14 IBA. Lastly, the optimization results of RBFNN 

Table 1  Developed equations using gene expression programming for predicting explant growth parameters

A: NH4NO3, B: KNO3, C: mesos, D: minor, E: 6-benzylaminopurine (BA), F: indole-3-butyric acid (IBA)
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models revealed that media containing 0.89 NH4NO3, 
0.50 KNO3, 2.50 mesos nutrients, 4.0 micro-nutrients, 
0.50 BA and 0.05 IBA in Pyrodwarf (4.99) and 0.99 
NH4NO3, 0.53 KNO3, 1.88 mesos nutrients, 2.12 micro-
nutrients, 2.59 BA and 0.18 IBA in OHF could produce 
optimal explant quality.

The media components suggested by the optimized 
GEP model revealed that although decrease in NH4NO3, 
KNO3 and micro-nutrients and BA and IBA hormones 
and increase in mesos nutrients may reduce PR but it 
also may reduce STN and Vitri occurrences which cause 
the higher QI of in vitro multiplied Pyrodwarf rootstock. 
But it was a little different for OHF rootstock as decrease 
in NH4NO3 and KNO3 and increase in mesos nutrients 
and BA hormone caused lower STN and higher QI, 
but decrease in KNO3 was not effective on Vitri reduc-
tion. The positive effect of reduction in NO3

− and NH4
+ 

concentrations on PR has also been previously reported 
[15] on G × N15 rootstock. In addition, the effective role 
of higher concentration of some mesos components like 
CaCl2 has also been stated b by [47].

Discussion
AI has recently been successfully and progressively 
applied in plant bio-researches [48] as well as for predict-
ing the optimal plant tissue culture conditions [49] and 
media components [10, 15, 50, 51]. The in vitro plant tis-
sues development is under control of the culture media 
nutrients. As the optimization of the media mineral com-
position is a laborious and time-consuming job, so pre-
dicting the favorable growth media composition is very 
helpful for achieving maximum efficiency. Developing 
neural models to investigate the effect of sucrose and 
light on the in  vitro proliferation of kiwifruit (Actinidia 

Table 2  Comparison statistics on  different constructed models using MLR, RBFNN and  GEP techniques for  PR, SL, STN, 
Vitri and QI of OHF and Pyrodwarf rootstocks during in vitro proliferation

Rootstock Measured parameter Model RMSE MARE MBE R2

OHF PR MLR 1.82 0.534 0.030 0.583

RBFNN 0.69 0.138 − 0.014 0.957

GEP 0.48 0.128 − 0.015 0.992

SL MLR 0.38 0.104 − 0.005 0.904

RBFNN 0.14 0.034 0.012 0.990

GEP 0.22 0.058 0.040 0.974

STN MLR 10.77 0.523 0.184 0.647

RBFNN 6.95 0.211 0.118 0.882

GEP 4.21 0.138 − 0.096 0.961

Vitri MLR 9.83 0.649 − 0.222 0.511

RBFNN 5.27 0.169 − 0.351 0.883

GEP 3.26 0.132 0.075 0.969

QI MLR 0.87 0.269 − 0.019 0.668

RBFNN 0.52 0.155 − 0.028 0.891

GEP 0.45 0.160 − 0.018 0.943

Pyrodwarf PR MLR 3.58 1.160 − 1.572 0.315

RBFNN 1.49 0.379 0.087 0.908

GEP 0.38 0.071 − 0.003 0.994

SL MLR 1.13 0.552 0.011 0.375

RBFNN 0.43 0.194 − 0.007 0.924

GEP 0.30 0.130 0.009 0.978

STN MLR 6.48 0.217 − 0.438 0.855

RBFNN 5.42 0.158 − 0.456 0.906

GEP 4.22 0.126 0.045 0.954

Vitri MLR 5.86 0.193 0.915 0.909

RBFNN 5.56 0.158 − 0.499 0.901

GEP 4.59 0.142 − 0.496 0.936

QI MLR 0.47 0.171 − 0.063 0.902

RBFNN 0.43 0.163 0.032 0.923

GEP 0.41 0.160 − 0.018 0.944
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deliciosa) [31] and the effect of macronutrients content 
in the culture media on the G × N15 explant growth [15] 
are some examples. In our previous work on pear root-
stocks (OHF and Pyrodwarf ), we modeled the effect 
of the eight macronutrients concentrations on explant 
growth parameters by evaluating the optimal structure of 
the multilayer perceptron neural network (MLPNN) [10]. 
The mentioned study showed that ANN-based analyses 
are promising in predicting the required macronutrients 
concentrations for maximizing the explant PR and SL and 
minimizing the explant STN, chlorosis, and Vitri which 
was not possible using linear regression analysis [10].

In the present study, we used RBFNN as a more robust 
predicting tool than MLPNN due to working as an inter-
polator in multidimensional space whereas MLPNN 
works in stochastic manner. In the other words, RBFNN 
is more ‘function approximator’ than ‘pattern recognizer’ 
whilst MLPNN is the contrary [52]. GEP also was used 
as an expansion of GA and GP to predict the relation-
ship between input and output. The MLR was also used 
to compare the power of new above mentioned methods 
in predicting the optimal points of plant tissue culture 
media components for achieving the most appropriate 
results in proliferation of Pyrus rootstocks.

The main advantage of ANN-based models is that they 
do not require a preceding specification of appropriate 
fitting function so; they have a general approximation 
capability to estimate practically all types of non-linear 
functions. This flexibility characteristic may benefit the 
modeler to construct a model with the highest probable 
prediction accuracy.

One of the most important advantages of using GP-
based methods like GEP, over other approaches is 
their ability for production of prediction equations 
without any assumption for prior form of the relation-
ship. GP as well as its variants have been employed by 
many researchers to discover any complex relation-
ships which fit various experimental data [53–55]. A 
population of individuals is used in this method and 
then, better individuals are selected by employing 
genetic variations and fitness function. Genetic opera-
tors introduce the genetic variations. GEP as a learning 
machine is supposed to learn the relationship between 
variables in groups of data. The difference between 
GEP and its precursors GP and GA is in the way of 
individual programming as in GEP, individuals are pro-
grammed as fixed length linear strings (chromosomes) 
which are shown eventually by expression trees which 
are a simple diagram presentation. While, individuals 

Table 3  Optimization analysis on  GEP models to  achieve maximum PR, SL and  QI and  minimum STN and Vitri in  OHF 
and Pyrodwarf pear rootstocks

Pyrus rootstock NH4NO3 KNO3 Mesos Minor BA IBA

Pyrodwarf

 PR

  13.00 1.56 1.19 1.75 3.28 2.08 0.13

 SL

  5.00 1.83 0.51 1.74 2.60 0.59 0.16

 STN

  0.00 0.93 0.50 2.30 0.64 0.51 0.07

 Vitri

  4.00 0.50 0.50 2.50 2.76 0.50 0.05

 QI

  4.99 0.89 0.50 2.50 4.00 0.50 0.05

OHF

 PR

  9.42 2.00 1.19 0.62 2.13 1.59 0.17

 SL

  4.99 0.90 1.35 2.04 3.45 1.81 0.10

 STN

  0.02 1.08 0.51 1.58 2.36 1.93 0.15

 Vitri

  0.02 0.50 1.27 1.49 1.52 1.32 0.14

 QI

  4.84 0.99 0.53 1.86 2.12 2.59 0.18
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are expressed in GP and GA as fixed length linear 
strings (chromosomes) and nonlinear entities of differ-
ent shapes (parse trees) and sizes, respectively. Genetic 
operators work at the chromosome level in GEP mak-
ing creation of genetic diversity very simple, which is 
considered as one of its strengths over GP and GA. The 
unique, multi-genic nature of GEP is its other signifi-
cant point allowing more complex programs with sev-
eral sub-programs to be evolved. The benefits of both 
GP and GA are combined in GEP, while some of their 
limitations are met [39].

Our previous results on the same Pyrus rootstocks 
showed that the performance of explant in response 
to macronutrients concentrations varies according to 
the pear rootstock genotype, as well. So that, NO3

− 
was found to be critical for OHF explant while NH4

+ 
was found to be critical nutrient for Pyrodwarf explant 
growth and therefore, we suggested that the use of 
ANN-based model analyses would lead us to detect the 
optimized macronutrient concentrations essential to 
maximize the PR and SL and minimize the occurrence of 
STN and Vitri [10]. Due to the complicated interactions 
between medium components, determining minerals and 
hormones optimum levels for a special genotype is very 
difficult [56]. Moreover, different media are needed for 
optimal growth of Pyrus genotypes because of the inci-
dence of the physiological disorders like hyperhydricity 
and necrosis at the explant multiplication stage. In order 
to design an optimized culture medium, use of a trust-
worthy mathematical modeling and optimization tech-
nique is necessary to achieve an optimal and efficient 
growth [10, 15, 50, 51]. Diverse statistical techniques 
have been used previously to design new and effective 
plant tissue culture media [10, 15, 32, 50, 51, 57]. RSM 
and MLR have been constantly applied to optimize new 
in  vitro media for pear genotypes [10, 19]. The studies 
reported that ANN-GA models had a significantly higher 
accuracy of prediction than RSM and MLR [10, 58]. It 
has been reported that RSM and MLR alone could not be 
reliable methods for estimating non-polynomial or non-
linear relationships among variables [10, 59].

Briefly, we found different RBFNN-based models with 
optimization algorithm to integrate the obtained data 
set of the in vitro responses of Pyrus rootstocks to nutri-
ents and hormones concentrations. These optimized 
models could reveal the importance of each studied 
nutrient or hormone in increasing or decreasing each 
studied feature. Previous studies using ANN-GA mod-
els on G × N15 Prunus rootstock from a gathered data 
proposed that the role of NH4

+, NO3
−, PO4

2−, Ca2+, and 
K+ were more important than SO4

2−, Mg2+, and Cl− in 
in vitro proliferation [15]. Here, we found from the GEP 
optimized models that increasing proliferation may lead 

to less plantlet quality. So, we did GEP analysis to find the 
best medium resulting to high quality proliferated plant-
lets and lowest losses.

NH4NO3 and KNO3 are the major sources of nitrogen 
and potassium for Pyrus rootstocks micropropagation. 
The importance of the ratio between NO3

− and NH4
+ 

concentrations has been widely discussed in literatures 
[60–63]. The present results are in coincidence with 
many previous reports on different plant species [60, 
61, 64, 65]. The medium macro-nutrients contents are 
major determinants of the explant growth responses. The 
pear rootstock responses to in  vitro nutrients has been 
reported that varies with the macro-nutrients levels in 
the culture medium [10]. Comparison of our comprehen-
sive results to the previous results [10, 15, 50, 51] showed 
for the first time that the concentrations of macro- and 
micro-nutrients depend highly on the concentrations of 
used hormones as their interaction could determine the 
quality of plantlets. Arab et al. [15] predicted and maxi-
mized the number and length of in  vitro regenerated 
shoots by decreasing NH4

+ concentration and optimizing 
NO3

− concentration, simultaneously. But they predicted 
that enhancing the NH4

+ concentration will increase SL 
while producing non-healthy shoots while reducing its 
amount will increase the quality of plantlets. It has been 
suggested that an optimized culture medium would pro-
duce a higher number and length of shoots. Andreu and 
Marín [66] reported that reducing nitrogen content had a 
proper effect on proliferation rate. Our results using opti-
mized RBFNN and GEP modeling (Table 3) also showed 
that a lower nitrogen concentration content in the 
medium will produce higher quality plantlets which is 
consistent with the previous results [60, 67, 68]. The pur-
pose of our recent studies [10, 15, 50, 51] was to present 
a more and more precise approach for prediction of an 
optimized culture medium. Here, techniques of RBFNN 
and GEP combined with GA were applied to pear root-
stocks proliferation experiment data sets for finding the 
best proliferation results. Comparing the present results 
with the previous ones [10, 15, 50, 51] shows that using 
both methods together leads us to more accurate con-
sequences. As, comparing these two techniques results 
showed the effect of each medium component increasing 
or decreasing the measured parameter (Tables 2, 3).

Interactions between plant hormones make a critical 
complexity in regulating plant growth processes. Cyto-
kinin has been shown that regulates cell proliferation [69] 
and auxin increases the sensitivity of the less mitotically 
active cells of apical meristem to cytokinin [70]. The ratio 
of cytokinin to auxin is a crucial signal which determines 
phenotype [71]. The effects of hormones depend on plant 
species. The results of [50] on Prunus rootstock showed 
that using cytokinin and auxin together in the medium 
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will make higher shooting than using each alone. They 
indicated that the concentration and interaction of hor-
mones are two important factors on in vitro shooting. In 
accordance with these results and the findings of [11, 72], 
we used different concentrations of BA and IBA in our 
protocol formulation. As auxin and cytokinin have roles 
in DNA replication and cell cycle regulation, respectively 
[73]. The adverse results of [50] was reported to be due 
to the interaction of many factors like genotype and the 
composition of culture medium [74] with hormones. 
So, in the present study, we assessed the interaction of 
hormones and medium nutrients on proliferation. Since 
the high concentration of hormonal combinations may 
result in low SL and regenerated shoots quality and low 
concentrations of auxin may prompt cell division but its 
higher concentrations may inhibit axillary bud growth 
[75], we considered BA and IBA concentrations in a rea-
sonable range to achieve the most effective protocol. Our 
experiments analyses using GA optimized GEP modeling 
procedure showed that this technique can be used as an 
effective method for studying the interaction of many 
factors on growth parameters in proliferation stage. So, 
GEP is introduced for the first time as a great tool in opti-
mizing higher quality and efficiency plant tissue culture 
protocols in less time.

In general, the use of ANN-based models such as 
RBFNN leads to the high accuracy of estimation whereas 
GEP models are easier in the use to give it an explicit 
mathematical equation in prediction of explant growth 
parameters as well as being more accurate than RBFNN 
method. No studies have been done on the superior-
ity of RBFNN or GEP approaches for estimating in vitro 
explant proliferation parameters with optimal use of 
media components. Therefore, according to the current 
results, the approaches presented here would allow more 
accurate estimations without the need for the availability 
of all data.

Conclusions
The main objective of this paper was to compare the per-
formance of MLR, RBFNN and GEP models for predict-
ing the concentrations of in  vitro medium components 
to achieve the optimal growth parameters. Different 
combinations of the nutrients and hormones were used 
as inputs for the MLR, RBFNN and GEP techniques. The 
proliferation parameters were estimated from the GEP 
equations. PR, SL, Vitri, STN and QI were chosen as 
the main indices of proliferation state. Our results sug-
gested that using RBFNN and GEP techniques leads to 
more accurate results. The optimized GEP models gave 
us the most appropriate formulation for each studied 
parameter so, these results can cause finding the most 
efficient protocol. The GEP constructed models were the 

most accurate models as well as being easier to apply, as 
they estimate growth parameters using explicit statisti-
cal equations. Using further optimization techniques are 
suggested for future studies on predicting and optimizing 
plant tissue culture media by GEP modeling procedure to 
achieve the most appropriate results.

Methods
MLR, RBFNN and GEP modeling procedures were used 
to construct models by using different combinations of 
minerals and hormones concentrations as inputs and 
various measured proliferation parameters as outputs. 
The GEP models were applied to find the optimized mod-
els using GA. Two case studies were performed using two 
pear rootstocks which have described details of the used 
techniques to realize the optimized inputs compositions 
as follows.

Case studies
Pear rootstocks Pyrodwarf (“Old Home” × “Gute Luise”) 
and OHF (“OldHome” × “Farmingdel”) from in vitro cul-
tures were grown in modified macro- and micro-nutrient 
MS media supplemented with 30  g/l sucrose, 8  g/l agar 
(DuchefaH) and different concentrations of cytokinin 
and auxin hormones. Media pH was adjusted to 5.7, dis-
tributed into 250 ml jam jars with polyethylene caps and 
autoclaved at 1 kg cm−2 s−1 (121 °C) for 15 min. All cul-
tures were incubated at 25 ± 2 °C with a 16-h light period 
(80 µmol m2 s−1) of white fluorescent light for 4 weeks. 
Afterwards, variables including PR, SL, Vit, STN and QI 
were recorded. In each set of experiments, each treat-
ment consisted of 10 replicates (jam jars) and each rep-
lication included four explants for both Pyrodwarf and 
OHF rootstocks.

Box–Behnken experimental design as an invaluable tool 
for optimization of explant growth parameters
In recent years, multivariate experimental designs such as 
Central Composition and Box–Behnken designs (BBD) 
have been frequently used for evaluating the effects of 
variables in many processes. The most important advan-
tage of these designs is decrease in the number of experi-
ments essential to conduct the studies, which results in 
saving time and cost as well as a decrease in materials and 
reagents consumption. Additionally, the statistical analy-
sis carried out on the results is quickly realized and the 
percentage amount of experimental error is diminished 
[76–79]. In the present investigation, Box–Behnken sta-
tistical screening design with 6 variables, 3 levels and 
48 runs was applied to assess accurately the main and 
quadratic effects of independent variables on dependent 
variables. BBD is a useful and formidably effective tool 
for optimizing process in a way that variables and their 
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interactions could be recognized with a minimum in the 
number of experimental trials [79, 80]. It is a very com-
plicated design with a practical combination of two-level 
factorial designs with incomplete block designs [79, 81, 
82]. Furthermore, previous researches have demonstrated 
that BBD is more powerful and efficient than the three-
level factorial and Central Composition designs [83, 84].

In the present experiment, KNO3, NH4NO3, Mesos, 
minors, BAP and IBA were determined as independ-
ent (input) variables and PR, SL, Vit, STN and QI were 
selected as dependent (target) variables. Different con-
centrations of independent variables were determined 
based on their content in MS medium (1 × MS concen-
tration) (Table 4).

After establishing the range of independent variables at 
three levels in a coded form: − 1 (low), 0 (mid) and + 1 
(high) (Table 5), the experimental trials based on a BBD 
were set up (Table  6). The actual values and observed 
results for the three levels of the variables studied are 
presented in Tables 7 and 8.

At least 10 replicates were used for each experimental 
run. 357 experimental sets (70% of all available patterns) 
were randomly selected among 510 sets in order to train the 
modeling procedures and the other 153 sets (30% of all pat-
terns) were used to test the models generalization capacity.

Modeling systems
Multiple linear regression
MLR analysis is considered as a multivariate statistical 
technique to analyze the relationship between a depend-
ent single variable and a group of independent variables. 
Prediction and explanation are two main objectives 
of MLR. The prediction of MLR involves the extent to 
which the dependent variables can be predicted by the 
independent variables. The explanation of MLR evaluates 
the regression coefficients, their sign, statistical interface 
and magnitude, for each independent variable [85].

Linear regression is characterized as the oldest sta-
tistical technique in regression and it is thought to be a 
benchmark method to be employed by new techniques. 
Like other regression techniques, MLR models the rela-
tionships between two or more independent variables 
and a response variable; this is accomplished a linear 
equation fitted to the observed data. In this approach, 
every value assigned to the independent variable k is 
associated with a value assigned to the dependent vari-
able M. The regression line of population for n input vari-
ables × 1, × 2, …, kn is as follows:

M is the dependent variable, α0 denotes a constant 
named intercept, k = (× 1, …, kn) represents an input 
variables vector and α denotes the regression coefficients 
vector, each of which belongs for each explanatory vari-
able. The observed values of Y have different means and 
are assumed with the equal standard deviation ε. The soft-
ware package of SPSS 19 was utilized in the MLR model.

Radial basis function neural network
The RBFNN is able to simulate the brain of human to 
accomplish several different tasks easily. It can also 
crystallize the complex relation between the inputs 
and outputs using a fitting process which leads it to an 
approximation of any nonlinear function [35, 36, 86, 87].

The RBFNN is comprised of three different layers: 
an input layer, a hidden layer and an output layer. The 
input–output relationship of this RBFNN network can be 
described by:

(1)M = α0 + α1k1 + · · · + αn

(2)Yi =
Nh
∑

j=1

Wijϕj(x)+ bi

Table 4  The factor components and range of experimental 
runs according to MS basal medium

Variables Components Range

Factor 1 KNO3 0.5–2×
Factor 2 NH4NO3 0.5–2×
Factor 3 (mesos) CaCl2

KH2PO4
MgSO4

0.5–2.5×

Factor 4 (minors) CoCl2·6H2O
CuSO4·5H2O
H3BO3
Kl
MnSO4·H2O
Na2MoO4·2H2O
ZnSO4·7H2O
FeNaEDTA

0.5–4×

Factor 5 (hormone) BAP 0.5–2.5 mg l−1

Factor 6 (hormone) IBA 0.05–0.2 mg l−1

Table 5  level of factors according to Box–Behnken Design

Factors Coded variable level

Low Mid High

− 1 0 1

KNO3 0.5 1.25 2

NH4NO3 0.5 1.25 2

Mesos 0.5 1.5 2.5

Minors 0.5 2.25 4

BAP 0.5 1.75 3

IBA 0.05 0.13 0.2
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Table 6  Level of factors according to Box–Behnken design

Culture medium Level of factors used in each experiment

KNO3 NH4NO3 Mesos Minors BAP IBA

1 1.25 0.50 1.50 2.25 0.50 0.20

2 2.00 2.00 1.50 0.50 1.75 0.13

3 1.25 0.50 2.50 2.25 0.50 0.13

4 2.00 1.25 0.50 2.25 1.75 0.05

5 2.00 1.25 2.50 2.25 1.75 0.05

6 2.00 1.25 1.50 0.50 3.00 0.13

7 1.25 0.50 1.50 2.25 3.00 0.05

8 1.25 1.25 0.50 4.00 1.75 0.05

9 2.00 1.25 2.50 2.25 1.75 0.20

10 1.25 2.00 1.50 2.25 3.00 0.20

11 1.25 1.25 2.50 4.00 1.75 0.20

12 0.50 0.50 1.50 4.00 1.75 0.13

13 2.00 0.50 1.50 4.00 1.75 0.13

14 1.25 2.00 0.50 2.25 3.00 0.13

15 0.50 1.25 0.50 2.25 1.75 0.05

16 2.00 0.50 1.50 0.50 1.75 0.13

17 1.25 0.50 1.50 2.25 3.00 0.20

18 1.25 1.25 2.50 0.50 1.75 0.20

19 1.25 0.50 1.50 2.25 0.50 0.05

20 1.25 2.00 2.50 2.25 3.00 0.13

21 1.25 0.50 0.50 2.25 0.50 0.13

22 2.00 1.25 0.50 2.25 1.75 0.20

23 1.25 2.00 0.50 2.25 0.50 0.13

24 1.25 0.50 0.50 2.25 3.00 0.13

25 1.25 2.00 1.50 2.25 3.00 0.05

26 0.50 0.50 1.50 0.50 1.75 0.13

27 0.50 1.25 1.50 4.00 0.50 0.13

28 0.50 1.25 2.50 2.25 1.75 0.20

29 2.00 1.25 1.50 4.00 3.00 0.13

30 1.25 1.25 0.50 0.50 1.75 0.20

31 0.50 2.00 1.50 0.50 1.75 0.13

32 1.25 1.25 2.50 0.50 1.75 0.05

33 0.50 1.25 1.50 0.50 3.00 0.13

34 1.25 1.25 2.50 4.00 1.75 0.05

35 2.00 1.25 1.50 4.00 0.50 0.13

36 1.25 1.25 0.50 0.50 1.75 0.05

37 2.00 1.25 1.50 0.50 0.50 0.13

38 1.25 2.00 1.50 2.25 0.50 0.20

39 1.25 2.00 1.50 2.25 0.50 0.05

40 0.50 1.25 2.50 2.25 1.75 0.05

41 2.00 2.00 1.50 4.00 1.75 0.13

42 1.25 0.50 2.50 2.25 3.00 0.13

43 1.25 1.25 0.50 4.00 1.75 0.20

44 0.50 1.25 1.50 4.00 3.00 0.13

45 1.25 2.00 2.50 2.25 0.50 0.13

46 0.50 1.25 0.50 2.25 1.75 0.20

47 0.50 2.00 1.50 4.00 1.75 0.13

48 0.50 1.25 1.50 0.50 0.50 0.13



Page 11 of 18Jamshidi et al. Plant Methods          (2019) 15:136 

Table 7  Box–Behnken design of  OHF micropropagation experiments and  average values of  the  parameters used 
to characterize it

Culture medium Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 (mgl−1) Factor 6 (mgl−1) PR SL (cm) STN Vitri QL
KNO3 NH4NO3 Mesos Minors BAP IBA

1 1.25 0.50 1.50 2.25 0.50 0.20 2.00 4.51 0 0 5.00

2 2.00 2.00 1.50 0.50 1.75 0.13 6.75 2.52 14.80 33.33 2.00

3 1.25 0.50 2.50 2.25 0.50 0.13 1.00 4.96 0 0 5.00

4 2.00 1.25 0.50 2.25 1.75 0.05 8.50 2.22 44.10 8.82 1.50

5 2.00 1.25 2.50 2.25 1.75 0.05 5.50 3.74 18.18 4.55 3.75

6 2.00 1.25 1.50 0.50 3.00 0.13 4.50 2.25 11.11 38.85 1.75

7 1.25 0.50 1.50 2.25 3.00 0.05 4.75 3.34 0 5.26 4.75

8 1.25 1.25 0.50 4.00 1.75 0.05 7.75 3.00 38.70 16.13 1.50

9 2.00 1.25 2.50 2.25 1.75 0.20 5.75 4.07 21.73 4.35 3.50

10 1.25 2.00 1.50 2.25 3.00 0.20 4.25 2.91 11.76 5.88 3.75

11 1.25 1.25 2.50 4.00 1.75 0.20 5.50 5.57 13.62 13.64 3.50

12 0.50 0.50 1.50 4.00 1.75 0.13 6.25 4.80 8.00 8.00 4.25

13 2.00 0.50 1.50 4.00 1.75 0.13 7.25 3.71 10.32 13.79 3.75

14 1.25 2.00 0.50 2.25 3.00 0.13 5.25 1.69 47.61 9.52 1.25

15 0.50 1.25 0.50 2.25 1.75 0.05 7.25 2.82 41.37 0 1.75

16 2.00 0.50 1.50 0.50 1.75 0.13 7.25 3.20 6.88 31.03 2.25

17 1.25 0.50 1.50 2.25 3.00 0.20 4.75 3.49 0 5.26 4.75

18 1.25 1.25 2.50 0.50 1.75 0.20 5.50 4.04 13.62 27.27 2.50

19 1.25 0.50 1.50 2.25 0.50 0.05 2.00 3.89 0 0 5.00

20 1.25 2.00 2.50 2.25 3.00 0.13 3.00 3.00 24.99 8.33 3.25

21 1.25 0.50 0.50 2.25 0.50 0.13 2.75 2.68 36.36 0 2.00

22 2.00 1.25 0.50 2.25 1.75 0.20 8.75 2.37 45.71 8.57 1.25

23 1.25 2.00 0.50 2.25 0.50 0.13 2.25 2.15 44.44 0 1.75

24 1.25 0.50 0.50 2.25 3.00 0.13 6.00 2.00 29.16 4.17 3.00

25 1.25 2.00 1.50 2.25 3.00 0.05 4.25 2.60 11.76 5.88 3.75

26 0.50 0.50 1.50 0.50 1.75 0.13 6.25 3.28 4.00 24.00 3.25

27 0.50 1.25 1.50 4.00 0.50 0.13 1.25 4.17 20.00 20.00 2.75

28 0.50 1.25 2.50 2.25 1.75 0.20 5.25 4.50 19.04 0 4.00

29 2.00 1.25 1.50 4.00 3.00 0.13 4.50 2.65 11.10 22.20 2.75

30 1.25 1.25 0.50 0.50 1.75 0.20 7.75 2.50 41.86 32.25 1.00

31 0.50 2.00 1.50 0.50 1.75 0.13 6.00 2.71 8.33 25.00 3.25

32 1.25 1.25 2.50 0.50 1.75 0.05 5.50 3.90 13.62 31.82 2.00

33 0.50 1.25 1.50 0.50 3.00 0.13 4.00 2.02 6.25 31.25 2.50

34 1.25 1.25 2.50 4.00 1.75 0.05 5.25 5.00 14.28 13.83 3.50

35 2.00 1.25 1.50 4.00 0.50 0.13 1.75 3.07 14.28 14.29 3.50

36 1.25 1.25 0.50 0.50 1.75 0.05 7.75 2.20 38.64 29.03 1.75

37 2.00 1.25 1.50 0.50 0.50 0.13 1.75 2.31 14.28 42.86 1.25

38 1.25 2.00 1.50 2.25 0.50 0.20 1.50 3.88 16.66 0 3.75

39 1.25 2.00 1.50 2.25 0.50 0.05 1.50 3.36 16.66 0 3.75

40 0.50 1.25 2.50 2.25 1.75 0.05 5.25 4.27 19.04 0 3.50

41 2.00 2.00 1.50 4.00 1.75 0.13 6.75 2.75 18.50 18.52 3.25

42 1.25 0.50 2.50 2.25 3.00 0.13 3.75 3.50 13.32 0 3.75

43 1.25 1.25 0.50 4.00 1.75 0.20 8.00 3.39 43.75 12.50 1.25

44 0.50 1.25 1.50 4.00 3.00 0.13 4.00 2.90 12.50 18.75 3.50

45 1.25 2.00 2.50 2.25 0.50 0.13 1.00 4.01 25.00 0 3.00

46 0.50 1.25 0.50 2.25 1.75 0.20 7.50 3.33 39.99 0 2.50

47 0.50 2.00 1.50 4.00 1.75 0.13 6.00 4.29 12.48 8.33 3.75
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where ϕ denotes the radial basis function of the hid-
den unit j; x is the vector of input data; Wij is a weighted 
connections between output layer and the radial basis 
function; and Nh represents the number of hidden-layer 
neurons. The constant term bi in Eq.  (2) denotes a bias. 
As the activation function, an RBFNN hidden neuron has 
a Gaussian function.

where ci and σi represent centers and widths, respectively, 
and ‖.‖ denotes the Euclidean distance norm. The vari-
ances and centers are predefined and fixed for simplic-
ity. From a point of view of design, the RBFNN networks 
training consists of finding the number of hidden layer 
nodes (neurons) Nh and the appropriate parameter set 
( σi , Wij and ci ) to map a given vector of input to a desired 
scalar of output efficiently with suitable accuracy and 
generalization. The supervised gradient-descent-based 
method [88, 89] was used for the network training.

Gene expression programming
GP is also utilized to model the behavior of structural 
engineering problems. It is a genetic algorithm extension 
which uses a program space for search, instead of employ-
ing a data space. One of the most important advantages of 
using GP-based methods over other approaches is their 
ability for production of prediction equations without any 
assumption for prior form of the relationship. GP as well 
as its variants have been employed by many researchers 
to discover any complex relationships which fit various 
experimental data [24, 25, 42] Researchers have intro-
duced GEP as an efficient alternative approach to the tra-
ditional GP [45, 90]. Several different computer programs 
have been developed by GEP, through getting encoded in 
fixed length linear chromosomes, each of which composed 
of multiple encoding genes [45, 91].

GEP is rooted from evolutionary algorithms like GP and 
GA. A population of individuals is used in this method and 
then, better individuals are selected by employing genetic 
variations and fitness function. Genetic operators intro-
duce the genetic variations. GEP as a learning machine, 
is supposed to learn the relationship between variables in 

(3)ϕi(x) = exp
(

−x − c2i

/

2σ 2
i

)

, i = 1, 2,Nh

groups of data. The difference between GEP and its precur-
sors GP and GA is in the way of individual programming 
as in GEP, individuals are programmed as fixed length lin-
ear strings (chromosomes) which are shown eventually by 
expression trees which are a simple diagram presentation. 
However, individuals are expressed in GP and GA as fixed 
length linear strings (chromosomes) and nonlinear enti-
ties of different shapes (parse trees) and sizes, respectively. 
Genetic operators work at the chromosome level in GEP 
making creation of genetic diversity very simple, which is 
considered as one of its strengths over GP and GA. The 
unique, multi-genic nature of GEP is its other significant 
point allowing more complex programs with several sub-
programs to be evolved. The benefits of both GP and GA 
are combined in GEP, while some of their limitations are 
met [39, 45, 92].

Architecture of GEP  In GEP the individuals are encoded 
as fixed size linear strings (chromosome), which are 
then shown as non-linear entities with different shapes 
and sizes, known as Expression Trees. For example, the 
expression of Eq. (4) can also be shown by an expression 
tree or diagram as represented in Fig. 2.

The actual phenotype of GEP chromosome is this rep-
resentation and the genotype can be easily explained 
from the phenotype as shown in Eq. (4)

As we read a page of text, the genotype is character-
ized as the straightforward reading of the expression tree 
from left to right and from top to bottom. The Eq.  (5), 
for example, is an open reading frame which starts at ‘‘*’’ 
or position 0 and terminates at ‘‘d’’ or position 6. Karva 
notation or K-expression is the term describing these 
open reading frames [25, 93].

The GEP functional steps are shown in Fig. 2 [45]. The 
structure of GEP consists of function set, fitness function, 
terminal set, termination condition, and control parame-
ters. As it can be seen in Fig. 2, an initial population is the 

(4)(a + b) ∗ (c − d)

(5)
0 1 2 3 4 5 6

∗ + − a b c d

Table 7  (continued)

Culture medium Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 (mgl−1) Factor 6 (mgl−1) PR SL (cm) STN Vitri QL
KNO3 NH4NO3 Mesos Minors BAP IBA

48 0.50 1.25 1.50 0.50 0.50 0.13 1.25 3.04 0 20.00 3.00

MS 1.00 1.00 1.00 1.00 2.50 0.20 3.25 3.08 7.69 0 4.25

WPM 1.00 1.00 1.00 1.00 2.50 0.20 2.25 4.25 11.11 22.22 3.00

QL 1.00 1.00 1.00 1.00 2.50 0.20 3.00 2.81 0 0 5.00



Page 13 of 18Jamshidi et al. Plant Methods          (2019) 15:136 

Table 8  Box–Behnken design of Pyrodwarf micropropagation experiments and average values of  the parameters used 
to characterize it

Culture medium Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 (mgl−1) Factor 6 (mgl−1) PR SL (cm) STN Vitri QL
KNO3 NH4NO3 Mesos Minors BAP IBA

1 1.25 0.50 1.50 2.25 0.50 0.20 2.43 5.32 0 5.33 4.68

2 2.00 2.00 1.50 0.50 1.75 0.13 7.45 1.23 40.17 49.64 1.00

3 1.25 0.50 2.50 2.25 0.50 0.13 1.78 4.93 0 6.43 4.45

4 2.00 1.25 0.50 2.25 1.75 0.05 8.98 2.46 37.32 21.97 1.75

5 2.00 1.25 2.50 2.25 1.75 0.05 8.18 2.51 36.09 21.40 1.78

6 2.00 1.25 1.50 0.50 3.00 0.13 5.13 0.96 31.68 30.25 1.50

7 1.25 0.50 1.50 2.25 3.00 0.05 6.33 3.77 0 5.10 4.53

8 1.25 1.25 0.50 4.00 1.75 0.05 10.18 0.81 17.44 23.35 2.80

9 2.00 1.25 2.50 2.25 1.75 0.20 8.50 2.75 37.14 21.48 1.85

10 1.25 2.00 1.50 2.25 3.00 0.20 5.55 3.47 22.51 37.84 1.65

11 1.25 1.25 2.50 4.00 1.75 0.20 9.33 1.58 16.09 23.04 2.80

12 0.50 0.50 1.50 4.00 1.75 0.13 10.73 1.51 10.01 7.43 3.88

13 2.00 0.50 1.50 4.00 1.75 0.13 9.03 1.77 20.20 9.19 3.48

14 1.25 2.00 0.50 2.25 3.00 0.13 6.00 3.15 24.95 39.17 1.45

15 0.50 1.25 0.50 2.25 1.75 0.05 11.73 2.25 10.28 17.69 3.58

16 2.00 0.50 1.50 0.50 1.75 0.13 9.03 2.08 19.11 12.96 3.30

17 1.25 0.50 1.50 2.25 3.00 0.20 6.35 4.25 0 5.88 4.43

18 1.25 1.25 2.50 0.50 1.75 0.20 9.18 1.85 14.36 28.47 2.58

19 1.25 0.50 1.50 2.25 0.50 0.05 2.23 4.81 0 4.86 4.60

20 1.25 2.00 2.50 2.25 3.00 0.13 5.10 3.15 24.02 38.25 2.68

21 1.25 0.50 0.50 2.25 0.50 0.13 3.08 4.63 3.99 6.76 4.23

22 2.00 1.25 0.50 2.25 1.75 0.20 9.15 2.85 38.00 22.15 1.68

23 1.25 2.00 0.50 2.25 0.50 0.13 2.10 3.07 25.16 38.29 1.53

24 1.25 0.50 0.50 2.25 3.00 0.13 7.03 3.54 5.04 7.05 4.13

25 1.25 2.00 1.50 2.25 3.00 0.05 5.38 3.10 20.51 38.11 1.70

26 0.50 0.50 1.50 0.50 1.75 0.13 10.55 1.83 9.27 10.18 3.83

27 0.50 1.25 1.50 4.00 0.50 0.13 1.80 1.34 8.45 19.23 3.35

28 0.50 1.25 2.50 2.25 1.75 0.20 9.80 2.44 10.46 17.34 3.45

29 2.00 1.25 1.50 4.00 3.00 0.13 4.80 0.91 34.91 23.90 1.75

30 1.25 1.25 0.50 0.50 1.75 0.20 10.08 1.36 17.41 29.10 2.28

31 0.50 2.00 1.50 0.50 1.75 0.13 9.40 0.99 13.11 45.71 1.45

32 1.25 1.25 2.50 0.50 1.75 0.05 9.13 1.53 14.78 28.22 2.53

33 0.50 1.25 1.50 0.50 3.00 0.13 5.75 1.25 7.40 25.21 3.13

34 1.25 1.25 2.50 4.00 1.75 0.05 9.23 1.32 14.09 22.74 2.70

35 2.00 1.25 1.50 4.00 0.50 0.13 1.15 1.32 35.00 23.00 1.65

36 1.25 1.25 0.50 0.50 1.75 0.05 9.95 1.12 16.58 28.65 2.38

37 2.00 1.25 1.50 0.50 0.50 0.13 1.00 1.55 32.50 30.00 1.78

38 1.25 2.00 1.50 2.25 0.50 0.20 1.20 3.14 23.00 36.50 1.70

39 1.25 2.00 1.50 2.25 0.50 0.05 1.03 2.95 19.50 36.50 1.80

40 0.50 1.25 2.50 2.25 1.75 0.05 9.75 2.04 9.23 17.16 3.50

41 2.00 2.00 1.50 4.00 1.75 0.13 7.78 1.04 41.00 43.23 1.00

42 1.25 0.50 2.50 2.25 3.00 0.13 5.60 3.84 0 6.72 4.45

43 1.25 1.25 0.50 4.00 1.75 0.20 10.38 1.06 19.04 23.13 2.65

44 0.50 1.25 1.50 4.00 3.00 0.13 5.83 0.84 8.60 19.72 3.28

45 1.25 2.00 2.50 2.25 0.50 0.13 1.00 3.23 25.00 37.50 1.63

46 0.50 1.25 0.50 2.25 1.75 0.20 12.08 2.25 12.00 17.80 3.48

47 0.50 2.00 1.50 4.00 1.75 0.13 9.50 0.76 15.56 40.25 1.63
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start point of GEP. Then, the genes located on the chro-
mosomes are expressed, and the fitness of each individual 
is analyzed. Subsequently, based on their fitness, the indi-
viduals are designated in order to reproduce with modifi-
cation. The same process of development is performed on 
this new generation of individuals: the genomes expres-
sion, confrontation of the selection environment, and 
finally reproduction with modification. Altogether, this 
procedure is repeated for an exact number of generations 
or it is done until a termination condition is reached.

GEP system uses roulette wheel sampling with elitism 
to select and copy the individuals into the next genera-
tion based on the fitness. This guarantees that the best 
individuals are survived and cloned to the next genera-
tion. When single or several genetic operators are con-
ducted on selected chromosomes, including rotation, 
mutation and cross over, variation is introduced in the 
population.

GEP methodology  The software package of GeneXpro 
was employed to run the GEP models. All parameters 
used in the GEP models are shown in Table 9.

Table 8  (continued)

Culture medium Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 (mgl−1) Factor 6 (mgl−1) PR SL (cm) STN Vitri QL
KNO3 NH4NO3 Mesos Minors BAP IBA

48 0.50 1.25 1.50 0.50 0.50 0.13 1.63 1.64 7.20 26.07 2.95

MS 1.00 1.00 1.00 1.00 2.50 0.20 3.53 3.99 14.23 10.23 3.60

WPM 1.00 1.00 1.00 1.00 2.50 0.20 2.28 2.57 6.47 3.25 4.18

QL 1.00 1.00 1.00 1.00 2.50 0.20 2.95 2.62 2.73 0 4.78

Fig. 2  Gene expression programming diagram

Table 9  Parameters of GEP model

Parameter Description of parameter Setting of parameter

P1 Function set +,−,×,÷
√
, 3
√
, sin, cos, Arctgx , x^2, 

x^3, e^x, ln, Inverse, Tanh, Avg 2 
inputs

P2 Chromosomes 50

P3 Head size 8

P4 Number of genes 3

P5 Linking functions Addition

P6 Fitness function error type Root relative square error (RRSE)

P7 Mutation rate 0.044

P8 Inversion rate 0.1

P9 One-point recombination rate 0.1

P10 Two-point recombination rate 0.3

P11 Gene recombination rate 0.1

P12 Gene transportation rate 0.1
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The mathematical operators and functions chosen in 
the present study are illustrative and not conclusive as 
the plant modeling designer as the freedom to choose 
such functions so as suit the anatomy of the problem 
under study. The operators and functions were chosen 
with a perspective of invoking simplicity of the evolved 
model promising faster convergence. The population size 
(number of chromosomes) sets the number of programs 
in the population. Larger population size takes longer for 
an iteration run. A large number of chromosomes were 
tested to find models with minimum error. The program 
was run until there was no significant improvement 
in the performance of the models. The present study 
was undertaken to attain explicit relationship between 
response variables and decision variables. GEP explicit 
formulations for PR, SL, STN, Vit and QI were obtained 
as a function of experimental parameters as follows:

PR, SL, STN, Vit and QI = f (KNO3, NH4NO3, Mesos, 
Micro, BA and IBA).

Optimization of GEP models
Genetic algorithm model optimization
GA is another search heuristic algorithm that is inspired 
by biological evolution in nature as well as Darwin’s evo-
lution theory. This algorithm was first introduced by [94], 
and its development goes back to 1960–1970 [94, 95]. It 
is one of the oldest, most well-known, and most-widely 
used evolution algorithms utilized by researchers in dif-
ferent fields for the optimization of intricate problems. 
The algorithmic structure, like any of the other evolu-
tion algorithms, is composed of a population, where each 
individual in it is considered to be a solution to the prob-
lem. An individual is called chromosome and is com-
posed of different problem variables that act as genes in 
the algorithm [91] (Fig. 3).

The search procedure in this algorithm is created 
by developing a random population of chromosomes, 
and producing the next generation of the population is 
accomplished through three operators [91]:

Selection Operator: in this phase, the best chromo-
somes of the society, which are the best solutions to 
the problem, are identified by calculating the fitness 
function of each chromosome. The chromosomes are 

then used as parents for producing offspring, new child 
chromosomes and, thus, the next generation. Crosso-
ver Operator: using this operator, we produce offspring 
that are new child chromosomes from two parent 
chromosomes and take measurements to make this 
chromosome have better fitness than its parents. The 
crossover operator is in fact a method that determines 
the structure and ratio of the child’s chromosome com-
pared with its parents’ chromosomes. The crossover 
operator can be implemented with different methods, 
including Ranking Selection, N-Point, Cycle, Order, 
Uniform, Tournament, and partially mapped [96]. Since 
use of a uniform method, such as the Crossover opera-
tor, is common between researchers [97] this method is 
utilized in the current research (Fig. 4).

Mutation Operator: this operator is utilized for 
searching new areas in the available dimension. The 
result makes the local optimum be not accepted as 
the best solution. To realize this goal, we need only to 
change some of the genes inside the chromosomes ran-
domly (Fig. 5). Offspring new child chromosomes that 
are produced through these three operators are utilized 
as the next generation parents. The trend goes on as 
long as the termination condition determined by the 
researcher is met.

Fig. 3  Structure of the chromosome and gene

Fig. 4  A crossover operator

Fig. 5  A mutation operator
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Statistical indices
In order to evaluate and compare the precision of differ-
ent models, four statistical indices including root mean 
squared error (RMSE), mean absolute relative error 
(MARE), mean bias error (MBE) and correlation coeffi-
cient (R2) were used with the following formulas:

where Oi and Pi are observed and predicted amounts, 
respectively; and Ōi and P̄i are mean observed and pre-
dicted amounts for N samples.
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