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Abstract 

Background:  The accurate estimation of rice LAI is particularly important to monitor rice growth status. Remote 
sensing, as a non-destructive measurement technology, has been proved to be useful for estimating vegetation 
growth parameters, especially at large scale. With the development of unmanned aerial vehicles (UAVs), this novel 
remote sensing platform has been widely used to provide remote sensing images which have much higher spatial 
resolution. Previous reports have shown that the spectral feature of remote sensing images could be an effective 
indicator to estimate vegetation growth parameters. However, the texture feature of high-resolution remote sensing 
images is rarely employed for this purpose. Besides, the physical mechanism between the texture feature and vegeta-
tion growth parameters is still unclear.

Results:  In this study, a Fourier spectrum texture based on the UAV Image was developed to estimate rice LAI. And 
the relationship between Fourier spectrum texture and rice LAI was also analyzed. The results showed that Fourier 
spectrum texture could improve the accuracy of rice LAI estimation.

Conclusions:  In conclusion, the texture feature of high-resolution remote sensing images may be more effective in 
rice LAI estimation than the spectral feature.
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Background
Leaf area index (LAI) is a key canopy structure param-
eter that related to the photosynthesis, respiration, and 
transpiration of vegetation [1]. The accurate estimation 
of crop LAI is of significance to monitor the health and 
nutrient status, thus providing effective technical support 
in fertilizer application and water management for preci-
sion agriculture [2].

Remote sensing (RS) is a technology which can obtain 
the information about an object without making physi-
cal contact with the object [3]. Therefore, RS has a dis-
tinct advantage in monitoring vegetation growth due to 
its non-destructive characteristic. It has been proved 
that RS could efficiently acquire canopy spectral data 
which contains a large of information on the canopy 
interaction with solar radiation such as vegetation 

absorption and scattering [4]. Vegetation reflectance 
and vegetation index (VI) have been developed as main 
spectral features to evaluate vegetation growth. The 
vegetation reflectance is closely related to vegetation 
growth. In the visible range, a relatively lower reflec-
tance value appeared due to the strong light absorp-
tion of leaf pigments [5]. In the near-infrared range 
(NIR), vegetation reflectance becomes obviously higher 
affected by thick plant tissues and canopy structure 
[6]. And VI is mathematical combinations of different 
spectral ranges mostly in the visible and NIR regions 
[7]. The main purpose of VI is to enhance the vegeta-
tion information contained in spectral reflectance data. 
In previous study, various VIs have been proposed to 
retrieve biophysical parameters such as LAI [8, 9], chlo-
rophyll content [10–12] and biomass [13, 14]. Gen-
erally, regression algorithms are used to develop the 
relationship between VI and biophysical parameters. 
Although the VI-based regression algorithms are sim-
ple and easily available, most VIs are not robust when 
applied across different regions. In this way, a more 
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sophisticated statistical technique—the machine learn-
ing method, has been considered [15]. For example, 
Bacour et  al. [16] established a LAI estimation model 
with MERIS satellite reflectance at 11 bands by neu-
ral network. Verrelst et  al. [17] applied Gaussian pro-
cess machine learning method to retrieve chlorophyll 
content with 62 bands CHRIS reflectance. Machine 
learning methods can make full use of reflectance infor-
mation at different bands and obtain approximate com-
plex non-linear functions, and they are more robust 
and adaptive than VI-based regression algorithms [18].

In essence, the spectral feature contains a limited 
amount of information acquired by RS images. Besides 
the spectral feature, RS images provide more abundant 
texture information related to vegetation growth. The 
texture feature should also be considered when the RS 
image is used to retrieve vegetation growth parameters. 
Some research has been conducted to analyze the rela-
tionship between image texture features and vegetation 
growth. Nichol et al. [19] found that the texture param-
eter of high-resolution optical sensors can improve for-
est biomass estimation. And the similar result was also 
found by Sarker [20]. Zhang et  al. [21] combined the 
object-based texture features with a neural network to 
examine the contribution of the spatial information for 
vegetation mapping and found that the texture features 
could improve the accuracy of vegetation mapping. Cor-
relations between the texture feature and vegetation 
growth were revealed in many studies, but the texture 
feature was always used to establish the statistical algo-
rithm or used as the inputs for machine learning meth-
ods. The physical mechanism of relating texture feature 
to vegetation growth is still unclear. In addition, there is 
little research comparing the use of the spectral feature 
and the texture feature for estimating vegetation growth 
parameters.

Recently, unmanned aerial vehicles (UAVs) are increas-
ingly used as an innovative RS platform for agricultural 
applications [22–24]. In comparison to traditional satel-
lite platform, the flexibility of changing UAV flight alti-
tude and attitude can give us an easy access to data with 
different spatial resolutions as required by users. This is 
particularly beneficial for precision agriculture by provid-
ing the image with selected resolution for detailed obser-
vations on different crop growth. For example, Jin et  al. 
[25] proposed a method to estimate wheat density using 
images taken by UAV at very low altitude (3–7 m); López-
Granados et  al. [26] determined weed distributions in 
croplands using UAV images collected at different flying 
heights. With high-spatial-resolution UAV data, more 
detailed texture information about vegetation growth 
can be derived from images. Therefore, when UAV RS 
technology is used to monitor vegetation growth, it is 

extremely important to take account of the texture fea-
ture of UAV images.

This study explores to improve rice LAI estimation 
using Fourier spectrum texture from UAV images. The 
first objective is to compare using canopy reflectance 
and VI for rice LAI estimation. The second objective is to 
analyze the physical mechanism of relating Fourier spec-
trum texture to LAI. The final objective is to compare the 
performances of using the spectral feature and the tex-
ture feature to estimate rice LAI.

Materials and methods
Study area
The study site was located at the Hybrid Rice Experi-
ment and Research Base of Wuhan University near 
Lingshui city, HaiNan Province, China (18°31′47.1″N 
110°03′34.9″E). The terrain of study area is flat, and 
there is a tropical marine climate with high tempera-
ture throughout the year. There were 42 representative 
hybrid rice cultivars planted in different field plots. The 
plots were of the same size about 70  m2 but were dif-
ferent in shape—Fig.  1a. The plant density and nitro-
gen application for these plots were same. In order to 
distinguish these plots in the UAV image, several white 
boards were erected at the edge of plots. The experiment 
was conducted for a single season from December 2017 
to May 2018. All rice cultivars were sown on December 
10th 2017 and transplanted on January 5th 2018 with the 
transplanting density of 15,000 plants/ha. The air tem-
perature change during the whole growth period of rice 
was shown at Fig. 2 and there was not a large amount of 
precipitation in this period. Six field experiments were 
conducted on February 4th, February 25th, March 9th, 
March 19th, March 31th and April 17th respectively. In 
each field experiment, one UAV flight was arranged to 
obtain the image of all rice plots. After the UAV flight, 
the corresponding ground LAI measurements were car-
ried out immediately. 

In‑situ LAI data collection
In this study, a destructive sampling measurement was 
used to collect rice LAI data in different plots. For each 
plot, three bundles were randomly dug out from soil with 
root, placed in a bucket full of water and taken to the 
laboratory. LAI measurements were taken after return-
ing the samples to the laboratory immediately. The green 
leaves were separated from stems and panicle compo-
nents. If a larger proportion of a leaf was yellow, it was 
recognized as a yellow leaf. The total green leaf area of 
each bundle was measured by LI-3000C leaf area meter 
(LI-COR, Lincoln, NE, United States) with the unit of 
square meter. And the average leaf area of three bun-
dles represented the single plant leaf area in each plot. 
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According to the planting density of rice, the LAI value 
of each plot was

where LAs was the single plant leaf area in each plot and 
d was plant density in one square meter. For each of 42 
plots, six LAI values were collected on different days and 
thus the sample size of LAI in this paper was 252.

(1)LAI = LAs × d

Canopy reflectance and vegetation index derived 
from the UAV image
In this study, an UAV equipped with a Mini-MCA system 
was used to acquire the image of study plots. The Mini-MCA 
system consisted of an array of twelve individual miniature 
digital cameras (Mini-MCA 12, Tetracam, Inc., Chatsworth, 
CA, United States). Each camera imager was equipped 
with a customer-specified band pass filter centered at the 

Fig. 1  a The study area and b the region of interest (ROI) in 42 rice plots

Fig. 2  The air temperature change after the transplant of rice plant
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wavelength of 490 nm, 520 nm, 550 nm, 570 nm, 670 nm, 
680  nm, 700  nm, 720  nm, 800  nm, 850  nm, 900  nm and 
950 nm respectively. These spectral bands basically covered 
the visible to NIR region which were commonly employed to 
analyze vegetation growth-related parameters [27, 28]. The 
Mini-MCA system was fixed in the UAV by a gimbal which 
can help to compensate for the UAV movement (pitch and 
roll) during the flight and guarantee close to nadir image col-
lection [29]. The UAV flight was conducted under clear skies 
with little cloud cover between 10 am and 2 pm local time 
when the changes in the solar zenith angle were minimal. 
The altitudes for UAV images acquisition was 200 m and the 
spatial resolution was 108.33 mm.

Since the MCA system had a significant camera mis-
registration effect, the band-to-band registration was 
conducted in the laboratory prior to the flight so that cor-
responding pixels of each lens were spatially overlapping 
in the same focal plane. And an empirical linear correction 
method was applied to transform image digital number 
(DN) into surface reflectance (R) [30, 31]. Six calibration 
ground targets which had the constant reflectance were 
placed in the cameras’ field of view as the reference for 
image radiometric correction. These six calibration targets 
had the relatively constant reflectance of 0.03, 0.12, 0.24, 
0.36, 0.56 and 0.80 respectively throughout the visible to 
NIR wavelengths. Based on the linear relationship between 
DN and R, the reflectance value was obtained

where � was the band wavelength of MCA camera; R� 
and DN� were the surface reflectance and digital number 
of a pixel at wavelength � respectively; Gain� and Offset� 
were gains and bias. For each wavelength � , Gain� and 
Offset� can be calculated using the least-square method 
by R and DN values (referring to DN0.03 , DN0.12 , DN0.24 , 
DN0.36 , DN0.56 , and DN0.80 ) of six calibration targets.

(2)R� = DN� × Gain� + Offset�

(3)
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After radiometric correction, the raw UAV images with 
DN values were transformed into reflectance images 
and then band math was employed to obtain VI images. 
Seven VIs were calculated in this study—Table 1.

We defined a rectangle in the image as the region of 
interest (ROI) of each rice plot—Fig.  1b. The rectangle 
was the standard square with a size of 41 × 41 pixels, and 
these squares were applied in reflectance image and VI 
image respectively. The average of all the per-pixel values 
within ROI was obtained as the plot level canopy reflec-
tance and VI.

Fourier spectrum texture extraction
Fourier transform is a common method of transform-
ing images from the spatial domain into the frequency 
domain [38]. And in the frequency domain, the Fourier 
frequency spectrum is always employed to reflect the 
intensity of different frequency components. Generally, 
the characteristics of Fourier frequency spectrum contain 
a large of information on image texture. In this paper, the 
rectangle ring Fourier spectral energy percentage (FSEP) 
was used to represent the texture feature of rice field [39].

First of all, image was transformed into the frequency 
domain by Fourier transform. Since the image was the 
two dimensional discrete data, the transformation can be 
denoted as

where f(x,y) was the digital image, x and y were the lat-
eral axis and vertical axis of mage, M and N were the 
counts of row and column. F(u,v) was the Fourier fre-
quency spectrum, and it was a complex function of two 
real frequency variables u and v. In the Fourier frequency 
spectrum image, u corresponded to lateral axis and v cor-
responded to vertical axis. Note that, the value of F(u,v) 
was a complex number and the energy spectrum of Fou-
rier transform was

(4)
F(u, v) =

M
∑
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N
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y=1

f
(

x, y
)

e−j2π
(

ux
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N

)

u = 1, 2, . . . ,M; v = 1, 2, . . . ,N

(5)E(u, v) = R2(u, v)+ I2(u, v)

Table 1  The Vegetation Indices tested in this study

Vegetation indices Formula References

Red-edge Chlorophyll Index (CIrededge) R800nm/R720nm−1 Gitelson et al. [32]

Green-edge Chlorophyll Index (CIgreen) R800nm/R550nm−1 Gitelson et al. [32]

Normalized Difference Vegetation Index (NDVI) (R800nm−R670nm)/(R800nm + R670nm) Rouse et al. [33]

Normalized Difference Red edge (NDRE) (R800nm−R720nm)/(R800nm + R720nm) Glenn et al. [34]

Visible Atmospherically Resistant Index (VARI) (R550nm-R670nm)/(R550nm + R670nm) Gitelson et al. [35]

MERIS Terrestrial Chlorophyll Index (MTCI) (R800nm−R720nm)/(R720nm−R670nm) Dash and Curran [36]

Two-band Enhanced Vegetation Index (EVI2) 2.5(R800nm-R670nm)/(R800nm + 2.4R670nm + 1) Jiang et al. [37]
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where R(u,v) and I(u,v) were the real and imaginary parts 
of F(u,v) respectively. The energy spectrum was sym-
metrical about the center point of image due to the con-
jugate symmetry of Fourier transform and the energy 
spectrum image was the same size as the origin image—
Fig. 3a, b. In this study, some rectangle rings in different 
sizes but in same shape were used to separate the Fourier 
energy spectrum—Fig.  3c and the percentage of center 
ring energy above the total energy of all rings was calcu-
lated to represent the texture feature. The rectangle ring 
started at the edge of the image and the distance between 
rectangle ring and image edge increased one pixel each 
time until the image cannot be separated—Fig.  3d. The 
FSEP was then defined as

where Ecen was the energy of center ring and it was the 
sum of E(u,v) contained in center ring.

For each rice plot, the data contained in the rice plot 
ROI was extracted and saved as a two dimensional 
matrix. And then, the matrix was used to do Fourier 
transform and calculate the plot level FSEP.

Data analysis and accuracy assessment
In this paper, we applied correlation analysis and regres-
sion analysis to describe and analyze the relationship 
between LAI and different remote sensing features 

(6)FSEP =
Ecen

∑M
u=0

∑N
v=0 E(u, v)

Fig. 3  a The origin image of Fourier transform, b the Fourier energy spectrum, c the rectangle ring used in energy spectrum and d the Fourier 
spectral energy percentage of center ring
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extracted from the UAV image. Firstly, plot level canopy 
reflectance and VI were correlated with rice LAI directly. 
The Pearson correlation coefficient (r) was exhibited 
as the result of correlation analysis. And for regression 
analysis, the exponential regression model was used 
and the coefficient of determination (R2) was compared. 
Secondly, the same correlation analysis and regression 
analysis were also applied to analyze the relationship 
between LAI and different FSEPs extracted from differ-
ent reflectance images and VI images. And we discussed 
the difference between spectral features and texture 
features. Finally, we established the rice LAI estimation 
model using Support Vector Machine Regression (SVR) 
[40] with the kernel function was radial basis function 
[41]. Forty-two rice plots were divided into two groups, 
one for SVR training (n = 30) and the other one for test-
ing (n = 12). All the LAI samples of training plots were 
used to train SVR model. In this way, the LAI samples of 
the whole rice growth period attended to model estab-
lishment. Thus, the LAI training set included 180 sam-
ples and the LAI testing set included 72 samples. The 
algorithm was realized in MATLAB R2016a (MATLAB 
2016a, s, Inc., Natick, MA, United States) with the LIB-
SVM package (https​://www.csie.ntu.edu.tw/~cjlin​/libsv​
m/). Some spectral parameters and FSEP parameters 
were tested as the input of SVR. To assess the estimation 
model, RMSE and R2 of estimated LAI and measured LAI 
in the LAI testing set were obtained.

Results
Correlations of LAI with canopy reflectance and vegetation 
index
To determine the relationship between rice LAI and 
spectral features derived from the UAV data, we con-
ducted correlation analysis of LAI with canopy reflec-
tance in different bands (reflectance in 550 nm, 670 nm, 
720 nm and 800 nm, abbreviated as R550nm, R670nm, R720nm 
and R800nm respectively) and seven VIs. The results indi-
cated that all the tested VIs were correlated positively 
with LAI but most reflectance bands exhibited a negative 
correlation with LAI except R800nm—Table 2. Among four 
reflectance bands, R670nm and R800nm showed the strong 
correlations with LAI (r was above 0.75), and R720nm 
appeared a weakly correlation with LAI having the r value 
below 0.4. Generally, VIs exhibited stronger correlations 
with LAI and the r values of most VIs were above 0.65. 

Among all tested VIs, EVI2 and NDVI were the most rel-
evant to LAI with the r value reaching 0.79. However, the 
regression analysis showed that NDVI had a significant 
saturation phenomenon and the value of R670nm concen-
trated near 0—Fig. 4. Due to the saturation phenomenon 
of NDVI and the value aggregation of R670nm, they were 
not suitable for rice LAI estimation. Therefore, EVI2 and 
R800nm were selected as the best spectral features to esti-
mate rice LAI.

Fourier spectrum texture of rice field
In order to investigate the texture feature of rice field, 
Fourier transform was applied to transform the digi-
tal image from the spatial domain into the frequency 
domain and the Fourier energy spectrum was obtained to 
represent the texture feature of images. Firstly, two simu-
lated images with white strips were used to analyze the 
difference of the Fourier energy spectrum between differ-
ent images—Fig. 5a, b. The results showed that the high 
energy values of the Fourier energy spectrum were dis-
tributed in the center horizontal line. Similarly, the high 
energy value of the energy spectrum with wider stripes 
was closer to the midpoint of center line—Fig. 5e, f It can 
be inferred that the distribution of the energy spectrum 
was related to the stripe width. The wider the stripe, the 
more concentrated on center of the high energy value 
was. For further study, real UAV images of rice field were 
utilized. We selected two EVI2 images which focused on 
the same rice plot but were obtained on two different 
days—Fig. 5c, d. The image of Fig. 5c was got on Febru-
ary 4th and Fig. 5d was on March 9th. Generally, the LAI 
of rice on March 9th was higher than that on February 
4th. The energy spectrum of UAV images was similar to 
that of simulated images and the high energy value also 
distributed in the center horizontal line—Fig. 5g, h Obvi-
ously, in Fig. 5g there were two darker bright spots on two 
sides of the brightest spot, but there was only one bright 
spot in Fig. 5h. It means that the high energy value of the 
energy spectrum was more concentrated on the center 
with the increase of rice LAI. Therefore, the characteris-
tics of the Fourier energy spectrum were related to rice 
LAI, especially for the center region of energy spectrum.

Relationship between LAI and Fourier spectrum texture
To investigate the relationship between Fourier spec-
trum texture and rice LAI, we calculated a series of FSEP 

Table 2  The Pearson correlation coefficients (r) of LAI with reflectance and VI

** Correlation is significant at the 0.01 level (two-tailed)

R550nm R670nm R720nm R800nm CIrededge CIgreen NDVI NDRE VARI MTCI  EVI2

r − 0.64** − 0.75** − 0.38** 0.77** 0.67** 0.52** 0.79** 0.74** 0.68** 0.67** 0.79**

https://www.csie.ntu.edu.tw/%7ecjlin/libsvm/
https://www.csie.ntu.edu.tw/%7ecjlin/libsvm/
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based on different reflectance and VI images. Firstly, LAI 
was directly correlated with these FSEPs and the Pear-
son correlation coefficients (r) were compared—Table 3. 
Generally, all VI-derived FSEPs produced higher r val-
ues with LAI than VIs. Especially for the VIs which had 
relatively lower r values, their FSEPs performed an obvi-
ously stronger correlation with LAI (such as CIrededge 
and CIgreen). The results of correlation analysis indicated 
that VI-derived FSEPs correlated positively with LAI. 
Among all VI-derived FSEPs, FSEP-EVI2 still had the 
highest r value with LAI (r was 0.83). On the contrary, 
most reflectance-derived FSEPs exhibited a relatively 
weak correlation with LAI (r below 0.4) except FSEP-
R800nm. Although FSEP-R800nm showed a much stronger 
correlation with LAI (r was 0.75) than other reflectance-
derived FSEPs, the r value of FSEP-R800nm was a bit lower 
than that of R800nm (r was 0.77—Table 2). The regression 
analysis showed that a significant saturation phenom-
enon still existed in FSEP-NDVI—Fig. 6. And FSEP-EVI2 
had an extremely better goodness of fit with LAI (R2 was 
0.88) than FSEP-R800nm (R2 was 0.69). Therefore, the VI-
derived FSEP was more suited to rice LAI estimation 
than the reflectance-derived FSEP.

Rice LAI estimation using Fourier spectrum texture
To determine whether FSEP can predict rice LAI more 
accurately, different predicted models were estab-
lished by SVR with various parameters. The LAI sam-
ples were divided into two groups, one was used as the 
training set (n = 180) and the other one as the testing 
set (n = 72). The trained model was then applied in the 
testing set, the estimated LAI values were obtained 
and compared with the ground measured LAI values. 
RMSE and R2 of estimated LAI and measured LAI in 
the testing set were calculated to analyze the estima-
tion precision of the trained model with different input 
parameters—Table 4. In general, the estimation preci-
sion of the FSEPs was higher than spectral parameters. 
Among all the tested input parameters, FSEP- R550nm, 
FSEP-EVI2 acquired highest estimation accuracy for 
LAI with the RMSE of 1.22. For reflectance param-
eters, increasing the count of same type parameter 
may not improve the estimation accuracy for LAI—the 
RMSE of R550nm, R670nm, R720nm, R800nm was higher than 
that of R550nm, R670nm, R800nm. And the results showed 
that VIs did not perform better than reflectance bands 
in LAI estimation—the RMSE of R550nm, R670nm, R720nm, 

Fig. 4  The result of regression analysis of LAI with R670nm, R800nm, NDVI and EVI2



Page 8 of 12Duan et al. Plant Methods          (2019) 15:124 

R800nm was lower than that of NDRE, VARI, EVI2. A 
similar result was also found in the comparison of 
R550nm, R670nm, R800nm and R550nm, EVI2. Compared 
with spectral parameters, FSEPs worked better for 
LAI estimation. Both VI-derived FSEPs and reflec-
tance-derived FSEPs can be used as the input of SVR 
to develop LAI estimation model. The RMSE of FSEP-
NDRE, FSEP-VARI, FSEP-EVI2 and FSEP- R550nm, 
FSEP-EVI2 was smaller than that of NDRE, VARI, 
EVI2 and R550nm, EVI2. These results suggested that 
the Fourier spectrum texture proposed in this paper 
was an effective indicator to estimate rice LAI—Fig. 7.

Discussion
The primary purpose of this study was to improve the 
accuracy of rice LAI estimation based on the UAV image. 
A Fourier spectrum texture feature called Fourier spec-
tral energy percentage (FSEP) was applied and proved to 
be a more effective indicator for rice LAI estimation.

The remote sensing spectral feature was regarded 
as a good indicator for estimating vegetation 

greenness-related parameters such as chlorophyll con-
tent, LAI and vegetation fraction [42]. Especially the VI, 
obtained by spectral transformation of several reflectance 
bands, was more useful in monitoring vegetation growth 
for its ability to enhance the vegetation feature [9]. In this 
study, the rice canopy reflectance and various VIs were 
firstly tested to correlate with rice LAI. Four reflectance 
bands were selected including R550nm, R670nm, R720nm and 
R800nm, and the canopy reflectance in these bands was 
proved to be related with rice LAI [43, 44]. Besides, seven 
commonly used VIs based on these reflectance bands 
were also tested—Table 1. Previous studies showed that it 
was possible to estimate rice LAI directly from the reflec-
tance of red and NIR region [45]. In this study, R670nm and 
R800nm also exhibited a stronger correlation with rice LAI 
than R550nm and R720nm, and R800nm produced the highest r 
value among all reflectance bands (r was 0.77). According 
to the characteristic of vegetation spectral curve, the near-
infrared (NIR) spectrum of vegetation is related to the 
vegetation canopy structure [6]. LAI, calculated based on 
the leaf area of vegetation, was an important vegetation 

Fig. 5  The origin images and their corresponding energy spectrum. The simulated images with a narrow stripe and b wide stripe, the actual UAV 
image of rice plot taken on c February 4th and d March 9th. e–h are the corresponding energy spectrum images of a, b, c, d respectively

Table 3  The Pearson correlation coefficients of LAI with FSEP based on reflectance and VI images

** Correlation is significant at the 0.01 level (two-tailed)

FSEP-R550nm FSEP-R670nm FSEP-R720nm FSEP-R800nm FSEP-CIrededge FSEP-CIgreen FSEP-NDVI FSEP-NDRE FSEP-VARI FSEP-MTCI FSEP-EVI2

r − 0.18** − 0.23** − 0.34** 0.75** 0.77** 0.68** 0.82** 0.80** 0.76** 0.70** 0.83**
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growth parameter about canopy structure [46] and thus 
R800nm performed a stronger correlation with rice LAI. 
As for VI, all the tested VIs showed an acceptable corre-
lation with LAI (r above 0.5), and NDVI and EVI2 were 
the most relevant among them (r was 0.79). Note that, 
NDVI and EVI were both calculated based on R670nm and 
R800nm which had a strong correlation with LAI. It implies 

that the relevance of reflectance bands may affect the cor-
responding VI’s correlation with LAI. The VI based on 
strongly correlated reflectance bands may perform a bet-
ter correlation. It has been reported that NDVI saturated 
if plant canopy structure was complex [47]. Consequently, 
Fig. 4 showed that NDVI suffered from the obvious satu-
ration effect in high LAI values. In this case, R800nm and 
EVI2 were selected as the best spectral indices to estimate 
rice LAI among the tested reflectance bands and VIs. 
Although VI had a potential to enhance the vegetation 
feature compared with canopy reflectance, the correlation 
of LAI and EVI2 was not significantly better than that of 
LAI and R800nm. This result suggests that the simple spec-
tral transformation of different reflectance bands may not 
meet the demand of more accurate LAI estimation.

In this study, the raw UAV images were converted into 
the reflectance images by radiance calibration and then 
we obtained various VI images based on band math. 
Moreover, the average of all pixel values in rice plot ROI 
was calculated as the plot level canopy reflectance and 
VI. Apparently, a simple average of related pixels may not 

Fig. 6  The result of regression analysis of LAI with FSEP-EVI2, FSEP-NDVI and FSEP-R800nm

Table 4  The assessment of  LAI estimation model 
established with different input parameters by SVR

** F-test statistical significance at 0.01 probability level

Input parameter Type RMSE R2

R550nm, R670nm, R720nm,R800nm Spectral feature 1.32 0.70**

R550nm, R670nm, R800nm 1.30 0.71**

NDRE,VARI,EVI2 1.37 0.66**

R550nm,EVI2 1.29 0.72**

FSEP- NDRE,FSEP-VARI,FSEP-EVI2 Texture feature 1.23 0.76**

FSEP– R550nm,FSEP–EVI2 1.22 0.75**

Fig. 7  The relationship between estimated LAI and measured LAI
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contain the detailed texture of images which are sensitive 
to the shape, height, and size of the canopy [48], using 
only canopy reflectance and VI obtained by this way 
may limit their potential for LAI estimation. In order to 
describe the texture of the UAV image in rice field, Fou-
rier transform was used to transform the image from the 
spatial domain into the frequency domain and the Fou-
rier spectral energy percentage (FSEP) was gained as the 
texture feature.

Firstly, two binary images with regular stripes were 
simulated to analyze the relationship between FSEP 
and image texture. Two simulated images were of the 
same size and shape, and the stripes in two images were 
the same. There were both ten stripes in two simulated 
images, the position of center line of each stripe in two 
images was distributed uniformly and fixed at the same 
column. But the width of stripe was different in two 
images. In addition, the pixel values which belonged to 
stripe were set to 1 and the other pixel values were set 
to 0—Fig. 5a, b. These two images were designed to sim-
ulate the rice growth in field. The rice plant was trans-
planted line by line, and the position of rice plant was 
fixed after transplant. So, the rice plant line was like the 
stripe and the stripe width become wider and wider with 
rice growth. Moreover, LAI was the major contributor 
to make stripe wider. After Fourier transform, the Fou-
rier energy spectrum image of two simulated images 
was calculated by Eq.  (6)—Fig. 5e, f. The Fourier energy 
spectrum image was stretched to enhance the chiaro-
scuro and the bright spots in energy image implied the 
high energy value. Results showed that the high value 
distribution of the energy spectrum was related to the 
width of stripe. The wider the stripe, the more concen-
trated on center of the high energy value was. To verify 
the practicability of simulation results, the method above 
was applied in real UAV images. Focused on the same 
rice plot, we obtained two EVI images collected on two 
different days. These two EVI2 images were clipped into 
the same size and shape, and one was based on the UAV 
image taken on February 4th and the other one was on 
March 9th—Fig. 5c, d. Obviously, the rice on March 9th 
had higher LAI value and thus the EVI2 image collected 
on March 9th may have wider stripes. Fortunately, the 
same phenomenon was also found in real UAV images. 
The high energy value of the Fourier energy spectrum 
produced by the EVI2 image with wider stripes was more 
concentrated on center point—Fig. 5g, h.

The simulated image and the real UAV image both 
showed that the high value distribution of energy spec-
trum was related to rice LAI. As for the Fourier energy 
spectrum image, the total energy of whole image was 
constant [39]. If the high energy value was concentrated 
on center region, the sum energy of center region would 

take up a large proportion in total energy. Therefore, 
the energy spectrum was separated by some rectangle 
rings—Fig. 3d, and the percentage of center ring energy 
above the total energy of all rings was calculated as FSEP 
value to represent the texture feature. The higher the 
FSEP value, the more concentrated on center of the high 
energy value was. In this way, the relationship between 
FSEP and LAI was established.

To investigate the relationship between FSEP and rice 
LAI, we calculated a series of FSEP based on different 
reflectance and VI images. And the correlation analysis 
and regression analysis were utilized. The results of cor-
relation analysis showed that most reflectance-derived 
FSEPs had a relatively weak correlation with LAI except 
FSEP-R800nm. The goodness of fit between LAI and FSEP-
R800nm can reach 0.69—Fig. 6. That may be because that 
the contrast between vegetation and background is more 
obvious in NIR reflectance band [49]. If the contrast 
between vegetation and background was more obvious, 
the texture of image would be clearer and thus FSEP 
would be more sensitive to rice LAI. VI had the better 
ability to enhance the contrast between vegetation and 
background [50], and thus VI-derived FSEPs exhibited 
a significantly stronger correlation with LAI than reflec-
tance-derived FSEPs– Table 3. Although the correlation 
of LAI and EVI2 was not significantly better than that of 
LAI and R800nm, the correlation of LAI and FSEP-EVI2 
was quite stronger than that of LAI and FSEP-R800nm. 
Compared with VI, the VI-derived FSEP exhibited a 
stronger correlation with LAI. However, the FSEP texture 
cannot prevent NDVI suffering from saturation—Fig. 6.

To determine whether FSEP can predict rice LAI more 
accurately, different predicted models were established 
by SVR. FSEPs and some other spectral parameters were 
employed as the inputs of SVR respectively—Table 4. The 
tested input parameters contained three types of param-
eter, including reflectance type, VI type and FSEP type. 
Reflectance type and VI type belonged to spectral fea-
tures, and FSEP type belonged to texture features. For 
reflectance data, band selection was essential to improve 
the training efficiency of machine learning technology 
[51]. In this study, the estimation accuracy of R550nm, 
R670nm, R800nm was higher than that of R550nm, R670nm, 
R720nm, R800nm. It suggests that choosing the appropriate 
reflectance bands was more important than increasing 
the count of input reflectance bands. One VI could con-
tain the information of two or three reflectance bands. 
But a simple spectral transformation cannot help to 
improve the accuracy of LAI estimation in SVR training 
model—the RMSE of R550nm, R670nm, R720nm, R800nm was 
1.32 and the RMSE of NDRE, VARI, EVI2 was 1.37. The 
reason may be that the SVR itself has an ability to find 
the suitable combination of different reflectance bands. 
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These results imply that VI used as the input of SVR 
may not establish a better estimation model than canopy 
reflectance. Thereby, the texture feature was considered 
and the result proved that FSEPs could estimate rice LAI 
more accurately. Compared with NDRE, VARI, EVI2 and 
R550nm, EVI2, FSEP-NDRE, FSEP-VARI, FSEP-EVI2 and 
FSEP- R550nm, FSEP-EVI2 performed better in rice LAI 
estimation. It means that the FSEP extracted from VI 
images and reflectance images can be as the input of SVR 
to improve LAI estimation in rice—Fig. 7.

Conclusions
In this study, we developed a Fourier spectral energy 
percentage (FSEP) method to improve the accuracy 
of rice LAI estimation based on the UAV image. The 
Fourier energy spectrum of simulated images and real 
UAV images implied that there was a strong relation-
ship between FSEP and rice LAI. And the result of 
correlation analysis showed that the VI-derived FSEP 
had stronger correlation with rice LAI than VI. When 
used as the input parameter of SVR, FSEP could also 
obtain more accurate estimation model of rice LAI than 
VI. Therefore, the texture feature of high-resolution 
remotely sensed images can be a more effective indica-
tor for estimating vegetation growth parameters.

Although the texture feature proposed in this study 
were tested in rice, this work may offer a theoretical 
framework for vegetation growth parameters estima-
tion in crops which have obvious detailed texture in 
high resolution images. In the future study, we will try 
to apply this approach in other crops.
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