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Abstract 

Background:  In the early stages of plant breeding programs high-quality phenotypes are still a constraint to 
improve genetic gain. New field-based high-throughput phenotyping (HTP) platforms have the capacity to rapidly 
assess thousands of plots in a field with high spatial and temporal resolution, with the potential to measure second-
ary traits correlated to yield throughout the growing season. These secondary traits may be key to select more time 
and most efficiently soybean lines with high yield potential. Soybean average canopy coverage (ACC), measured by 
unmanned aerial systems (UAS), is highly heritable, with a high genetic correlation with yield. The objective of this 
study was to compare the direct selection for yield with indirect selection using ACC and using ACC as a covariate in 
the yield prediction model (Yield|ACC) in early stages of soybean breeding. In 2015 and 2016 we grew progeny rows 
(PR) and collected yield and days to maturity (R8) in a typical way and canopy coverage using a UAS carrying an RGB 
camera. The best soybean lines were then selected with three parameters, Yield, ACC and Yield|ACC, and advanced to 
preliminary yield trials (PYT).

Results:  We found that for the PYT in 2016, after adjusting yield for R8, there was no significant difference among 
the mean performances of the lines selected based on ACC and Yield. In the PYT in 2017 we found that the highest 
yield mean was from the lines directly selected for yield, but it may be due to environmental constraints in the canopy 
growth. Our results indicated that PR selection using Yield|ACC selected the most top-ranking lines in advanced yield 
trials.

Conclusions:  Our findings emphasize the value of aerial HTP platforms for early stages of plant breeding. Though 
ACC selection did not result in the best performance lines in the second year of selections, our results indicate that 
ACC has a role in the effective selection of high-yielding soybean lines.

Keywords:  Soybean, High-throughput phenotyping, Breeding, Canopy coverage, ACC​

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Breeders are challenged to increase the rate of genetic 
gain. Genetic gain in a crop breeding program can be 
defined as �G = h2iσp

/

L , where h2 is the narrow-sense 
heritability, i is the selection intensity, σp is the pheno-
typic standard deviation and L is the breeding cycle time 
or generation [1]. This equation translates theoretical 

quantitative genetics into parameters that breeders can 
manipulate in their breeding pipelines [2]. In this con-
text genetic gain can be increased in a number of ways, 
including: increasing population size to increase selec-
tion intensity, shortening the breeding cycle, ensuring 
suitable genetic variation in the population, and obtain-
ing accurate estimates of the genetic values [3–5]. Pheno-
typing directly or indirectly influences these parameters 
which emphasize the need for accurate, precise, relevant 
and cost-effective phenotypic data [6].

Plant phenotyping has recently integrated new tech-
nology from the areas of computer science, robotics, and 
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remote sensing, resulting in high-throughput phenotyp-
ing (HTP) [6–9]. Platforms have been developed based 
on high capacity for data recording and speed of data col-
lection and processing in order to capture information on 
structure, physiology, development, and performance of 
large numbers of plants multiple times throughout the 
growing season [8, 10]. Compared with other platforms, 
imagery-based field HTP using unmanned aerial systems 
(UAS) has the advantage of high spatial and temporal res-
olution [11] and is non-destructive.

There are a number of applications of a trait that can be 
precisely phenotyped with an HTP platform in a breed-
ing pipeline. Secondary traits may increase prediction 
accuracy in multivariate pedigree or genomic prediction 
models [12–14]. Alternately, traits measured with HTP 
can be used in selection indices or for indirect selection 
for yield [15]. Indirect selection may be preferable when 
the secondary trait is easier or less expensive to measure 
than yield and if it can be selected out-of-season or in 
earlier developmental stages or generations, accelerating 
decision-making steps, and consequently decreasing the 
breeding cycle [16, 17].

In a typical soybean breeding program, after reach-
ing desired homozygosity, a common procedure is to 
select individual plants and then grow the next genera-
tion in progeny rows (PR) trials [18]. At this stage, there 
is usually a large number of entries but a small number 
of seeds, limiting the experiment to unreplicated one-
row plots at one location [19]. Due to these limitations, 
yield measurements in PR are inaccurate and may require 
a large investment of resources. In this scenario, HTP 
has the potential to remotely measure in a nondestruc-
tive manner traits correlated to yield in early stages of 
development, improving data quality and reducing time 
or cost, or, for selection [20, 21].

Several studies have demonstrated that attaining full 
canopy coverage, and thus maximum light interception 
(LI), during vegetative and early reproductive periods 
is responsible for yield increases in narrow-row culture 
due to enhanced early growth [22–24]. As management 
practices change over time, more recent studies using 
different plant populations found that rapid establish-
ment of canopy coverage improves the interception of 
seasonal solar radiation, which is the foundation for crop 
growth and yield [25, 26]. LI efficiency, measured as leaf 
area index (LAI), was significantly correlated to yield in a 
study comparing soybean cultivars released from 1923 to 
2007 [27]. In addition, the rapid development of canopy 
coverage can decrease soil evaporation [28] and suppress 
weeds [29–31].

Purcell [32] showed that soybean LI can be measured 
as a function of canopy coverage from images taken 
from above the plot using a digital camera. In addition, 

soybean canopy coverage can also be effectively extracted 
automatically from UAS-based digital imagery [33]. 
Xavier et  al. [33] observed that average canopy cover-
age (ACC) measured early season was highly herit-
able (h2 = 0.77) and had a promising genetic correlation 
with yield (0.87), making it a valuable trait for indirect 
selection of yield. In the same study, they found a large 
effect quantitative trait locus (QTL) on soybean chro-
mosome  19 that resulted in an estimated increase in 
grain yield of 47.30  kg  ha−1 with no increase in days to 
maturity (− 0.24  days). Candidate genes associated with 
growth, development, and light responses were found in 
genome-wide association analysis of imagery-based can-
opy coverage during vegetative development [34]. Jarquin 
et al. [12] found that early season canopy coverage, used 
to calibrate genomic prediction models, improved the 
predictive ability for yield, suggesting that it is a valuable 
trait to assist selection of high yield potential lines. Thus, 
early season canopy coverage has the potential to be used 
as a secondary trait for indirect selection for yield or as 
covariables to improve yield estimations in quantitative 
genetic models [21].

While several studies have shown the value of UAS to 
phenotype various traits for a number of crops [35–40], 
to our knowledge there is no study showing the use of 
UAS-derived phenotypes for applied breeding purposes. 
In addition, no empirical studies have reported on the 
efficacy of using canopy coverage phenotypes in a soy-
bean breeding pipeline. Selection experiments are useful 
for comparing breeding methods by enabling the assess-
ment of realized gains of different selection categories to 
identify the most effective method. Our aim was to per-
form a selection experiment to compare the yield perfor-
mance of soybean lines selected from PR based on yield 
with those selected based on ACC from imagery acquired 
with UAS.

Methods
Description of breeding populations
This study used 2015 and 2016 F4:5 progeny rows (PR) 
populations from the soybean breeding program at Pur-
due University. These trials were grown under a modified 
augmented design with replicated checks at the Purdue 
University Agronomy Center for Research and Education 
(ACRE) (40° 28′ 20.5″ N 86° 59′ 32.3″ W). Experimen-
tal units consisted of a one-row plot of size 1.83 m with 
0.76 m row spacing and were planted on May 25, 2015, 
and May 24, 2016 (orientated South-North). In the 2015 
PR experiment, we had 3311 plots with 2747 progenies 
and in 2016 PR we had 4220 plots with 4052 progenies. 
There was no overlap among the experimental lines in 
2015 and 2016.
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For both years, we advanced selected lines in early- and 
late-maturing preliminary yield trials (PYT early and 
PYT late) comprised of lines classified as earlier or later 
than the check IA3023. The lines selected from 2015 PR 
were advanced as 2016 PYT early and PYT late and the 
lines selected from 2016 PR were advanced as 2017 PYT 
early and PYT late.

The PYTs were grown in two locations and with two 
replications using alpha-lattice designs. The experimental 
unit consisted of two rows plot of 2.9 m in length in 2016 
and 3.4  m in length in 2017, with 0.76  m of row spac-
ing. For both years, one of the locations was ACRE and 
the second location in 2016 was at the Throckmorton-
Purdue Agricultural Center (TPAC) (40° 17′ 49.1″ N 86° 
54′ 12.8″ W) and in 2017 was at Ag Alumni Seed (40° 15′ 
41.3″ N 86° 53′ 19.1″ W), both in Romney, IN.

Lines selected from 2016 PYT and 2017 PYT were 
evaluated in an advanced yield trial (AYT) in 2017 and 
2018, respectively. Both trials were grown in an alpha-
lattice design in two locations with either three or four 
replications per location. The locations were the same 
as described for PYT 2017. AYT plots consisted of four 
rows of 3.4  m length and 0.76  m spacing among rows. 
AYT lines were classified as early and late in the same 
manner as PYT.

Phenotypic data
For all trials, grain yield and days to maturity (R8) were 
collected for every plot. Grain yield (g/plot) was con-
verted to kg  ha−1 using harvest-timed seed moisture 
to adjust all plot values to 13% seed moisture. R8 was 
expressed as days after planting when 50% of the plants 
in a plot had 95% of their pods mature [41].

For PR 2015 and 2016 we quantified canopy coverage 
from aerial images collected using a fixed-wing Precision 
Hawk Lancaster Mark-III UAS equipped with a 14-meg-
apixel RGB Nikon 1-J3 digital camera. Flights were 

performed at an altitude of 50  m, which resulted in a 
spatial resolution of 1.5 cm per pixel. We used eight sam-
pling dates of early-season canopy development, ranging 
from 15 to 54 DAP (15, 29, 34, 37, 44, 47, 51, 54 DAP) 
in 2015 PR, and seven sampling dates, ranging from 20 
to 56 DAP (20, 27, 31, 37, 42, 52, 56 DAP) in 2016 PR. 
The trials were maintained free of weeds to ensure that 
the images captured only soybean canopy. Image analy-
sis, plot extraction, and classification were performed 
using a multilayer mosaic methodology described by 
Hearst [42]. This methodology allows for the extraction 
of the plots from ortho-rectified RGB images using map 
coordinates, resulting in several plot images of different 
perspectives from the same sampling date due to over-
lapping frame photos. The number of plot images from 
the same date varies from plot to plot. Image segmenta-
tion was done using Excess Green Index (ExG) and Otsu 
thresholding [42] to separated canopy vegetation from 
the background. Canopy coverage was calculated as 
the percentage of image pixels classified as canopy pix-
els. Median of canopy coverage values from replicated 
plot images was calculated for each sampling date. For 
each plot, average canopy coverage (ACC) was obtained 
by averaging the median canopy coverage among sam-
pling dates. Figure 1 summarizes the process from image 
acquisition to the calculation of ACC.

Statistical data analysis and selection methods of PR
PR 2015 and 2016 yield, R8, and ACC phenotypes were 
fitted in a pedigree-based mixed model to estimate vari-
ance components and breeding values, using Gibbs sam-
pling implemented in the R package NAM [43], described 
as:

where yi is the phenotype, µ is the mean, gi (i = 1,…, 
number of genotypes) is the random genotype effect with 

(1)yi = µ+ gi + ei

Fig. 1  Overview of data collection and processing to acquire average canopy coverage (ACC) phenotypes
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gi ∼ N
(

0,Aσ 2
a

)

 where A is the relationship matrix cal-
culated using pedigrees that traced back to PR founders 
and σ 2

a  is the additive genetic variance, ei is the residual 
term with ei ∼ N(0,Rσ2e ) where R is a field correlation 
matrix considered to account for spatial variation in the 
field calculated as the average phenotypic value of neigh-
bor plots [44] and σ2e is the residual variance. For yield, 
an additional model was fitted in order to adjust for ACC 
(Yield|ACC), where the fixed ACC effect (aka covariate), 
βi (i = 1,…, number of genotypes), was added to the previ-
ous model. Yield|ACC is considered a different trait than 
yield. The solutions for gi for each trait here are defined 
as best linear unbiased predictors (BLUP).

To estimate phenotypic correlations, we calculated 
Pearson’s correlations among BLUPs for the different 
traits. Narrow-sense heritability ( h2 ) was calculated using 
the formula:

where σ 2
a  and σ2e are described previously.

For the selection experiment, the selection categories 
or traits used in this study were yield BLUPs, as the tra-
ditional selection method, ACC BLUPs, and Yield|ACC 
BLUPs. Lines were selected based on BLUPs rankings 
within each selection category. For PR 2015 we selected 
approximately 9% of progenies for each selection cat-
egory. Since some lines were selected by more than one 
selection category, the total lines selected was 523. In 
2016, since we had more progeny lines, we decreased 
the selection to 7.5%. Due to the overlap of lines selected 
among the selection categories, we selected 705 lines. 
There was some deviation from the intended selection 
intensities due to seed limitations, field space, or logis-
tics in the breeding pipeline. Figure 2 shows the summary 
of lines selected by each selection category for PR 2015 
and 2016. As described above, selected lines were divided 
into early and late PYT.

Evaluation of PYT and AYT​
To evaluate PYT line performance, yield and R8 phe-
notypes across locations were fitted using restricted 

(2)h2 =
σ 2
a

σ 2
a + σ 2

e

maximum likelihood (REML) approach, implemented in 
the R package lme4 [45]:

where yijkl is the phenotype, µ is the mean, gi (i = 1,…, 
number of genotypes) is the random genotype effect with 
gi ∼ N

(

0, σ 2
g

)

 where σ 2
g  is the genetic variance, locj 

(j = 1,…, number of environments) is the random loca-
tion effect with locj ∼ N

(

0, σ 2
loc

)

 where σ 2
loc is the location 

variance, rk(j) is the random effect of kth replication 
nested within jth location with rk(j) ∼ N

(

0, σ 2
r

)

 where σ 2
r  

is the replication within location variance, bl(k(j)) is the 
random effect of the lth incomplete block nested within 
the kth replication and jth location with 
bl(k(j)) ∼ N

(

0, σ 2
b

)

 where σ 2
b  is the block variance, 

(g*env)ij is the random genotype by location interaction 
effect with 

(

g ∗ loc
)

ij
∼ N

(

0, σ 2
gxloc

)

 . where σ 2
gxloc e is the 

genotype by location variance, and eijkl is the residual 
term with eijkl ∼ N

(

0, σ2e
)

 where σ2e is the residual vari-
ance. Adjusted values for yield and R8 were calculated as 
µ+ gi , to express the phenotypes with units. Maturity is 
a confounding factor that influences yield, which may 
lead to misinterpretation of the yield potential of a line; 
therefore, we also calculated yield adjusted to R8 includ-
ing R8 as a covariate in Eq. 3.

In a breeding program, the method that increases the 
population mean the most from one generation to the 
next is the preferred method; therefore, to evaluate the 
performance of the lines in the selected classes we per-
formed two-sample t-tests to compare the adjusted yield 
means of lines in each selected class. The best selection 
category is the one producing the highest yield mean 
within an early or late trial, considering that all lines 
came from the same original populations.

Although AYT was not part of the selection experi-
ment, we wanted to evaluate how the top-ranked lines 
were selected. Lines were selected from PYT using rank-
ings of yield BLUPs and advanced to AYT. For AYT data 
summary Eq. 3 was used with the change of genotype to 
fixed effect. AYT lines were classified as early and late 
from R8 phenotypes.

Results
PR
Table  1 shows the estimated narrow-sense heritability 
and phenotypic Pearson’s correlations for yield, ACC, 
Yield|ACC, and R8 for 2015 and 2016 PR. Positive corre-
lations were observed among all traits with Yield, with the 
highest observed with Yield|ACC. ACC showed low (0.01) 
or negative (− 0.1) correlation with R8 and negative cor-
relation with Yield|ACC in both years. R8 and Yield|ACC 

(3)
yijkl = µ+ gi + locj + rk(j) + bl(k(j)) + (g ∗ loc)ij + eijkl

Fig. 2  Number of lines selected from progeny rows (PR) 2015 and 
2016 by each selection category
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were positively correlated. Narrow-sense heritability for 
Yield|ACC and R8 was higher than for Yield in both years. 
Narrow-sense heritabilities were low for ACC and Yield, 
but the heritability of ACC was higher than yield in 2017.

PYT selection category performance
The box plots presented in Fig. 3a show the distributions 
of adjusted yield values for lines in each selected class and 
adjusted R8 means are summarized in Additional file  1: 
Table S1. For PYT early 2016 the yield mean was not sig-
nificantly different among the lines from different selected 
classes. For PYT late 2016 the lines selected by Yield had a 
statistically significantly higher mean yield, and there were 
no statistically significant differences in mean yield among 
the lines selected by ACC and Yield|ACC. The mean yield 
of the lines selected by ACC and Yield was not statistically 
significantly different in PYT late 2016 when consider-
ing yield adjusted by R8 (Fig. 3b). For PYT early and late 
in 2017, the mean yield among lines from different selected 
classes was statistically significantly different, and the lines 
selected by Yield had a higher mean yield.

AYT yield performance
Table 2 summarizes the ten top-ranked lines in AYT 2017 
and 2018. In both years, the lines were mostly selected by 
two selection categories. None of the ten top-ranked lines 
in the AYT early 2017 were selected by Yield alone in the 
PR stage. In the AYT late 2017 only one line was selected 
by Yield alone in the PR stage, in rank position ten. In 
AYT 2018 early and late the Yield selection category alone 
selected just three and two of the ten top-ranked lines, 

respectively. Considering both years, the number of top-
ranked lines selected using only ACC and/or Yield|ACC 
was greater (14 lines) than the lines selected by Yield alone 
(6 lines).

Discussion
The positive phenotypic correlation found in this study 
among yield and ACC in PR 2015 (Table 1) is in agreement 
with other studies [12, 33, 34]; however, this result was not 
repeated in PR 2016. Phenotypic correlation depends on 
genetic and environmental correlations, thus even when 
no phenotypic correlation can be estimated the traits may 
still be correlated genetically and environmentally [1]. Con-
sidering that some studies showed a strong positive genetic 
correlation between ACC and yield, the lack of phenotypic 
correlation in PR 2016 may be the reflection of the genetic 
and environmental correlations acting in opposite direc-
tions between the two traits, as well as the interaction 
between genotype and environment [1, 33, 46, 47].

We observed none to negative phenotypic correlations 
between ACC and R8 in PR 2015 and PR 2016, respec-
tively, indicating that selection on ACC should not lead 
to indirect increases in maturity. In both years, ACC and 
Yield|ACC were negatively correlated, which is expected 
since adjusting yield for ACC will correct the yield data to 
a baseline value of ACC, thus, simplistically, yield decreases 
for higher ACC and increases for lower ACC.

For PR 2015 and 2016 ACC heritabilities (Table 1) were 
lower when compared with other studies [33, 47], but these 
studies used multiple environments of replicated data, 
and we observed comparatively lower yield and R8 herit-
abilities as well. Generally, low heritabilities in PR trials are 
expected given unreplicated single row plot trials leading 
to challenges in the estimation of the genetic parameters of 
the tested lines.

It is generally accepted that maturity confounds yield 
estimates in soybeans and later maturing cultivars will 
generally out-yield earlier maturating cultivars. In soybean 
breeding, yield phenotypes are sometimes corrected for R8 
to better estimate yield potential per se and avoid indirect 
selection for later maturity. In our study, PYT early 2016 
was the best scenario to compare the selection categories 
due to the lack of statistically significant differences in R8 
among the selected classes (Additional file 1, Fig. S1). For 
this trial, the mean yield among the selection categories 
was not significantly different (Fig. 3), indicating that indi-
rect section for yield based on ACC or using Yield|ACC 
would result in the same yield gain than direct selection 

Table 1  Pearson’s correlations for  PR 2015 (above 
diagonal) and  2016 (bellow diagonal) and  narrow-sense 
heritability

Yield (kg/ha), average canopy coverage (ACC), yield given ACC (Yield|ACC) and 
R8 (days to maturity), progeny rows (PR)

r Person’s correlation, h2 narrow-sense heritability

r Yield ACC​ Yield|ACC​ R8

Yield – 0.51 0.70 0.61

ACC​ 0.06 – − 0.14 0.01

Yield|ACC​ 0.75 − 0.20 – 0.69

R8 0.30 − 0.10 0.20 –

h2

PR 2015 0.23 0.06 0.35 0.36

PR 2016 0.11 0.18 0.48 0.17

Fig. 3  a Box plot of adjusted yield (Kg/ha) and b adjusted yield given R8 (Yield|R8) distribution for lines selected by each selection categories (Yield, 
ACC and Yield|ACC) for preliminary yield trials (PYT) early and late in 2016 and 2017. Diamond indicates mean for each selection categories. The line 
crossing the box plots are representing the median for each class. No significative (ns); p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001

(See figure on next page.)
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on yield, considering that they derived from the same base 
population. Using ACC as a selection criterion in early 
stages of soybean breeding pipelines would provide advan-
tages not only in the reduction of the time for selection but 
also in the cost associated with the trait measurement.

For the other three trials, PYT late 2016 and PYT 2017, 
there were differences in the mean R8 between at least 
among two of the selection categories (Additional file 1, 
Fig. S1). Therefore, differences in the mean yield among 
the selection categories may be associated with the dif-
ferences in days to maturity. The yield correction for R8 
changed the comparison among the selection categories 
Yield and ACC in PYT 2016 late, making them similarly 
efficient for selection (Fig.  3). Although ACC selection 
did not produce higher gains than Yield selection, both 
PYT in 2016 confirm findings from Xavier et al. [33] that 
assuming identical selection intensities indirect selection 
for yield using ACC would have a relative efficiency for 
selection comparable to yield direct selection. In general, 
the findings from PYT 2016 did not hold in 2017 trials 
(Fig. 3). Even after adjusting for R8 the lines selected by 
Yield had a higher performance than the lines selected 
by the other selection categories; however, the differ-
ences among the yield mean from lines selected by Yield 
and Yield|ACC was small for both early (~ 120  kg/ha) 
and late (~ 150 kg/ha) trials (Additional file 1: Table S1), 
which may indicate that Yield|ACC is a valuable trait for 
selection.

This contrasting results in trait selection efficacy 
observed in 2016 and 2017 may be explained by differ-
ences in canopy coverage development in PR 2015 and 
PR 2016, as showed in the comparison of canopy cov-
erage development over time of the common checks 
among years (Additional file 1, Fig. S2). In 2015 at around 
53  days after planting (DAP) we observed an average 
of canopy coverage of 35% in the checks, while at the 
same DAP in 2016 the checks had an average of almost 
80% canopy coverage. This abnormal growth in 2016 

produced tall plants and increased lodging (data not 
shown), which has a great effect in unreplicated single 
row plot trials where every genotype is competing with 
both neighbor rows. Considering that taller and bigger 
plants do not result in higher yields when ranking the top 
BLUPs, several lines that were selected based on ACC 
may have had poor yield potential. In addition, the lack of 
correlation of yield and ACC in PR 2016 may have been a 
result of this unusual canopy growth. Therefore, despite 
the evidence that one trait can be used to indirect select 
for yield, the breeder needs to consider the environmen-
tal influence on the trait phenotypes at the time of selec-
tion. In our case, we could have used a threshold for ACC 
before doing the selections, avoiding the very high values 
of canopy coverage, or restricted selection dates to earlier 
points in development.

If we consider the top 40 lines from AYT in 2017 and 
2018, direct selection for yield alone selected only 6 lines 
from the PR trials, compared to 14 lines selected using 
ACC and/or Yield|ACC. Thus, despite the difference in 
mean performance among the selection categories in 
the PYT stage, we have demonstrated that ACC alone or 
combined with yield (Yield|ACC) are valuable secondary 
traits for selection in the PR stage. Yield|ACC had the best 
selection result in the top 10 lines for the AYT. Poor yield 
measurements due to harvesting errors, weather, and plot 
damage, lead to inaccurate representations of yield poten-
tial. Adjusting yield for early season ACC compensates 
for these inadequacies and is a better predictor of the real 
yield potential. This is in agreement with Jarquin et  al. 
[12] results showing that early season canopy coverage 
increased the predictive accuracy of yield in genomic pre-
dictions models. Additionally, digital canopy coverage has 
a one to one relationship to LI, which in turn is an impor-
tant factor for yield potential equation [32, 33, 48]. There-
fore, up to a certain point, increases in LI, through ACC, 
will result in increases in yield when the other parameters 
in the yield equation are kept the same.

Table 2  Progeny row selection categories choosing the ten top-ranked lines for advanced yield trials (AYT)

Average canopy coverage (ACC), yield given ACC (Yield|ACC)

AYT early 2017 AYT late 2017 Rank AYT early 2018 AYT late 2018

Yield, Yield|ACC​ Yield|ACC​ 1 Yield Yield, Yield|ACC​

Yield, Yield|ACC​ Yield|ACC​ 2 Yield, Yield|ACC​ Yield|ACC​

ACC, Yield ACC, Yield|ACC​ 3 Yield Yield, Yield|ACC​

Yield, Yield|ACC​ ACC​ 4 Yield, Yield|ACC​ Yield|ACC​

ACC, Yield Yield|ACC​ 5 Yield Yield

Yield|ACC​ ACC, Yield, Yield|ACC​ 6 ACC, Yield Yield, Yield|ACC​

Yield, Yield|ACC​ ACC, Yield, Yield|ACC​ 7 ACC​ Yield, Yield|ACC​

Yield, Yield|ACC​ Yield|ACC​ 8 Yield, Yield|ACC​ Yield

ACC, Yield, Yield|ACC​ ACC, Yield|ACC​ 9 Yield, Yield|ACC​ Yield|ACC​

Yield, Yield|ACC​ Yield 10 Yield|ACC​ Yield|ACC​
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In this study, we have shown that the efficiency of 
selecting high yielding soybean lines can be improved by 
taking advantage of an HTP trait. Field-based HTP using 
UAS is robust, simple, and cost-effective and can meas-
ure a wide range of phenotypes that can be converted 
into useful secondary traits [2, 49]. Breeding teams need 
to evaluate carefully the value of these secondary traits in 
increasing genetic gain either in a phenotypic selection 
or as part of pedigree or genomic prediction schemes [2, 
14]. In addition, we recommend testing different scenar-
ios to ensure if the greater response is using the second-
ary trait alone or in combination with yield. However, if 
not in the literature, an investigation of heritability and 
genetic correlation to yield should be carried out to eval-
uate the potential of the trait.

Conclusions
One of the most important tasks of a plant breeder is to 
find among the available selection criteria a combina-
tion that can promote the desirable genetic gain for the 
traits of interest within their breeding program. Field 
HTP must be integrated into a wider context in breeding 
programs than trait estimation, evaluation of platforms, 
and genetic association studies. We examined three dif-
ferent ways to select soybean lines from PR trials: Yield, 
ACC and Yield|ACC. We compared their performance 
in advancing selected lines in the following generations 
common in a soybean breeding program. We have dem-
onstrated that the secondary trait ACC measured using 
an aerial HTP platform can be used for selection, alone 
or in combination with yield, in early stages of soybean 
breeding pipelines. This method may offer even more 
advantages when yield is low quality or can’t be pheno-
typed due to the high cost or extreme weather events. 
Further studies are needed to assess environmental 
effects on canopy coverage phenotypic variation in order 
to have optimized recommendations on the use of ACC 
for selecting high yielding lines in different scenarios.
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