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Abstract 

Background:  The number grain per panicle of rice is an important phenotypic trait and a significant index for variety 
screening and cultivation management. The methods that are currently used to count the number of grains per pani-
cle are manually conducted, making them labor intensive and time consuming. Existing image-based grain counting 
methods had difficulty in separating overlapped grains.

Results:  In this study, we aimed to develop an image analysis-based method to quickly quantify the number of 
rice grains per panicle. We compared the counting accuracy of several methods among different image acquisition 
devices and multiple panicle shapes on both Indica and Japonica subspecies of rice. The linear regression model 
developed in this study had a grain counting accuracy greater than 96% and 97% for Japonica and Indica rice, respec-
tively. Moreover, while the deep learning model that we used was more time consuming than the linear regression 
model, the average counting accuracy was greater than 99%.

Conclusions:  We developed a rice grain counting method that accurately counts the number of grains on a 
detached panicle, and believe this method can be a huge asset for guiding the development of high throughput 
methods for counting the grain number per panicle in other crops.
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Background
Phenomics involves the gathering of high-dimensional 
phenotypic data to screen mutants with unique traits and 
identify the corresponding genes [1]. Current methods 
for obtaining phenotypic data are generally manual [2], 
making them time-consuming, labor-intensive, and less 
accurate. Therefore, such approaches have been imprac-
tical for high-throughput measurements during plant 
growth and development.

The number of rice grains per panicle is a key trait 
that effects grain cultivation, management, and subse-
quent yield [3–5], as well as being an important param-
eter for evaluating the potential of new rice cultivars [6]. 
Rapid measurement of grain number per panicle could 
improve the efficiency of scientific research and cultivar 
development.

Image analysis-based methods have been widely used in 
many aspects of plant phenotyping. Image-analysis based 
high-throughput phenotyping platforms have also been 
applied to measure phenotypic traits of rice, including: 
plant height, the green leaf area, and rice tiller number [7]. 
Yang et al. [8] measured the number of panicles on plants 
using multi-angel color images and an artificial neural net-
work algorithm. The authors reported a reliable, automatic, 
high-throughput leaf scorer (HLS) for the evaluation of leaf 
traits, including leaf number, size, shape, and color [9]. Feng 
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et al. [10] developed a hyperspectral imaging system for the 
accurate prediction of the above-ground biomass of indi-
vidual rice plants in the visible and near-infrared spectral 
regions. Zhou et al. [11, 12] used image analysis techniques 
to assess plant nitrogen and water status. Huang et al. [13] 
developed a prototype for the automatic measurement of 
panicle length using dual-cameras, which were equipped 
with a long-focus lens and a short-focus lens to capture a 
detailed and complete image of the rice panicle. In addi-
tion, image-based methods have been used to characterize 
seed morphology, including: seeds size, shape, color, and 
endosperm structure [14–16]. With the advancement of 
modern optical imaging and automation technology, hard-
ware is no longer a bottleneck for phenotyping. Instead, the 
analysis and processing of multi-disciplinary optical images 
have become the new bottleneck [17].

The research on the rapid counting of grain number 
per panicle has been carried out in different ways. Gener-
ally, the panicle is spread out on a white background and 
held in place by metal pins so that branches and grains 
are nonoverlapping [14, 18]. It is also an effective way 
to spread the grains after threshing [16]. These methods 
are not suitable for rice panicles with severe adhesions 
in the Yangtze River Basin. Currently, there are two pri-
mary methods for the determination of grain number 
per panicle. The first method is to count the number of 
grains manually after threshing, which is an incredibly 
time-consuming and labor intensive process. During the 
processing of threshed grains, due to the existence of a 
large amount of awns and overlaid and clustered grains, 
it is very challenging for traditional algorithms to identify 
individual rice kernels when they are touching [19, 20]. 
Husking the grains would make them smoother and easy 
to separate, but husking also produces broken rice ker-
nels and complicates the counting procedure.

The second methods for determining grain num-
ber on each panicle is the most common method and 
is called on-panicle counting method, which involves 
counting the number of grains in a spikelet. Collecting 
an image of the entire panicle is also problematic due 
to overlaid and clustered grains. To some extent, three-
dimensional image acquisition may solve the problem 
of the touching grains, but equipment to conduct this 
analyses is expensive and complicated to use.

In this study, we proposed a new counting method 
that uses image processing and deep learning algorithm 
to detect rice grain from the image of the primary 
branch was acquired using digital scanner. Our method 
would solve grain overlap or clustering problems, be 
more cost-effective and user-friendly, and facilitate 
high throughput counting of grain number per panicle 
in rice.

Methods
Field experiment
Since panicle morphology is effected by variety and 
species, we used two varieties of Indica rice (Yangli-
angyou No. 6 and Fengyouxiangzhan) and two varieties 
of Japonica (Wuyunjing No. 27 and Nanjing No. 9108). 
In addition, due to the fact that cultivation conditions 
can affect the grain size and grain number of per pani-
cle, the experiment was organized as two-factor ran-
domized complete block design with seeding density 
(150, 225, and 300 × 104 plant ha−1) and fertilizer (150, 
225, and 300 × kg  ha−1). At the full-heading stage, fif-
teen panicles per sample group were randomly har-
vested (Table 1). Total of 540 panicles, which included 
the spikelet and panicle of different sizes and shapes, 
were collected in the study.

Table 1  Basic information of experimental materials

Density 
(104 plant ha−1)

Fertilizer (kg ha−1) Indica rice Japonica rice Total

Yangliang you No. 6 Fengyou xiangzhan Wuyunjing No. 27 Nanjing No. 9108

150 150 15 15 15 15 60

225 15 15 15 15 60

300 15 15 15 15 60

225 150 15 15 15 15 60

225 15 15 15 15 60

300 15 15 15 15 60

300 150 15 15 15 15 60

225 15 15 15 15 60

300 15 15 15 15 60

Total 135 135 135 135 540
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Image acquisition
The different postures of rice panicles have great influ-
ences on image recognition. We divided the panicles into 
three groups based on manual shaping (Fig. 1). Shape A: 
Panicles were not manually shaped and panicle images 
were obtained in the natural state. Shape B: the primary 
branches were manually separated. The moisture content 
of panicle branch in the mature stage was low and the 
branch would undergo inert deformation. However, the 
stem and branch were not completely fractured, and the 
panicle image was taken in a natural unfolded state. Shape 
C: the primary branches were removed from panicle 
stem. The panicle stem and branch were completely frac-
tured, and the panicle image was taken in a natural scat-
tered state. A two-image acquisition method was used for 
the panicles. The first way is that the samples were placed 
on a black light-absorbing fabric and the rice panicle 
images were acquired using digital camera (SONY, model 
ILCE-6300; equipped with E PZ 16–50  mm, f 3.5–5.6 
lens) at a distance of 20 cm above the samples. The image 
size was 4032 × 3024. The second way is the panicle sam-
ples were placed on a scanner (Canon, model LiDE 400, 
resolution 4800 dpi, and scan speed: color, A4, 300 dpi, 
8 s). The scanner was connected to a computer and data 

were transferred via a high-speed USB2.0 Type-C device. 
The panicle images were acquired through digital scan-
ner and the image size was 2480 × 3507. The scanner 
was covered with black light-absorbing fabric to avoid 
light noise caused by reflection and projection. The basic 
information of image data was shown in Table 2.

Image pre‑processing
As shown in Fig. 2a, the contrast between the foreground 
and background was clear, and the foreground panicles 
were easily detected using the Otsu Image segmentation 
algorithm (Fig. 2b) [21]. During image acquisition, black 
light-absorbing fabric was used to prevent noise caused 
by light reflection and projection. However, repeated 
use of same fabric caused contamination by the impuri-
ties on the panicle surface and produced some noise. The 
original image size is 4032 × 3024 or 2480 × 3507, the 
size of the noise connection area is less than 100 pixels, 
and the panicle size is more than 100,000 pixels. So, we 
removed the noise by setting a threshold of 1000-pixels 
and extracting the connected area (Fig. 2c). The stem of 
the panicle was not investigated and would be removed. 
The width of the unfocused stem is 5–10 pixels, only less 
than half of the width of rice grains (30–50 pixels). Using 
a 5 × 5 disk mask to erode the denoising image for three 
times and then dilating it for three times (Fig.  2d). The 
branch image (without stem) (Fig.  2d) was subtracted 
from the denoised binary image (Fig. 2c) to obtain a stem 
image with noise (Fig.  2e) which was generated due to 
the excessive operation of eroding panicles in the pre-
vious step. Similarly, we removed the noise by setting a 
200-pixels threshold and extracting the connected area 
(Fig.  2f ). Next, the stem image (without noise) (Fig.  2f ) 
was subtracted from the denoised binary image (Fig. 2c) 
to obtain a binary image without the stem or noise 
(Fig. 2g). The RGB image without stems or noise (Fig. 2h) 
were used for further image processing.

Algorithm for the calculation of grain number per panicle
For untouched grains, the general counting method is 
to calculate the number of connected regions in binary 
images. When it touched, several methods were used to 
split the clustered kernels, including: dilation and erosion 
operation, the watershed method, corner detection, and 
feature matching. However, each method has its limita-
tions in our study, which will be discussed in detail later 
in this paper. We designed two methods as follows.

Linear regression algorithm
Coverage, corner point, etc. are effective feature param-
eters in image processing and analysis [22]. In this 
study, three parameters were used as candidates for the 
construction of linear regression models to count the 

Fig. 1  Images of three different panicle shapes acquired using a 
scanner of the Japonica rice and Indica rice. a Japonica rice panicles 
without manual shaping. b The primary branches of Japonica rice 
were manually separated. c The primary branches of Japonica rice 
were removed manually. d Indica rice panicles without manual 
shaping. e The primary branches of Indica rice were manually 
separated. f The primary branches of Indica rice were removed 
manually
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number of grains per panicle, including: coverage degree 
(CD), skeleton (Sk), and contour (Co). The result of each 
parameters extraction is shown in Fig. 3.

The parameter of all primary branch was first extracted 
from each panicle images. The sum of each branch 
parameter was used as the entire panicle parameter. All 
three parameters using the following equation:

where Sim is the size of original image (Fig.  2a); Ncd is 
the number of pixels with value of 1 in coverage image 
(Fig.  3b); Nsk is the number of pixels with value of 1 in 

(1)CD =

Ncd

Sim

(2)Sk =

Nsk

Sim

(3)Co =

Nco

Sim

skeleton image (Fig. 3c); and Nco is the number of pixels 
with value of 1 in contour image (Fig. 3d).

The parameters were normalized using min–max nor-
malization method as shown in the following equation:

where CDʹ is the normalized CD, CDmin is the minimum 
value of CD, CDmax is the maximum value of CD, Skʹ 
is the normalized Sk, Skmin is the minimum value of Sk, 
Skmax is the maximum value of Sk, Coʹ is the normalized 
Co, Comin is the minimum value of Co, Comax is the maxi-
mum value of Co.

(4)CD
′
=

CD − CDmin

CDmax − CDmin

(5)Sk
′
=

Sk − Skmin

Skmax − Skmin

(6)Co
′
=

Co− Comin

Comax − Comin

Table 2  Basic information of image dataset

Image acquisition 
method

Panicle shape Indica rice Japonica rice Total

Yangliangyou No. 6 Fengyou xiangzhan Wuyunjing No. 27 Nanjing No. 9108

Original image data

 Camera A 45 45 45 45 180

B 45 45 45 45 180

C 45 45 45 45 180

 Scanner A 45 45 45 45 180

B 45 45 45 45 180

C 45 45 45 45 180

Linear regression training data

 Camera B 40 40 40 40 160

C 45 45 45 45 180

 Scanner B 40 40 40 40 160

C 45 45 45 45 180

Linear regression validation data

 Camera B 25 25 25 25 100

C 25 25 25 25 100

 Scanner B 25 25 25 25 100

C 25 25 25 25 100

Deep learning training and validation data

 Camera B 5 5 5 5 20

C 5 5 5 5 20

 Scanner B 10 10 10 10 40

C 10 10 10 10 40

Deep learning testing data

 Camera B 25 25 25 25 100

C 25 25 25 25 100

 Scanner B 25 25 25 25 100

C 25 25 25 25 100
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Fig. 2  Flow chart of image preprocessing procedures. The scanner-acquired images of Japonica rice were used as an example

Fig. 3  Parameter extraction of CD, Sk and Co. a Original image of branches. b Extraction of CD parameter. c Extraction of Sk parameter. d Extraction 
of Co parameter
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Since the actual measurement was an integer and the 
model-predicted number was not always an integer, we 
rounded predicted number to integers for comparison. 
Table  2 is the image information used for regression 
model training and verification. In order to increase the 
sample size, the 45 shape A panicles were processed into 
20 shape B panicles and 30 shape C panicles to acquire 
images again. The constructed model was evaluated 
using R2 and RMSE.

Deep learning algorithm
The second method used in this study was the deep 
learning method (Fig. 4), which is popular and offers high 
accuracy performance. In this study, the superior Faster 
RCNN + ResNet101 network was used for grain identifi-
cation [23, 24]. Due to the heavy manual labeling work, 
only 120 original images were randomly selected for the 
model training and validation (Table  2). After preproc-
essing, images containing multiple branches and stems 
were separated into images containing a single branch, 
and saved as a new image. Total of 1337 images were 
obtained (Fig.  4a). These images were labeled manu-
ally and are available from the author. We divided 70% 
of the dataset into training sets and 30% of them into 

validation sets. 400 original images were used for test-
ing. Specifically, an original image was segmented into 
sub-images. The sub-images were separately identi-
fied and then aggregated into test results for one image. 
The images were sent to the Resnet101 feature extrac-
tion network (Fig.  4b) to generate the feature map. The 
authors of ResNet101 proposed a residual structure 
(Fig.  4c) to resolve the degradation problem. The selec-
tive search (SS) was replaced by region proposal net-
work (RPN) (Fig.  4d). The RPN considers nine possible 
reference windows (Fig. 4e) at each sliding window (SW) 
position which can improve the speed and accuracy of 
object extraction. Finally, training and validation progress 
is performed by minimizing classification loss and box 
regression loss. Detailed information about the hardware, 
software, and model hyperparameters are provided in 
Table 3. The other hyperparameters were consistent with 
the original research [24].

Results and analysis
Comparison on image manually counting method
We compared the counting accuracy of image man-
ual counting methods on two image acquisition ways, 
two different species of rice and three manually shaped 

Fig. 4  The flowchart of Deep Learning method. a Dataset. b Resnet101 convolutional network. c Residual learning: a building block. d Region 
proposal network (RPN). e RPN principle. f Fast RCNN network
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panicles. The ground truth (GT) is panicle grain manual 
counting. We found that regardless of the image acqui-
sition method, for Shape A, the manual counting accu-
racy remained below 80%, and was the lowest one of the 
rice shapes (Table 4). The results indicated that Shape A 
was not useful because it led to low panicle grain count-
ing accuracy. The maximum counting accuracy for Shape 
A was 80%, even with the most potent and optimized 
algorithm. In addition, a 95% counting accuracy could 
be achieved in the digital camera acquired images, which 
was at least 3% lower than those in scanner acquired 
images. This is primary due to the grain distribution on 
the panicle, which is not even and there being a high 

quantity of touching grains that are spread out during 
scanning. The counting accuracies for Shape B and Shape 
C were both greater than 95%.

Linear model analysis
We established 3 univariate linear regression models for 
counting the grain number on each panicle using CDʹ, 
Skʹ, and Coʹ. We also compared these 3 models in images 
that contained different panicle shape manipulation and 
were acquired using different digital devices. As shown in 
Fig.  5, for all three models, the R2 was > 0.90. The CDʹ-
based linear regression model had an R2 > 0.95, and had 
a better performance than Skʹ- or Coʹ-based models. 
Overall, images that were acquired from a scanner had 
lower RMSE than images acquired form a digital camera. 
Furthermore, the RMSE of Shape C + Indica rice images 
was lower than that of Shape B + Japonica rice images.

We validated the CDʹ-based linear regression model by 
comparing the model predictions for grain number with 
the actual measured number (Fig. 6). With an R2 = 0.9831 
and RMSE of 5.9481 for Indica rice, and R2 = 0.975 and 
RMSE of 6.4405 for Japonica rice, the Scanner + Shape C 
method had the best performance in all ways. The Scan-
ner + Shape B also had better performance as compared 
with the Camera + Shape B and Shape C. Therefore, 
scanner-acquired Shape C, in combination with CDʹ-
based linear regression model, provided the most accu-
rate grain counting.

We also constructed a multiple linear regression model 
based on the three parameters. Table  5 shows the opti-
mal model results obtained after screening. Compared to 
the univariate linear model (Figs. 5, 6), the multiple linear 
regression model requires more input factors, however 
their accuracy has not been greatly improved. Therefore, 
this study is more inclined to the univariate linear regres-
sion model.

Deep learning model
The deep learning model gave satisfactory performance 
for grain detection. The grains of both Indica and Japon-
ica rice were easily detectable (Fig. 7). The counting accu-
racies of the deep learning models were all > 98%, and 
were unlikely to be affected by devices and panicle shape 
(Table  6). Specifically, the Scanner + Shape C method 
had the highest counting accuracy of 99.38% and a false 
detection rate of 0%, as well as a very low miss detection 
rate.

Discussion
In this study, we not only developed a linear regres-
sion model and a deep learning model to count the 
grain number per rice panicle, but also tested the grain 
counting efficiency of traditional image-based counting 

Table 3  The hardware, software, and  hyperparameters 
configurations for the deep learning model

Project Content

CPU Intel Xeon E5-2682v4

RAM 16 G

GPU Nvidia Tesla P4

Operating system Ubuntu 16.04 LTS

Cuda Cuda8.0 with Cudnn v6

Data processing Python2.7, OpenCV, LabelImg, etc.

Deep learning framework TensorFlow

Deep learning algorithm Faster RCNN ResNet101

Num classes 2 (Japonica rice grain and Indica rice grain)

Batch size 1

Initial learning rate 0.0003

Learning rate 0.0003

Iteration steps 30,000

Minimum confidence 0.9

Table 4  The accuracy of  image manual counting 
for different groups

Image 
acquisition 
method

Rice 
subspecies

Panicle 
shape

Number 
of images 
measured

Accuracy (%)

Scanner Japonica rice A 100 75.83

B 100 98.33

C 100 98.39

Indica rice A 100 68.46

B 100 95.34

C 100 97.51

Camera Japonica rice A 100 68.08

B 100 93.35

C 100 95.26

Indica rice A 100 66.31

B 100 89.01

C 100 93.93
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methods. Traditional grain counting methods rely pri-
marily on the separation of touching grains, and mainly 
algorithms include the dilation and erosion method 

[25], the improved watershed algorithm [26], and fea-
ture point matching method [27, 28]. The commonly 
encountered problems of these traditional methods are 

Fig. 5  The linear regression model analysis of images with different panicle shapes, and images acquired using scanner and camera

(See figure on next page.)
Fig. 6  Validation of CDʹ-based linear regression model
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shown in Fig. 8. The dilation and erosion method often 
fail to separate touching kernels (Fig. 8c). The improved 
watershed algorithm was able to detect the kernel 
edges, but the kernel surface was over-separated and 
could not account kernel number accurately (Fig.  8d). 
The corner detection and feature matching methods 
(Fig. 8e) had an unsymmetrical detection capability and 
no corner point was detected on the yellow line side, 
while more corners were detected on the other side. 

Therefore, we do not believe that this method can pro-
vide satisfactory separation.

The removal of stems during image preprocessing 
improves the counting accuracy. We compared the model 
performance in the presence and absence of stems using 
accuracy as comparison criteria (Table 7). Both the linear 
model and the deep learning model improved counting 
accuracy after stem removal, with a maximum improve-
ment of 3%. The deep learning model had significantly 
higher counting accuracy compared to the linear model, 
which exhibited as high as a 10% accuracy difference 
between different rice types. Meanwhile, the deep learn-
ing model had a similar performance regardless of rice 
types. These results demonstrated that the impact of rice 
type on the model performance was significant for the 
linear model, but had less of an effect on the deep learn-
ing model.

To further validate the robustness of linear regression 
models, we used two varieties of Indica rice (Yangdao 
No. 6 and Liangyoupeijiu) and two varieties of Japonica 
(Lianjing No. 7 and Huaidao No. 5) as new materials to 
analyze subspecies varieties. Take the Scanner + Shape 

Table 5  Training and validation of optimal multiple linear regression model

Rice subspecies Combination method Training Validation

Models R2 RMSE R2 RMSE

Indica Scanner + Shape B GN = 364.93 × CDʹ + 0.70 × Skʹ − 3.90 × Coʹ + 2.801 0.990 4.6732 0.980 6.3254

Scanner + Shape C GN = 363.72 × CDʹ + 10.50 × Skʹ − 13.48 × Coʹ + 5.348 0.990 4.6345 0.980 6.3574

Camera + Shape B GN = 396.82 × CDʹ − 21.70 × Skʹ − 7.32 × Coʹ + 11.823 0.974 7.6989 0.965 8.3016

Camera + Shape C GN = 395.60 × CDʹ − 11.90 × Skʹ − 16.90 × Coʹ + 14.369 0.975 7.5595 0.964 8.3956

Japonica Scanner + Shape B GN = 481.49 × CDʹ + 178.22 × Skʹ − 164.85 × Coʹ − 18.485 0.979 6.0957 0.975 6.4714

Scanner + Shape C GN = 482.28 × CDʹ + 178.63 × Skʹ − 164.00 × Coʹ − 17.031 0.980 5.9838 0.976 6.4587

Camera + Shape B GN = 500.64 × CDʹ + 188.62 × Skʹ − 205.06 × Coʹ − 5.477 0.954 9.1121 0.953 8.5389

Camera + Shape C GN = 501.43 × CDʹ + 189.03 × Skʹ − 204.22 × Coʹ − 4.023 0.954 9.0961 0.953 8.5910

Fig. 7  Recognition of grains using deep learning algorithm. a Original image of Japonica rice. b Original image of Indica rice. c Recognition of 
Japonica rice grains. d Recognition of Indica rice grains

Table 6  Grain counting accuracy of  the  deep learning 
model

The results were based on 401 images in validation set

Image 
acquisition 
device

Panicle 
shape

Miss 
detection 
rate (%)

False 
detection 
rate (%)

Accuracy (%)

Scanner Shape B 0.79 0 99.21

Shape C 0.62 0 99.38

Camera Shape B 1.40 0 98.60

Shape C 1.02 0 98.98
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C method as an example, and the verification results 
are shown in Fig. 9. The R2 and RMSE of the Indica rice 
model were 0.9737 and 7.1120 respectively. The R2 and 
RMSE of the Japonica rice model were 0.9623 and 6.4746 
respectively. Compared with the results of Fig. 6, there is 
a slight decrease. So, the robustness of linear regression 
models is greatly affected by the shape of the panicle and 
grain, and is less affected by the size of the panicle and 

grain. The shape is mainly controlled by the subspecies, 
and the size is controlled by cultivation measures such as 
variety, density and nitrogen application rate.

The deep learning model did have a slightly higher per-
formance for the Japonica rice than the Indica rice. We 
analyzed images from test set that had a low counting 
accuracy (Fig. 10). The Indica rice grains were long and 
slender, which make them more likely to form a cluster 
and consequently, can’t be detected as effectively by the 
deep learning model. Therefore, the counting accuracy of 
Indica rice is lower than that of Japonica rice regardless 
of model.

When using the image-based algorithm, the run-
ning time of the model was also an important factor. 
We took 20 panicle images as a group and calculated 
the time spent. Repeat 5 times and take the average as 
results (Table 8). The time needed for counting was two-
fold: the time needed for image acquisition and the time 
needed to run the algorithm. The Shape A image acquisi-
tion time was the fastest among these conditions. How-
ever, the results in Table  4 showed that the accuracy of 
using Shape A images was low. The use of X-ray tech-
nique or three-dimension (3D) image will have a better 
performance on Shape A. Charytanowicz et al. [29] used 
X-ray images to evaluate geometric features for wheat 
grain classification. However, X-ray equipment is expen-
sive. Long-term acceptance of X-rays can cause a lot of 
damage to human body. Generally, the accuracy of the 

Fig. 8  Limitations of traditional image-analysis based grain recognition methods. a Original image. b Binary image. c Dilation and erosion operation 
results. d Improved watershed method. e Corner detection and feature matching method

Table 7  The effect of  stems on  the  counting accuracy 
of different models

The results in this table were from scanner acquired images and the Shape C 
panicles

Model Rice subspecies type Stems Accuracy (%)

Linear regression 
model

Indica rice Yes 96.95

No 97.84

Japonica rice Yes 95.48

No 96.43

Indica + Japonica rice Yes 84.86

No 87.56

Deep learning model Indica rice Yes 98.84

No 99.06

Japonica rice Yes 99.36

No 99.52

Indica + Japonica rice Yes 99.16

Yes 99.38
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Fig. 9  Robustness analysis of linear regression models

Fig. 10  Limitation of the deep learning model in Indica rice grain counting

Table 8  Time needed for each work

Image acquisition device Panicle shape Time used

Scanner Shape A 2 m 30 s

Shape B 5 m 40 s

Shape C 4 m 46 s

Camera Shape A 40 s

Shape B 3 m 20 s

Shape C 2 m 26 s

Counting method Time used

Manual counting 21 m 40 s

Linear regression model 3 s

Deep learning model 2 m 20 s
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3D scanner is high, which is suitable for obtaining large 
objects such as forest trees [30]. For small targets such as 
rice, expensive higher precision instruments are required. 
In addition, the acquisition and processing of 3D images 
may take more time. In summary, we take Shape B and 
Shape C as research objects rather than Shape A.

The time needed to acquire images using a digital cam-
era was 50% of that using scanner, and the time needed 
for Shape C was shorter than Shape B. During the time 
experiment, Shape B needs to carefully separate the inter-
twined branches, and the violent operation will cause 
the individual grains to fall off and affect the subsequent 
treatment. Shape C can be separated from the stem by 
cutting a knife. Therefore, Shape B takes more time than 
Shape C. When running the linear model, most of the 
time was used for image processing and for the extrac-
tion of parameters. Meanwhile, when running deep learn-
ing model, most time was spent on parameter loading. 
The linear regression model required significantly less 
time than the deep learning model due to the fact that 
the deep learning model must load millions of param-
eters and involves large amount of data execution. The 
Scanner + Shape B + Deep Learning method takes 8 min, 
which is only about one-third of the manual counting 
time. The brain power expended by manual counting was 
not included yet. Thus, using multiple sets of high-perfor-
mance graphics processing unit (GPU) could significantly 
accelerate data execution [31]. In addition, model com-
pression or the establishment of a simpler deep learning 
model could also reduce the model running time [32].

Conclusion
In summary, we established two models to count the 
grain number per panicle, a linear regression model and 
a deep learning model, which had a counting accuracy 
greater than 96% and 99%, respectively. However, the 
deep learning model required more time than the lin-
ear regression model. If we consider the time cost, linear 
regression model is recommended for counting the rice 
grain number per panicle. Otherwise, the deep learning 
model would be best to optimizing accuracy. We believe 
our high-throughput and rapid method for counting the 
number of rice grains per panicle is a useful tool for rice 
phenomics research.
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