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Abstract 

Background:  The categorical description of leaf shapes is of paramount importance in ecology, taxonomy and 
paleobotanical studies. Classification systems proposed by domain experts support these descriptions. Despite the 
importance of these visual descriptive systems, classifications based on this expert’s knowledge may be ambiguous 
or limited when representing shapes in unknown scenarios, as expected for biological exploratory domains. This work 
proposes a novel strategy to automatically discover the shape categories in a set of unlabeled leaves by only using 
the leaf-shape information. In particular, we overcome the task of discovering shape categories from different plant 
species for three different biological settings.

Results:  The proposed method may successfully infer the unknown underlying shape categories with an F-score 
greater than 92%.

Conclusions:  The approach also provided high levels of visual interpretability, an essential requirement in the 
description of biological objects. This method may support morphological analysis of biological objects in exploratory 
domains.
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Background
Visual shape description in plants is a very specialized 
and time-consuming task [1, 2]. The botanist and ecolo-
gist require straightforward approaches to communicate 
relevant information about the plant morphology. The 
construction of category systems allows the communi-
cation of the underlying phenomena and the standardi-
zation of biological studies [1]. Visual categorization is 
also an essential task for botanic manual construction, 
in which expert knowledge is commonly registered as 
visual categories [3–6]. In these systems, botanists define 
key terms accompanied by a visual description of the 
observed characteristics, with which categories of the 
shape are established. In systematic biology and taxon-
omy, experts are extensively trained to perform this task 
[7, 8].

Leaf categorization based on traditional botanical 
manuals can be potentially complemented. First, there 
are exploratory scenarios in which the working hypoth-
esis is related to the analysis of variations of the external 
morphology on the leaf sheet [1, 9]. These scenarios may 
require particular categorization systems, not necessar-
ily existing, in the commonly used botanical manuals [9]. 
Second, human-based labeling may be biased by indi-
vidual opinions because of the high level of subjectivity 
implicit in the recognition process of biological objects 
[10]. Finally, botanical manuals are naturally restricted to 
narrow biological domains. In principle, these manuals 
should be constructed for particular cases.

An alternative to characterize plants objectively is digi-
tal plant morphology [10]. This approach provides quan-
titative representations of the object appearance [11–13]. 
Several plant science problems have been tackled using 
this method [14], specifically, species classification and 
characterization of morphological traits in response to 
changes in environmental or genetic conditions using, for 
instance, pseudolandmarks or harmonics to characterize 
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the variation of geometric traits of the leaf contours [11–
13]. However, despite the utility of these approaches to 
quantify shape, they are limited to object contours with 
the same homology [15]. Other tools currently avail-
able for performing morphometric measurements, like 
plantcv [16], morpholeaf [17] or MowJoe [18], do not 
consider automatic approaches to overcome the con-
struction of visual categories systems to describe shapes 
in the biological domain.

Besides category discovery, the visual description of 
forms performed by the expert during biological inter-
pretation may also require complementary information 
about which were the morphological causes that resulted 
in the discovered shape classes [19, 20]. This property of 
geometrical interpretability is fundamental because the 
knowledge of these causes of the existence of a shape 
class may potentially help the expert to find explanations 
of the underlying phenomena, relating the shape of class 
to adaptation, function, development, among other bio-
logical features [9].

To achieve these interpretations, biologists commonly 
use high-level concepts to characterize leaf shape [21]. 
For instance, the concept of the type of blade or the kind 
of margin. Notably, these two concepts are closely related 
to low and high frequencies of the object contour and 
are captured by the Fourier transform of the border [13]. 
This fact suggests the use of the Fourier transform repre-
sentation for recovering some high-level categories used 
for the foliar description task. In this work, we propose a 
novel method to discover the shape categories underlying 
a set of non-annotated samples based on contour analy-
sis. We show that the use of strategies based on harmon-
ics allows building a representation space that captures 

some of the high-level features commonly used for bota-
nist and ecologist in the description of geometrical blade 
information.

Results
Capability of the method to recover the original categories
Figure  1 shows the morphospace 3D for the evaluated 
datasets. Each morphospace show spheres and represent-
ative leaf prototypes. The center of the spheres represents 
the position of each leaf sample for the evaluated data-
sets. The sphere radius is given by the adaptive meanshift 
algorithm. The spheres that displayed with the same color 
conformed the same leaf shape category. The prototypes 
were the representative sample of each cluster discov-
ered. The leaf prototype corresponds to the closest leaf 
sample using Euclidean distance to the cluster centroid.

Table 1 reports the quantitative performance obtained 
by using different experimental settings. In particular, 
two algorithms: meanshift and adaptive meanshift, and 
two distances: Euclidean and Euclidean plus whitening, 
which is similar to Mahalanobis distance [22]. This was 
done in the following combinations: meanshift + whiten-
ing, adaptive meanshift +  non-whitening, and adaptive 

(a) (b) (c)
Fig. 1  Results of adaptive mean shift clustering for the three evaluated datasets. Each morphospace show spheres and representative leaf 
prototypes. The center of the spheres represents the position of each leaf sample for the evaluated datasets. The sphere radius is given by the 
adaptive meanshift algorithm. The spheres that displayed with the same color compose the same leaf shape category. The prototypes were the 
representative sample of each cluster discovered

Table 1  Performance comparison between  mean shift  + 
whitening (MS + W), adaptive mean shift + non-whitening 
(MS + NW) and adaptive mean shift + whitening (MS + W)

Table reports the mean ± 1 SD for each performance measurement (F-measure)

Dataset MS + W AMS + NW AMS + W

TreeMew 93% ± 2.1 88% ± 3.5 97% ± 1.4

Clef30a 93% ± 1.4 90% ± 2.4 97% ± 1.4

Clef30b 91% ± 2.3 87% ± 3.8 92% ± 2.8
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meanshift + whitening. As observed, the use of adaptive 
meanshift and whitening resulted in the highest perfor-
mance for the three explored datasets. High values of 
F-scores were obtained for the three datasets. Figure  1 
shows that the proposed representation space locates 
nearby similar shape samples; additionally, the method 
was able to separate groups of different species sam-
ples. Tables  2, 3 and 4 shows the confusion matrix for 
the evaluated datasets. The Hickey manual was used to 
set a name for the groups discovered by the method, as 

shown in Table 5. The name of each group was composed 
of two parts. The first part relates to the shape of the 
sheet defined in the Hickey manual [4]. The second part 
relates to the margin type, also determined by the Hickey 
manual [4]. The names assigned to each discovered 
groups are shown as headings in the confusion matrices, 
see Tables 2, 3, and 4. In the test datasets the emergence 
of leaf clusters was evident. Finally, Table  2 reports the 
method recovered most of the ground truth categories 
associated with the original species. Additional experi-
ments were performed to establish the limitations of 
the proposed method, Additional file 1 reports the main 
results.

Qualitative evaluation
The proposed method aims also to provide an interpret-
able representation of the discovered categories. In the 
experimental setting herein proposed we considered spe-
cies from six different shape categories from TreeMew 
dataset [23]. Shapes can be described for the complete 
leaf or their parts as described in Table  5. These shape 
categories were proposed using the Hickey manual [4]. 
This manual contains high level shape concepts related to 
shape, margin, base and apex. In order to reach high lev-
els of interpretability some leaves were selected from the 
morphospace to be shown on the representation space 
axis. For this, we fixed equally spaced points on the axis 

Table 2  Confusion matrix results for TreeMew dataset using adaptive meanshift plus whitening

F-measure score 0.95

Specie-group 1. Elliptic-
Dentate

2. Elliptic-
Crenate

3. Elliptic-
Serrate

4. Oblong-
Entire

5. Ovate-
Crenate

6. Obovate-
Dentate

7. Elliptic-
Dentate

8. Elliptic-
Dentate

Ilex aquifolium 14 0 0 0 0 0 5 1

Fagus sylvatica 0 20 0 0 0 0 0 0

Carpinus betulus 0 0 20 0 0 0 0 0

Juglans nigra 0 0 0 20 0 0 0 0

Populus alba 0 0 0 0 20 0 0 0

Quercus frainetto 0 0 0 0 0 20 0 0

Table 3  Confusion matrix results for Clef30a dataset using 
adaptive meanshift plus whitening

F-measure score 0.97

Specie-
group

1. 
Ovate-
Crenate

2. Elliptic-
Dentate, 
Entire

3. 
Elliptic-
Dentate

4. 
Ovate-
Serrate

5. 
Special-
Entire

Populus nigra 30 0 0 0 0

Ulmus minor 0 30 0 0 0

Acer camp-
estre

0 0 30 0 0

Platanus 
hispanica

0 0 0 30 0

Ruscus 
acuelatus

0 30 0 0 0

Janiperus 
oxycedrus

0 0 0 0 30

Table 4  Confusion matrix results for Clef30b dataset using adaptive meanshift plus whitening

F-measure score 0.92

Specie-group 1. Ovate-
Crenate

2. Obovate-
Dentate

3. Elliptic-Crenate, 
Entire

4. Elliptic-
Entire

5. Oblong-
Entire

6. Elliptic-
Entire

7. Ovate-
Crenate

Ficus acrica 24 0 0 0 0 0 6

Quercus petraea 0 30 0 0 0 0 0

Populus tremura 0 0 29 0 0 1 0

Cercis siliquastrum 0 0 4 26 0 0 0

Phillyrea angustifolia 0 0 0 0 30 0 0

Acer monspessulanum 0 0 21 0 0 9 0
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and the closest sample to these points were shown in the 
axis, as illustrated in Fig. 2.

These projections show the morphological variability 
of the dataset along the main axis. By examining sam-
ples in each axis, the shape features that discriminate the 
groups are identified. As observed, the species with the 
same margin were closely represented on the first princi-
pal component (PC1). Therefore, PC1 represents mainly 
high-frequency border information that can be linked 
to these margins. Similarly, the second principal com-
ponent (PC2) groups species with similar blade shapes, 
which are projected to the vertical axis from wide to thin 
form. More specifically, clusters related to species Carpi-
nus betulus, Fagus silvatica and Ilex aquifolium are very 
close in the representation space, as shown in Fig.  2. 
Interestingly, these species also present high levels of 
similarity according to the botanical manual, as observed 
in Table 5. On the other hand, species Juglans nigra and 
Quercus frainetto are far each other, which can also be 
observed in the proposed representation space. In the 
ImageClef dataset, Figs. 3 and 4 showed a similar behav-
ior in PC1, corresponding to changes in the margin, 
while PC2 was related to the leaf width. This result sug-
gests that the method can be used to study margins and 
shapes simultaneously, resulting in a rich representation.

Table 5  Morphological description for  the  species used 
in each test group [4]

This description was obtained by using the Hickey manual

Species Shape Margin Base Apex

TreeMew selection

 1. Carpinus betulus Elliptic Dentate Rounded Convex

 2. Fagus silvatica Elliptic Crenate Concave Convex

 3. Ilex aquifolium Elliptic Serrate Convex Acuminate

 4. Juglans nigra Oblong Entire Decurrent Acuminate

 5. Populus alba Ovate Crenate Rounded Convex

 6. Quercus frainetto Obovate Dentate Complex Complex

Clef30a selection

 1. Populus nigra Ovate Crenate Convex Convex

 2. Acer campestre Elliptic Dentate Convex Complex

 3. Ulmus minor Elliptic Dentate Complex Convex

 4. Ruscus aculeatus Elliptic Entire Convex Acuminate

 5. Platanus hispanica Ovate Serrate Truncate Convex

 6. Janiperus axycedrus Special Entire Complex Straight

Clef30b selection

 1. Ficus carica Ovate Crenate Crodate Convex

 2. Quercus petraea Obovate Dentate Convex Convex

 3. Populus tremura Elliptic Crenate Convex Convex

 4. Cercis siliquastrum Elliptic Entire Lobate Rounded

 5. Phillyrea angustifolia Oblong Entire Decurrent Straight

 6. Acer monspessulanum Elliptic Entire Cordate Rounded

Fig. 2  Representation space of leaf shape given by PC1 and PC2 for TreeMew dataset. Each axis represents a principal component and shows 
its harmonics composite. Different contour leaf samples projected from morphospace are shown under the axis. As observed, x-axis is linked to 
variations in the margin, while y-axis is linked to blade shape
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Discussion
A new method for the morphological analysis of leaves 
is introduced. The method allows discovering the catego-
ries of leaf shapes in an unlabeled dataset. These catego-
ries are interpretable from the biological point of view. 
The method uses a harmonic representation of the con-
tours, a dimensionality reduction, and an unsupervised 
clustering strategy. The results show that the strategy 
identifies categories of leaves related to concepts of mar-
gin and foliar lamina. This strategy allows studying sam-
ple sets in which the categories are unknown, which may 
appear in poorly studied biological scenarios.

Results in Table  1 show that the proposed approach 
may uncover the underlying shape categories for different 
samples of unlabeled leaves, by using only leaf contour 
information. In particular, the method provided high val-
ues of F1-scores (average 95% ) in the tasks of discovering 
previously known shape categories related to the spe-
cies, by using only unlabeled data. Despite the external 
morphology variability of the datasets herein explored, 
which includes different kinds of margin, base and apex, 
see Fig. 7 and Table 5. The scores and confusion matrices 
indicate that most of the samples were assigned correctly 
to the original shape category. Importantly, no prior 

knowledge about specific shapes resulted in these catego-
ries, in contrast to previous approaches that strongly rely 
on domain expertise, for instance, particular categories 
of lamina shapes, as commonly found in botanic manu-
als [3, 4, 6], or individual landmarks located over the leaf 
border [15]. Importantly, this expert knowledge may not 
be available for the description of unknown morphologi-
cal scenarios [17, 24]. Therefore, the proposed approach 
is relevant for this kind of descriptions. Importantly, this 
approach provides an objective analysis of the leaf con-
tours without relying on landmarks. Therefore, it can be 
a valuable tool for interspecific and intraspecific analyzes 
of the variation of the shape, including in other taxo-
nomic categories (genus, family).

In principle, in unknown biological scenarios, shapes 
categories are not known beforehand and may differ 
to ones used for known scenarios [10]. The proposed 
method can test existing manuals and validate whether 
they contain the information necessary to classify under-
studied leaf morphology or propose a classification form 
that follows a rigorous mathematical method to avoid 
ambiguity when choosing a category. To discover these 
categories, we used a highly flexible low-level repre-
sentation space that captures biologically meaningful 

Fig. 3  Representation space of leaf shape given by PC1 and PC2 for first Clef selection dataset. Each axis shows different leaf samples projected 
from the morphospace under its principal component
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information of the leaf border, in particular, its large and 
fine variations [25]. The proposed representation cap-
tured a broad set of lamina border variations exhaustively 
in the Fourier harmonics, providing a rich morphospace 
to represent possibly unknown sample morphologies. We 
assumed that leaves with similar variations in the border 
were close in this morphospace. Therefore, shape catego-
ries associated with common morphological features are 
expected to emerge as clusters. Results in Table 2 show 
that the clusters or shape categories identified in this 
space, using only the available samples, coincide with 
the ground truth of shape categories. Remarkably, these 
categories resemble known shape categories for differ-
ent classes using only endogenous information of the 
sample. To our knowledge, this result constitutes the first 
evidence about the possibility of automatically discover-
ing categories of the shape of biological forms. Alterna-
tive approaches have been proposed to discover these 
categories in natural images [26–28]; however, these 
approaches have not been explored yet for the discover-
ing of leaf shape categories problem.

Low performance observed in F1-scores for some of the 
studied scenarios is linked to two principal causes. First, 
a high level of morphological overlap among some of the 

original shape categories. For instance, in the dataset 
Clef30a the species Ulmus minor and Ruscus acuelatus 
have high levels of visual similarity, see Fig.  5b, result-
ing in a single shape category, see category number two 
in Table 3. Despite that, the proposed representation was 
flexible enough to delimitate both categories properly, 
see curves in Fig. 5b. Importantly, the visualization con-
sidered in the model helps to localize and correct errors 
in the final assignment of the sample category. Second, in 
some cases, leaf border information was not adequately 
represented by the Fourier transform, for instance, this 
representation did not correctly capture border infor-
mation for samples in specie Populus tremura in violet 
color in Fig. 5a, probably because of the presence of high-
frequency information in the serrations [29, 30]. Further 
investigations may also consider alternative data repre-
sentations which account for these shape particularities 
[29–31].

Figures  2, 3 and  4 show that common high level 
concepts with biological meaning emerged from the 
representation spaces obtained by PCA projections. 
Particularly, in the PC1 axis, serrations change from 
left to right, from serrate margin to entire margin. 
While in the PC2 axis, leaf shape changes from bottom 

Fig. 4  Representation space of leaf shape given by PC1 and PC2 for second Clef selection dataset. Each axis show different leaf samples projected 
from the morphospace under its principal component
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to top, from wide lamina to narrow lamina. Therefore, 
we conclude that the major axis relates to the lamina 
shape concept and minor axis to the border serration. 
These high-level concepts represent explanations for 
the shape categories discovered [4–6]. Explainability 
refers to a human-interpretable description by which 
the method categorized a shape given a set of unlabeled 
images [19]. In this case, each discovered category is 
characterized by a particular combination of lamina 
and margin shapes. The lamina and serration shape 
concepts are commonly used by experts to explain leaf 
shape categories, and they are fundamental for inter-
preting biological variations [4–6]. These two factors 
are in the base of leaf descriptive systems of shape cat-
egories, and they are commonly used for taxonomical 
classification, leaf adaptation to environmental condi-
tions, among others.

In order to identify the possible factors associated with 
the obtained shape categories we performed a posthoc 
analysis to identify. This kind of analysis is also used in 
other approaches, for instance, Procrustes and Fourier 
analysis [15], which consider a subsequent interpreta-
tion step aimed to identify sources of variations [15]. 
In these analyses, experts assign a meaning to observed 
experimental variations. For instance, correlating shape 
features with known domain variables. Following a simi-
lar approach, we conclude that the shape discovering 
method provides consistent explanations in biological 
terms, shape and margin, to the categories discovered. 
Future work may consider the automatic identification of 
the concepts that determine the categories and not only 
rely on the interpreters’ opinion. It is worthy to note that 
previous approaches to category discovery do not con-
sider the issue of construction of biological explanations 
to support biological interpretations [27, 28].

In this work, a complex Fourier based representation 
supported the feature description stage. This transforma-
tion provides high levels of visual interpretability [32]. In 
our experiments, the contours become invariant to geo-
metric transformations, and they were also normalized 
and centered, as in the Procrustes analysis, but without 
requiring any landmark. Unlike other approaches of con-
tour analysis, harmonics capture contour variability in 
the frequency space. Therefore, our approach may serve 
a tool to analyze this variability in leaves with a different 
structure. For instance, the approach can be useful when 
the contours present different lobular compositions, or in 
sessile leaves, which do not have petiole resulting in open 
contours. This kind of description is essential also for the 
description of the external morphology on the leaf sheet 
[25]. A three dimensional space obtained by PCA embed-
ded the contour representation and a non-supervised 
clustering algorithm was used on this representation 
space to infer the corresponding shape categories. The 
aim here was to reduce the dimensionality of the data 
in 3D space and provide visualizations and interactivity 
with the samples in the representation space. As Figs. 2, 
3 and 4 show, the leaves were distributed along with the 
representation space forming dense groups. The distance 
between a pair of samples was related to how similar 
samples were and the direction between them, revealed 
the particular feature that differentiates them. As it hap-
pens, when the biologist organizes the obtained sample 
in leaf categories [13, 33]. This representation allows both 
a visual representation of the shape information and suit-
able space to solve the category discovery problem.

The present work has some limitations. First, the pro-
posed method uses only endogenous information of the 
leaf contour morphology to project the sample into a 
morphospace, suitable to discover the shape categories. 

Fig. 5  Errors examples, in our approach, leaves with similar shapes form clusters. The lines that appear from the leaf center show how these leaves 
are connected to shape groups. In the left box (a), there are two groups, and in the right box (b), there is one. However, on the left, there is a light 
green leaf that has a shape similar to one group, but it is connected to another. In contrast, in the right box, all the leaves are connected to the same 
group, but these could be separated into two species by the violet and orange lines
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Future work may consider the inclusion of additional 
information related to the scientific question (for 
instance, precipitation), which helps to explain the mor-
phological variability of the sample. This complementary 
information can be included, for example, as an addi-
tional part of the feature vector that characterizes each 
sample. Future work may also consider interaction with 
the experts to construct a richest morphospace, which 
enables a post-hoc verification and modification of the 
proposed categories according to the expert knowledge. 
Second, increasing the number of categories may difficult 
the capacity of the method to discriminate the underly-
ing shape groups correctly. As illustrates Additional file 1: 
Figure S3, when considering a reduced number of PCs, 
the shape categories cannot be adequately discriminated, 
and more PCs should be included. Therefore, the inclu-
sion of additional PCs should be considered when the 
complexity of the database increases.

Conclusions
In this work, we proposed a novel method to automati-
cally discovery shape categories from the digital image of 
leaf samples by keeping high levels of visual interpretabil-
ity of the shape information. The method is based on a 
complex Fourier representation of the contour, which is 
embedded in low dimensional representation space. An 
adaptive clustering method with whitening was used to 
discover the shape categories. The method was evalu-
ated through the task of predicting the shape categories 

associated with different plant species. Our results sug-
gest that the proposed method successfully discovers the 
plant categories by using only leaf shape information pro-
viding high levels of visual interpretability.

Methods
Figure  6 illustrates the proposed method for the con-
struction of interpretable visual categories for a set of 
images. An image database composed of unlabeled leaves 
is used as input. The contours of each leaf were extracted 
by using segmentation and contour extraction algo-
rithms. This information was represented with a com-
plex Fourier transform (CFT), and a set of representative 
harmonics of the leaf information were selected. Then, 
a dimensionality reduction method was applied to these 
harmonics to obtain a three-dimensional morphospace 
of representation. Finally, an adaptive kernel density esti-
mation method determined the shape categories.

Contour extraction
The input dataset contained natural images with con-
trolled background. These images were represented in 
saturation channel because it showed a higher contrast 
between the leaf lamina and the background. Then, the 
Otsu method provided a leaf segmentation [34]. A clos-
ing morphological operator based in a circular structural 
element of five pixels of radius removed small holes in 
the binary image. A tracing algorithm extracted the leaf 
boundary [35]. This method followed the contour points 

Fig. 6  Graphical representation of the strategy for category discovery in leaves dataset. The leaf contours in the dataset were obtained by using 
binarization and contour extraction. This shape information was represented by a complex Fourier transform. A set of representative harmonics of 
the leaf information were selected. Following, a dimensionality reduction method was applied to the selected harmonics. Finally, an adaptive kernel 
density estimation method was used to determine the shape categories
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and returned a two-dimensional vector of vertices. The 
size of this vector depended on the contour length and 
the image resolution. In order to have a similar repre-
sentation among leaves of different sizes, a cubic spline-
based interpolation was applied to this array [35]. In 
particular, N = 512 samples uniformly spaced were 
obtained to represent each contour.

Contour representation
A p-type transformation was used for contour represen-
tation, this transform corresponds to a CFT representa-
tion of the shape information [36]. Before the CFT, each 
spatial position of the resampled border (x,  y) was rep-
resented as a complex value z = (x, jy) , with j =

√
−1 . 

The points in the border conformed a complex discrete 
signal z[n], with n = 1, 2, . . . ,N  . Later, the slopes �z[n] 
among the adjacent points in z[n] were computed as 
�z[n] = (x[n+ 1] − x[n], j(y[n+ 1] − y[n])) . This rep-
resentation provides robustness to rotation transfor-
mations. The slopes were normalized by the distance 
��z[n]� among the neighbor points n and n+ 1 , as fol-
lows: ẑ[n] = �z[n]

��z[n]� , with n = 1, 2, . . . ,N − 1 , this nor-
malization provides invariance to scale transformations. 
Later, a CFT was applied to the normalized slope signal 
ẑ[n] , obtaining:

where k is the harmonic index, N/2+ 1 is the maximum 
frequency order and Z[k] is the k-th harmonic. For the 
contour description, it is not essential to use the com-
plete set of harmonics [37]. The first 22 low-frequency 
harmonics constituted the leaf contour representation. 
This number of harmonics provided the best compro-
mise between the amount of contour information recon-
structed and the size of the representation [32]. This 
amount of harmonics allowed reconstructions with less 
than 1% in root mean square difference when considering 
as reference the original contour [38].

Dimensionality reduction
Following previous works in the analysis of foliar shapes 
[10, 32], a dimensionality reduction based on the Prin-
cipal Component Analysis (PCA) was applied to the 
selected harmonics. This process was performed by using 
the Singular Value Decomposition (SVD) of the covari-
ance matrix computed using the complex harmonics 
[32]. For this, the q selected harmonics for the n sam-
ple contours were organized into a matrix � ∈ C

q×n . 
Each entry in covariance matrix Ci,k corresponded to 
the product of the harmonic matrix with its transpose, 

Z[k] = 1

N

N−1∑

n=0

ẑ[n]e−j2πkn/N
,

i.e., Ci,k = �̂∗
i �̂k

T , where �̂i the i-th column of C and 
�̂∗

i  the hermitian conjugate of �̂i . This covariance matrix 
was then factorized using SVD, i.e., C = U�VT , with 
� a diagonal matrix containing the singular values, U a 
matrix with orthonormal columns C and VT a matrix 
with orthonormal rows. The first three columns of U, 
corresponding to the first three eigenvalues, constituted 
the base for the representation space.

Clustering
After dimensionality reduction, the category discovery 
process was performed. For this, the low dimensional 
data was firstly normalized by applying a whitening 
transformation in each dimension [39]. A shape category 
was defined as a cluster emerging in the previously con-
structed representation space. In this work, two cluster-
ing approaches were explored, namely, meanshift [40] 
and adaptive meanshift [41].

The meanshift algorithm is a non-parametric cluster-
ing method for locating the maxima of a density function 
given n discrete data sampled from that function [40]. 
Given n data points ui , i = 1, ..., n on a d-dimensional 
space Rd , the multivariate kernel density with kernel K(u) 
and bandwidth h parameter is given by:

This algorithm provides the modes of the density func-
tion, which in our case corresponded to shape categories. 
The meanshift algorithm directly provides multiple clus-
ters, in contrast to other approaches like k-means which 
require a definition of the number of classes beforehand. 
Nevertheless, meanshift results are highly dependent 
on the bandwidth parameter selection, which indirectly 
determines the number of classes.

After selecting the first three PCs, the n samples were 
embedded as points in a 3-dimensional morphospace. In 
this representation space, a set of spheres of radius ǫ was 
centered in each point. The sets of overlapping spheres 
conforming connected components in the representa-
tion space were determined and posteriorly associated 
with shape categories. Note that depending on the sphere 
radius, a high or low number of shape categories can be 
found. Therefore, the sphere radius plays a significant 
role in the shape category discovery procedure.

Two different methods were explored to determine 
the ǫ parameter, namely, meanshift [40] and adaptive 
meanshift [41]. In the meanshift approach a fixed band-
width h is used for all the spheres. In adaptive mean-
shift the average of the distances to the k neighbors for 

f̂ = 1

nhd

n∑

i=1

K

(
u− ui

h

)
.
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each point is used as a sample dependent sphere radius. 
More specifically, the Euclidian distances between ui 
and its first k neighbors were averaged, and then used 
as the sample bandwidth parameter hi [41]. For this, 
let u(t)i  the t-th nearest neighbor of the point ui in the 
morphospace. Then hi,k the average distance the first k 
nearest neighbors was defined as

In the adaptive meanshift algorithm hj,k is used as band-
width of the point ui.

In the proposed setting, the k parameter was obtained 
experimentally by using as reference the k value that 
recovered the six groups of species that composed 
TreeMew dataset. This k value corresponded to eight 
and it was used for all experiments.

hi,k = 1

k

k∑

t=1

√
(ui − u

(t)
i )2.

Evaluation
Leaf image dataset
The category discovery task consists in arranging a non-
annotated dataset in a representative set of shape cat-
egories and provides for them a coherent explanation 
in biological terms. There are several public leaf data-
sets available to study plant species that can be used for 
evaluation purposes. In this work, two leaf image anno-
tated datasets with information about species with dif-
ferent morphology were selected, namely, TreeMew [23] 
and ImageClef 2014 datasets [42]. These datasets contain 
high-quality and quantity isolated leaf image samples, all 
of them with a controlled background. These conditions 
helped to extract good-quality contours. Each image in 
these datasets is annotated with the plant species, which 
was used as ground truth for the shape category discov-
ery problem. Figure  7 shows a sample of each species 
selected in this study.

Fig. 7  Groups of leaves samples using for testing the method. The image shows the selected species from the TreeMew and ImageClef datasets. 
The species with the most quantity of samples were selected. The leaves groups were organized in the following way, Top: Tree leaf database MEW 
2010, middle: Clef30a and bottom: Clef30b 
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For the quantitative evaluation, the samples were 
organized in three sets to perform the shape category 
identification. The TreeMew was used to build a test set 
(TreeMew) with six groups, with 20 samples per group. 
Similarly, for the samples in the ImageClef database, two 
test sets were constructed (Clef30a and Clef30b), each 
one with six groups, and 30 samples per group. Table 5 
shows the corresponding morphological description, 
which was obtained by using the Hickey manual [5]. As 
observed, the selected species show differences in their 
blade shape and margin. It is expected that the proposed 
method can discriminate samples in different classes 
using these two criteria. Importantly, these sets have high 
morphological variability, as Table  5 shows. Therefore, 
this experimental setting is appropriate for evaluating the 
category discovery strategy.

Experimental settings
The evaluation was twofold: a quantitative evaluation, to 
assess the method capacity for recovering the original 
categories, and a qualitative evaluation, to study how the 
method characterized biologically relevant morphologi-
cal leaf traits related to the extracted categories.

The shape category discovery problem aims to predict 
shape categories presented in an unlabeled sample set 
[27, 28]. We assumed that each plant species corresponds 
to a different shape category. Under this assumption, the 
original species of each sample constituted the ground 
truth for the category discovery problem. A confusion 
matrix and the corresponding F-score provided quantita-
tive measures of the method performance in the identi-
fication of these categories. This last measure considers 
both the precision and the recall of the class discovery 
tasks [43]. A leave-one-out scheme was used to study the 
variability of this performance measurement across dif-
ferent datasets. Once the samples were projected into the 
reduced representation space, the clustering algorithm 
was applied for three different configurations of distance 
and clustering algorithm, namely:

•	 Data whitening and meanshift algorithm MS + W  . 
Data whitening consists in subtracting the mean and 
dividing by the deviation of the data in each dimen-
sion, similar to the Mahalanobis distance [22].

•	 Data whitening and adaptive meanshift algorithm 
AMS + W .

•	 Data without whitening and adaptive meanshift algo-
rithm.

Finally, a leaf sample per category was projected over the 
principal components to perform the qualitative assess-
ment. The linear combination of harmonics in each prin-
cipal component was shown and joined with projected 

samples for interpretation. The aim here was to recover 
margin types and blade shape of the leaf samples.

A detailed description of the procedure to reproduce 
results can be found in Additional file  2 and the source 
code in Additional file 3.
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org/10.1186/s1300​7-019-0497-6.
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