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METHODOLOGY

Utilizing trait networks and structural 
equation models as tools to interpret multi‑trait 
genome‑wide association studies
Mehdi Momen1  , Malachy T. Campbell1  , Harkamal Walia2   and Gota Morota1* 

Abstract 

Background:  Plant breeders seek to develop cultivars with maximal agronomic value, which is often assessed using 
numerous, often genetically correlated traits. As intervention on one trait will affect the value of another, breed-
ing decisions should consider the relationships among traits in the context of putative causal structures (i.e., trait 
networks). While multi-trait genome-wide association studies (MTM-GWAS) can infer putative genetic signals at the 
multivariate scale, standard MTM-GWAS does not accommodate the network structure of phenotypes, and therefore 
does not address how the traits are interrelated. We extended the scope of MTM-GWAS by incorporating trait network 
structures into GWAS using structural equation models (SEM-GWAS). Here, we illustrate the utility of SEM-GWAS using 
a digital metric for shoot biomass, root biomass, water use, and water use efficiency in rice.

Results:  A salient feature of SEM-GWAS is that it can partition the total single nucleotide polymorphism (SNP) effects 
acting on a trait into direct and indirect effects. Using this novel approach, we show that for most QTL associated with 
water use, total SNP effects were driven by genetic effects acting directly on water use rather that genetic effects 
originating from upstream traits. Conversely, total SNP effects for water use efficiency were largely due to indirect 
effects originating from the upstream trait, projected shoot area.

Conclusions:  We describe a robust framework that can be applied to multivariate phenotypes to understand the 
interrelationships between complex traits. This framework provides novel insights into how QTL act within a phe-
notypic network that would otherwise not be possible with conventional multi-trait GWAS approaches. Collectively, 
these results suggest that the use of SEM may enhance our understanding of complex relationships among agro-
nomic traits.
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Introduction
Elite cultivars are the result of generations of targeted 
selection for multiple characteristics. In many cases, 
plant and animal breeders alike seek to improve many, 
often correlated, phenotypes simultaneously. Thus, 
breeders must consider the interaction between traits 
during selection. For instance, genetic selection for one 
trait may increase or decrease the expression of another 

trait, depending on the genetic correlation between 
the two. While consideration of the genetic correlation 
between traits is essential in this respect, modeling recur-
sive interactions between phenotypes provides important 
insights for developing breeding and management strate-
gies for crops that cannot be realized with conventional 
multivariate approaches alone. In particular, inferring 
the structure of trait networks from observational data is 
critical for our understanding of the interdependence of 
multiple phenotypes [1–3].

Genome-wide association studies (GWAS) have 
become increasingly popular approaches for the elucida-
tion of the genetic basis of economically important traits. 
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They have been successful in identifying single nucleotide 
polymorphisms (SNPs) associated with a wide spectrum 
of phenotypes, including yield, abiotic and biotic stresses, 
and plant morphological traits [4]. For many studies, 
multiple, often correlated, traits are recorded on the same 
material, and association mapping is performed for each 
trait independently. While such approaches may yield 
powerful, biologically meaningful results, they fail to 
adequately capture the genetic interdependancy among 
traits and impose limitations on elucidating the genetic 
mechanisms underlying a complex system of traits. 
When multiple phenotypes possess correlated structures, 
multi-trait GWAS (MTM-GWAS), which is the applica-
tion of mutli-trait models (MTM) [5] to GWAS, is the 
standard approach. The rationale behind this is to lever-
age genetic correlations among phenotypes to increase 
statistical power for the detection of quantitative trait 
loci, particularly for traits that have low heritability or are 
scarcely recorded.

While MTM-GWAS is a powerful approach to capture 
the genetic correlations between traits for genetic infer-
ence, it fails to address how the traits are interrelated, or 
elucidate the mechanisms that give rise to the observed 
correlation. The early work of Sewall Wright sought to 
infer causative relations between correlated variables 
through path analysis [6]. This seminal work gave rise to 
structural equation models (SEM), which assesses the 
nature and magnitude of direct and indirect effects of 
multiple interacting variables. Although SEM remains 
a powerful approach to model the relationships among 
variables in complex systems, its use has been limited in 
biology.

Recently, Momen et  al. [7] proposed the SEM-GWAS 
framework by incorporating trait networks and SNPs 
into MTM-GWAS through SEM [6, 8]. In contrast to 
standard multivariate statistical techniques, the SEM 
framework opens up a multivariate modeling strategy 
that accounts for recursive (an effect from one pheno-
type is passed onto another phenotype) and simultane-
ous (reciprocal) structures among its variables [9, 10]. 
Momen et  al. [7] showed that SEM-GWAS can supple-
ment MTM-GWAS, and is capable of partitioning the 
source of the SNP effects into direct and indirect effects, 
which helps to provide a better understanding of the rel-
evant biological mechanisms. In contrast, MTM-GWAS, 
which does not take the network structure between phe-
notypes into account, estimates overall SNP effects that 
are mediated by other phenotypes, and combines direct 
and indirect SNP effects.

Current climate projections predict an increase in the 
incidence of drought events and elevated temperatures 
throughout the growing season [11]. These elevated 

temperatures will drive higher evapotranspirational 
demands, and combined with the increased unpredict-
ability of precipitation events, will increase the frequency 
and intensity of drought, thus impacting crop productiv-
ity [12–16]. To mitigate the effects of climate change on 
agricultural productivity, the development of drought-
tolerant cultivars is important for increasing climate 
resilience in agriculture. However, progress towards this 
goal is often hindered by the inherent complexity of traits 
such as drought tolerance [17–20]. The ability to miti-
gate yield losses under limited water conditions involves 
a suite of morphological and physiological traits [20]. 
Among these is the ability to access available water and 
utilize it for growth. Thus, studying traits associated with 
water capture (e.g., root biomass and architecture) and 
utilization (e.g., water-use efficiency) is essential. How-
ever, of equal importance is a robust statistical frame-
work that allows these complex traits to be analyzed 
jointly and network relationships among traits to be 
inferred for efficient incorporation of these traits into 
breeding programs.

In this study, we applied SEM-GWAS and MTM-
GWAS to incorporate the trait network structures related 
to shoot and root biomass and to drought responses in 
rice (Oryza sativa L.) from a graphical modeling per-
spective. Graphical modeling offers statistical inferences 
regarding complex associations among multivariate phe-
notypes. Plant biomass and drought stress responses are 
interconnected through physiological pathways that may 
be related to each other, requiring the specification of 
recursive effects using SEM. We combined GWAS with 
two graphical modeling approaches: a Bayesian network 
was used to infer how each SNP affects a focal phenotype 
directly or indirectly through other phenotypes, and SEM 
was applied to represent the interrelationships among 
SNPs and multiple phenotypes in the form of equations 
and path diagrams.

Materials and methods
Experimental data set
The plant material used in our analysis consisted of a 
rice diversity panel of n = 341 inbred accessions of O. 
sativa that originate from diverse geographical regions 
and are expected to capture much of the genetic diver-
sity within cultivated rice [21]. All lines were genotyped 
with 700,000 SNPs using the high-density rice array 
from Affymetrix (Santa Clara, CA, USA) such that there 
was approximately 1 SNP every 0.54 kb across the rice 
genome [21, 22]. We used PLINK v1.9 software [23] to 
remove SNPs with a call rate ≤ 0.95 and a minor allele 
frequency ≤ 0.05. Missing genotypes were imputed using 
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Beagle software version 3.3.2 [24]. Finally, 411,066 SNPs 
were retained for further analysis.

Phenotypic data
We analyzed four biologically important traits for 
drought responses in rice: projected shoot area (PSA), 
root biomass (RB), water use (WU), and water use effi-
ciency (WUE). These phenotypes are derived from two 
previous work [25, 26]. The aim of the first study was 
to evaluate the effects of drought on shoot growth [26]. 
Here, the diversity panel was phenotyped using an auto-
mated phenotyping platform in Adelaide, SA, Australia. 
This new phenotyping technology enabled us to produce 
high-resolution spatial and temporal image-derived phe-
notypes, which can be used to capture dynamic growth, 
development, and stress responses [27–30]. The image 
analysis pipeline is identical to that described in Camp-
bell et  al. [31] and several studies have shown that the 
metric of digitally driven PSA is an accurate representa-
tion of shoot biomass [28, 29, 32].

The plants were phenotyped over a period of 20 days, 
starting at 13 days after they were transplanted into soil 
and ending at 33 days. Each day, the plants were watered 
to a specific target weight to ensure the soil was com-
pletely saturated. The plants were then imaged from 
three angles (two side views and a top view image). 
These images were processed to remove all background 
objects, leaving just pixels for the green shoot tissue. 
We summed the pixels from each image to obtain an 
estimate of the shoot biomass. We refer to this metric 
as PSA. With this system, we also obtained the weights, 
prior to watering and after watering, for each pot on 
each day. From this data, we estimated the amount of 
water that is used by each plant. WU was calculated as 
Pot Weight(r−1) − Pot Weight(r) , where r is time, and 
WUE is the ratio of PSA to WU. Although this data has 
not yet been published, a description of the phenotyping 
system and insight into the experimental design can be 
found in Campbell et al. [29].

The aim of the second study was to assess salinity tol-
erance in the rice diversity panel. The plants were grown 
in a hydroponic system in a greenhouse. Salt stress was 
imposed for 2 weeks, and destructive phenotyping per-
formed at 28 days after transplantation. A number of 
traits were recorded, including RB. The experimental 
design of this study is fully described in Campbell et al. 
[25]. All the aforementioned phenotypes were meas-
ured under control conditions. The 15th day of imag-
ing was selected for analysis of PSA, WU, and WUE, 
which is equivalent to 28 days after transplantation, so 
it matched the age at which RB was recorded. For both 
studies, best linear unbiased estimates were computed 

for each accession prior to downstream analyses. For 
RB, the details of the model are discussed in Camp-
bell et  al. [25]. Briefly, a linear model was fitted using 
the PROC-GLM procedure in SAS that accounted for 
time of the year, replication, and block effects. For traits 
derived from high-throughput phenotyping, the linear 
model included a fixed term for the effect of the experi-
ment and a fixed term for replication nested within 
experiment.

Multi‑trait genomic best linear unbiased prediction
A Bayesian multi-trait genomic best linear unbiased pre-
diction (MT-GBLUP) model was used for four traits to 
obtain posterior means of genetic values as inputs for 
inferring a trait network.

where y is the vector observations for t = 4 traits, X is 
the incidence matrix of covariates, b is the vector of 
covariate effects, Z is the incidence matrix relating acces-
sions with additive genetic effects, g is the vector of addi-
tive genetic effects, and ǫ is the vector of residuals. The 
incident matrix X only included intercepts for the four 
traits examined in this study. Under the infinitesimal 
model of inheritance, the g and ǫ were assumed to follow 
a multivariate Gaussian distribution g ∼ N (0,

∑

g ⊗G) 
and ǫ ∼ N (0,

∑

ǫ ⊗I) , respectively, where G is the n× n 
genomic relationship matrix for genetic effects, I is the 
identity matrix for residuals, 

∑

g and 
∑

ǫ are the t × t var-
iance-covariance matrices of genetic effects and residu-
als, respectively, and ⊗ denotes the Kronecker product. 
The G matrix was computed as WW

′
/2

∑m
j=1 pj(1− pj) , 

where W is the centered marker incidence matrix taking 
values of 0− 2pj for zero copies of the reference allele, 
1− 2pj for one copy of the reference allele, and 2− 2pj 
for two copies of the reference allele [33]. Here, pj is the 
allele frequency at SNP j = 1, . . . ,m . We assigned flat 
priors for the intercept and the vector of fixed effects. The 
vectors of random additive genetic effects and residual 
effects were assigned independent multivariate normal 
priors with null mean and inverse Wishart distributions 
for the covariance matrices.

A Markov chain Monte Carlo (MCMC) approach 
based on Gibbs sampler was used to explore posterior 
distributions. We used a burn-in of 25,000 MCMC sam-
ples followed by an additional 150,000 MCMC samples. 
The MCMC samples were thinned by a factor of two, 
resulting in 75,000 MCMC samples for inference. Pos-
terior means were then calculated for estimating model 
parameters. The MTM R package was used to fit the 
above regression model (https​://githu​b.com/Quant​Gen/
MTM).

y = Xb+ Zg + ǫ,

https://github.com/QuantGen/MTM
https://github.com/QuantGen/MTM
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Learning structures using Bayesian network
Networks or graphs can be used to model interactions. 
Bayesian networks describe conditional independence 
relationships among multivariate phenotypes. Each 
phenotype is connected by an edge to another pheno-
type if they directly affect each other given the rest of 
the phenotypes, whereas the absence of edge implies 
conditional independence given the rest of phenotypes. 
Several algorithms have been proposed to infer plausible 
structures in Bayesian networks, assuming independ-
ence among the realization of random variables [34]. The 
estimated genetic values from MT-GBLUP were used 
as inputs, and we applied the Hill Climbing (HC) algo-
rithm from the score-based structure learning category 
to infer the network structure among the four traits 
examined in this study [35]. We selected this algorithm 
because it was suggested in a recent study, [36], which 
showed that the score-based algorithms performed bet-
ter for the construction of networks than constraint-
based counterparts. The bnlearn R package was used to 
learn the Bayesian trait network throughout this analysis 
with mutual information as the test, and the statistically 
significant level set at α = 0.01 [34]. We computed the 
Bayesian information criterion (BIC) score of a network 
and estimated the strength and uncertainty of direction 
of each edge probabilistically by bootstrapping [37]. In 
addition, the strength of the edge was assessed by com-
puting the change in the BIC score when that particular 
edge was removed from the network, while keeping the 
rest of the network intact.

Multi‑trait GWAS
We used the following MTM-GWAS that does not account 
for the inferred network structure by extending the single-
trait GWAS counterpart of Kennedy et al. [38] and Yu et al. 
[39]. For ease of presentation, it is assumed that each phe-
notype has null mean.

where w is the jth SNP being tested, s represents the vec-
tor of fixed jth SNP effect, and g is the vector of additive 
polygenic effect. The aforementioned variance-covar-
iance structures were assumed for g and ǫ . The MTM-
GWAS was fitted individually for each SNP, where the 
output is a vector of marker effect estimates for each 
trait, i.e. ŝ =

[

ŝPSA, ŝRB, ŝWU, ŝWUE

]

.

Structural equation model for GWAS
A structural equation model is capable of conveying 
directed network relationships among multivariate phe-
notypes involving recursive effects. The SEM described 
in Gianola and Sorensen [40] in the context of linear 
mixed models was extended for GWAS, according to [7].

y = ws+ Zg + ǫ,

where I is the identity matrix, � is the lower triangular 
matrix of regression coefficients or structural coefficients 
based on the learned network structure from the Bayes-
ian network, and the other terms are as defined earlier.

Note that the structural coefficients � determine that 
the phenotypes which appear in the left-hand side also 
appear in the right-hand side, and represent the edge 
effect size from phenotype to phenotype in Bayesian net-
works. If all elements of � are equal to 0, then this model 
is equivalent to MTM-GWAS. Gianola and Sorensen [40] 
showed that the reduction and re-parameterization of a 
SEM mixed model can yield the same joint probability 
distribution of observation as MTM, suggesting that the 
expected likelihoods of MTM and SEM are the same [41]. 
For example, we can rewrite the SEM-GWAS model as

where Var(g∗ ) ∼ (I−�)−1G(I−�)
′−1

 and Var(ǫ∗ ) 
∼ (I−�)−1R(I−�)

′−1
 . This transformation changes 

SEM-GWAS into MTM-GWAS, which ignores the 
network relationships among traits [40, 41]. However, 
Valente et al. [42] stated that SEM allows for the predic-
tion of the effects of external interventions, which can be 
useful for making selection decisions that are not pos-
sible with MTM. We used SNP Snappy software to per-
form MTM-GWAS and SEM-GWAS [43]. To identify 
candidate SNPs that may explain direct (in the absence 
of mediation by other traits) and indirect (with inter-
vention and mediation by other traits) effects for each 
trait, the SNPs from MTM-GWAS were ranked accord-
ing to p-values for each trait. The top 50 SNPs were then 
selected, and marker effects were decomposed into direct 
and indirect effects using SEM-GWAS. Since WU and 
WUE were the only two traits to have indirect effects, 
we focused on these traits for downstream analysis with 
SEM-GWAS.

y = �y + ws+ Zg + ǫ







y1
y2
y3
y4






=


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ǫ

= θ
∗ + g∗ + ǫ
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Results
Trait correlations and network structure
Multi-phenotypes were split into genetic values and 
residuals by fitting the MT-GBLUP. The estimates of 
genomic and residual correlations among the four traits 
measured in this study are shown in Table 1. Correlations 
between all traits ranged from 0.48 to 0.92 for genomics 
and − 0.13 to 0.83 for residuals. The estimated genomic 
correlations can arise from pleiotropy or linkage disequi-
librium (LD). Although pleiotropy is the most durable 
and stable source of genetic correlations, LD is consid-
ered to be less important than pleiotropy because alleles 
at two linked loci may become non-randomly associated 
by chance and be distorted through recombination [44, 
45].

We postulated that the learned networks can provide a 
deeper insight into relationships among traits than sim-
ple correlations or covariances. Figure 1 shows a network 
structure inferred using the HC algorithm. This is a fully 
recursive structure because there is at least one incoming 
or outgoing edge for each node. Unlike the MTM-GWAS 
model, the inferred graph structure explains how the phe-
notypes may be related to each other either directly or 
indirectly mediated by one or more variables. We found a 
direct dependency between PSA and WUE. A direct con-
nection was also found between RB and WUE, and PSA 
and WU.

Measuring the strength of probabilistic dependence 
for each arc is crucial in Bayesian network learning [37]. 
As shown in Fig. 1, the strength of each arc was assessed 
with 2500 bootstrap samples with a significance level at 
α = 0.01. The labels on the edges indicate the proportion 
of bootstrap samples supporting the presence of the edge 
and the proportion supporting the direction of the edges 
are provided in parentheses. Learned structures were aver-
aged with a strength threshold of 85% or higher to produce 
a more robust network structure. Edges that did not meet 
this threshold were removed from the networks. In addi-
tion, we used BIC as goodness-of-fit statistics measuring 
how well the paths mirror the dependence structure of the 

data (Table  2). The BIC assign higher scores to any path 
that fit the data better. The BIC score reports the impor-
tance of each arc by its removal from the learned structure. 
We found that removing PSA → WUE resulted in the larg-
est decrease in the BIC score, suggesting that this path is 
playing the most important role in the network structure. 
This was followed by PSA → WU and RB → WUE.

Structural equation coefficients
The inferred Bayesian network among PSA, RB, WU, and 
WUE in Fig. 1 was modeled using a set of structural equa-
tions to estimate SEM parameters and SNP effects, as 
shown in Fig. 2, which can be statistically expressed as

Table 1  Genomic (upper triangular), residual (lower 
triangular) correlations and genomic heritabilities (diagonals) 
of  four traits in  the  rice with  posterior standard deviations 
in parentheses

PSA: projected shoot area; RB: root biomass; WU: water use; WUE: water use 
efficiency

PSA RB WU WUE

PSA 0.677 (0.092) 0.515 (0.102) 0.846 (0.043) 0.920 (0.018)

RB 0.030 (0.218) 0.733 (0.083) 0.479 (0.114) 0.517 (0.107)

WU 0.443 (0.152) − 0.134 (0.216) 0.643(0.097) 0.744 (0.076)

WUE 0.829 (0.052) 0.111 (0.195) 0.106 (0.182) 0.576 (0.092)

Fig. 1  Scheme of inferred network structure using the Hill-Climbing 
(HC) algorithm, with 0.85, threshold; the minimum strength required 
for an arc to be included in the network. Structure learning test was 
performed with 2500 bootstrap samples with mutual information 
as the test statistic with a significance level at α = 0.01. Labels of 
the edges refer to the strength and direction (parenthesis) which 
measure the confidence of the directed edge. The strength indicates 
the frequency of the edge is present and the direction measures the 
frequency of the direction conditioned on the presence of edge. PSA: 
Projected shoot area; RB: root biomass; WU: water use; WUE: water 
use efficiency

Table 2  Bayesian information criterion (BIC) for the network 
learned using the Hill-Climbing (HC) algorithm

BIC denote BIC scores for pairs of nodes and reports the change in the score 
caused by an arc removal relative to the entire network score

PSA: projected shoot area; RB: root biomass; WU: water use; WUE: water use 
efficiency

Algorithm From To BIC

HC PSA WU − 427.956

PSA WUE − 488.787

RB WUE − 3.327
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The corresponding estimated � matrix is

Table  3 presents the magnitude of estimated structural 
path coefficients: �13 , �14 , and �24 for PSA on WU, PSA 
on WUE, and RB on WUE, respectively. The structural 
coefficients ( �ii′ ) describe the rate of change of trait i 
with respect to trait i′ . The largest magnitude of the 
structural coefficient was 0.963, which was estimated for 

y1PSA = wjsj(y1
PSA

) + Z1g1 + ǫ1

y2RB = wjsj(y2RB ) + Z2g2 + ǫ2

y3WU
= �13y1PSA + wjsj(y3WU

) + Z3g3 + ǫ3

= �13[wjsj(y1
PSA

) + Z1g1 + ǫ1] + wjsj(y3WU
)

+ Z3g3 + ǫ3

y4WUE
= �14y1PSA + �24y2RB + wjsj(y4WUE

) + Z4g4 + ǫ4

= �14[wjsj(y1
PSA

) + Z1g1 + ǫ1] + �24[wjsj(y2RB )

+ Z2g2 + ǫ2] + wjsj(y4WUE
) + Z4g4 + ǫ4.

� =







0 0 0 0
0 0 0 0

�13PSA→WU
0 0 0

�14PSA→WUE
�24RB→WUE 0 0






.

PSA → WUE, whereas the lowest was 0.045, which was 
estimated for RB → WUE. 

Interpretation of SNP effects
We implemented SEM-GWAS as an extension of the 
MTM-GWAS method for analysis of the joint genetic 
architecture of the four measured traits, to partition SNP 
effects into direct and indirect [46]. The results of the 
decomposition of SNP effects are discussed for each trait 
separately below. Because the network only revealed indi-
rect effects for WU and WUE, we focused on these traits 
for decomposing marker effects.

Fig. 2  Pictorial representation of trait network and SNP effects ( ̂s ) using the structural equation model for four traits. Unidirectional arrows indicate 
the direction of effects and bidirectional arrows represent genetic correlations (g) among phenotypes. PSA: Projected shoot area; RB: root biomass; 
WU: water use; WUE: water use efficiency; ǫ : residual

Table 3  Structural coefficients ( � ) estimates derived 
from the structural equation models

PSA: projected shoot area; RB: root biomass; WU: water use; WUE: water use 
efficiency

Path � Structural 
coefficient

PSA → WU �13 0.761

PSA → WUE �14 0.963

RB → WUE �24 0.045
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Projected shoot area (PSA)
Figure  3 shows a Manhattan plot of SNP effects on the 
PSA. According to the path diagram, there is no interven-
ing trait or any mediator variable for PSA (Fig. 2). It is pos-
sible that the PSA architecture is only influenced by the 
direct SNP effects, and is not affected by any other media-
tors or pathways. Hence, the total effect of jth SNP on PSA 
is equal to its direct effects.
 

Root biomass (RB)
No incoming edges were detected for RB, resulting in a sim-
ilar pattern to PSA, which suggests that SNP effects on RB 
were not mediated by other phenotypes. As shown in Fig. 3, 
a Manhattan plot for RB consists of direct and total effects.

Directsj→y1PSA
= sj(y1PSA )

Totalsj→y1PSA
= Directsj→y1PSA

= sj(y1PSA )

Directsj→y2RB
= sj(y2RB )

Totalsj→y2RB
= Directsj→y2RB

= sj(y2RB )

Water use (WU)
Based on Fig.  2, the total effects for a single SNP can 
be decomposed into direct effects on WU and indi-
rect effects in which PSA acts as a mediator as WU has 
a single incoming edge from PSA. Thus, the SNP effect 
transmitted from PSA contribute to the total SNP effect 
on WU. Under these conditions, the estimated total SNP 
effects for WU cannot be simply described as the direct 
effect of a given SNP, since the indirect effect of PSA 
must also be considered. This is different from MTM-
GWAS, which does not distinguish between the effects 
mediated by mediator phenotypes, and only captures 
the overall SNP effects. Here it should be noted that the 
extent of SNP effects from PSA on WU are controlled by 
the structural equation coefficients �13 . Figure 4 shows a 
Manhattan plot of SNP effects on WU.

Directsj→y3WU
= sj(y3WU

)

Indirectsj→y3WU
= �13sj(y1PSA )

Totalsj→y3WU
= Directsj→y3WU

+ Indirectsj→y3WU

= sj(y3WU
) + �13sj(y1PSA )

Fig. 3  Manhattan plots (total/direct) SNP effects on projected shoot area (PSA) and root biomass (RB) using SEM-GWAS based on the network 
learned by the hill climbing algorithm. Each point represents a SNP and the height of the SNP represents the extent of its association with PSA and 
RB
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Water use efficiency (WUE)
The overall SNP effects for WUE can be partitioned into 
one direct and two indirect genetic signals (Fig. 2). WU 
and WUE are the traits that do not have any outgoing 
path to other traits. According to Fig.  5, the extents of 
the SNP effects among the two indirect paths were (1) 
RB → WUE, and (2) PSA → WUE in increasing order. 
We found that the SNP effect transmitted through RB 
had the smallest effect on WUE, suggesting that modi-
fying the size of the QTL effect for RB may not have a 

noticeable effect on WUE, whereas a change in PSA may 
have a noticeable effect on WUE. The magnitude of the 
relationship between RB and WUE is proportional to 
the product of structural coefficients �24 = 0.045 . PSA 
influenced WUE via a single indirect path, and strongly 
depends on the structural coefficient �14 = 0.963 for PSA 
→ WUE. Collectively these results suggest that WUE can 
be influenced by selection on PSA.

The direct and indirect effects are summarized with the 
following equation:

Fig. 4  Manhattan plot of direct (affecting each trait without any mediation), indirect (mediated by other phenotypes), and total (sum of all direct 
and indirect) SNP effects on water use (WU) using SEM-GWAS based on the network learned by the hill climbing algorithm. Each point represents a 
SNP and the height of the SNP represents the extent of its association with WU
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Fig. 5  Manhattan plot of direct (affecting each trait without any mediation), indirect (mediated by other phenotypes), and total (sum of all direct 
and indirect) SNP effects on water use efficiency (WUE) using SEM-GWAS based on the network learned by the hill climbing algorithm. Each point 
represents a SNP and the height of the SNP represents the extent of its association with WUE



Page 10 of 14Momen et al. Plant Methods          (2019) 15:107 

Leveraging SEM‑GWAS to decompose pleiotropic QTL
Pleiotropy can be simply defined as a gene that has 
an effect on multiple traits, however understand-
ing how the gene acts on multiple traits is a challenge. 
The advantage of SEM-GWAS is that it can be used to 
understand how a QTL acts on multiple interrelated 
traits. Thus, it can be used to decompose pleiotropic 
QTL effects into direct and indirect effects, and under-
stand how a given QTL acts on multiple traits. We next 
sought to identify QTL with pleiotropic effects and elu-
cidate how the QTL acts on the traits. To this end, we 
ranked SNPs from MTM-GWAS based on p-values to 
select the top 50 SNPs for each trait and used SEM-
GWAS to elucidate how marker effects were partitioned 
among traits (Additional file 1). Since the inferred net-
work revealed indirect effects for only WU and WUE, 
downstream analyses were focused on these two traits.

Top SNPs for WU and WUE showed very different pat-
terns of pleiotropy. For WU, the direct SNP effect size was 
on average 57% higher than the indirect SNP effect size 
coming from PSA, indicating that the total SNP effects 
from WU are driven largely by genetic effects acting 
directly on WU rather than indirectly through PSA. How-
ever for WUE, direct SNP effects on WUE had a much 
smaller contribution to total SNP effects compared to indi-
rect effects from PSA. For instance, comparisons between 
direct SNP effect on WUE and indirect effects from PSA 
on WUE showed that direct effects were, on average, 16% 
lower than indirect effects. While indirect contributions 
from RB on total SNP effects were minimal, with indi-
rect effects from RB on WUE showing an approximately 
30 fold lower effect than direct effects on WUE. Thus, for 
many loci associated with WUE, the total effects may be 
driven largely by the marker’s effect on PSA rather than 
WUE directly. These patterns may be due to the very high 
genomic correlation between PSA and WUE.

While most of the top SNPs from MTM for WU 
showed larger direct effects on WU compared to 
indirect effects through PSA, several loci were iden-
tified where direct effects were nearly equal to indi-
rect effects. For instance, the direct effect on WU for 
SNP-4.30279060. was − 0.272, while the indirect effect 
through PSA was − 0.268. Moreover, this SNP was the 

Directsj→y4WUE
= sj(y4WUE

)

Indirect(1)sj→y4WUE
= �14sj(y1PSA )

Indirect(2)sj→y4WUE
= �24sj(y2RB )

TotalSj→y4WUE
= Directsj→y4WUE

+ Indirect(1)sj→y4WUE

+ Indirect(2)sj→y4WUE

= sj(y4WUE
) + �14sj(y1PSA )

+ �24sj(y2RB )

second most significant SNP associated with PSA from 
MTM-GWAS. The effects of this SNP on both PSA and 
WU is apparent in Fig. 6. Individuals with the “2” allele 
had considerably lower shoot biomass and lower water 
use than those with the “0” allele. Conversely, SNPs 
with small indirect effects on WU through PSA rela-
tive to direct effects on WU were ranked much lower 
for MTM-GWAS for PSA. The SNP-10.2860531. had 
considerably smaller indirect effect on WU through 
PSA relative to the direct effect on WU (−  0.124 and 
−  0.327, respectively) on WU, and was ranked 17,902 
for PSA from MTM-GWAS.

To further examine the putative biological effects of 
these loci, we next sought to identify candidate genes 
near SNPs of interest. To this end, we extracted genes 
within a 200 kb window of each SNP. The window size 
was selected according to the potential genetic varia-
tion that can be tagged by common SNPs as a function 
of pairwise SNP LD as reported by Zhao et al. [21]. Sev-
eral notable genes were identified that have reported 
role in regulating plant growth and development, hor-
mone biosynthesis or abiotic stress responses. For 
instance, a gene encoding a gibberellic acid catabolic 
protein (GA2ox7) was identified approximately 3.5 kb 
downstream from a SNP (SNP-1.5964363.) associated 
with WUE through MTM-GWAS (Table  4) [47, 48]. 
Interestingly, SEM-GWAS revealed that indirect effect 
from PSA on WUE was approximately 57% greater 
than direct effects on WUE ( ̂s = − 0.335 and − 0.213, 
respectively). In addition to OsGA2OX7, we identified 
a second gene, OVP1, that was associated with WUE. 
OVP1 is known to influence abiotic stress responses in 
rice, as well as growth and development in Arabidop-
sis [49–51]. Like OsGA2OX7, the SNP closest to OVP1 
showed larger indirect effects from PSA on WUE than 
direct effects ( ̂s = 0.430 and 0.344, respectively).

Several notable genes were identified for WU that 
have reported roles in regulating plant development 
and drought tolerance (Table  5). For instance, a gene 
encoding a lipid transfer protein (OsDIL1) was identi-
fied approximately 24 kb upstream of a SNP associated 
(SNP-10.2860531.) with WU through MTM-GWAS. 
Guo et  al. [52] showed that plants overexpressing 
OsDIL1 were more tolerant to drought stress during 
the vegetative stage. Examination of the SNP effects 
through SEM-GWAS revealed that the total SNP effect 
from MTM-GWAS was primarily driven by direct effect 
on WU rather than indirect effects on WU through PSA 
( ̂s = − 0.327 and − 0.124, respectively). In contrast to 
the locus harboring OsDIL1, a region on chromosome 
4 was identified that harbored a gene known to regulate 
growth and development in rice, MPR25 [53].
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Discussion
The relationship between biomass and WU in rice may 
involve complex network pathways with recursive effects. 
These network relationships cannot be modeled using a 
standard MTM-GWAS model. In this study, we incor-
porated the network structure between four phenotypes, 
PSA, RB, WU, and WUE, into a multivariate GWAS 
model using SEM. In GWAS, a distinction between 
undirected edges and directed edges is crucial, because 
often biologists and breeders are interested in studying 
and improving a suite of traits rather than a single trait 
in isolation. Moreover, intervention on one trait often 
influences the expression of another [54]. As highlighted 
in Alwin and Hauser [46], one of the advantages of 
SEM is that it is capable of splitting the total effects into 
direct and indirect effects. In regards to genetic studies, 
SEM enables the researcher to elucidate the underlying 

mechanism by which an intervention trait may influence 
phenotypes using a network relationship [55, 56].

Detecting putative causal genes is of considerable inter-
est for determining which traits will be affected by spe-
cific loci from a biological perspective, and consequently 
partitioning the genetic signals according to the paths 
determined. Although the parameter interpretations 
of SEM as applied to QTL mapping [57, 58], expression 
QTL [59], or genetic selection [42] have been actively 
pursued, the work of Momen et al. [7] marks one of the 
first studies to account for the level of individual SNP 
effect in genome-wide SEM analyses. The SEM embeds a 
flexible framework for performing such network analysis 
in a GWAS context, and the current study demonstrates 
its the first application in crops. We assumed that mod-
eling a system of four traits in rice simultaneously may 
help us to examine the sources of SNP effects in GWAS in 
greater depth. Therefore, we used two GWAS methodol-
ogies that have the ability to embed multiple traits jointly, 
so that the estimated SNP effects from both models have 
different meanings. The main difference between SEM-
GWAS and MTM-GWAS is that the former includes the 
relationship between SNPs and measured phenotypes, 
coupled with relationships that are potentially mediated 
by other phenotypes (mediator traits). This advances 
GWAS, and consequently the information obtained from 
trait networks describing such interrelationships can 
be used to predict the behavior of complex systems [7]. 
Although we analyzed the observed phenotypes in the 
current study, the factor analysis component of SEM can 
be added to SEM-GWAS by deriving latent factors from 
multiple phenotypes [e.g., 60, 61]. The inference of a trait 
network structure was carried out using a Bayesian net-
work, which has applications in genetics ranging from 
modeling linkage disequilibrium [62] to epistasis [63].

Fig. 6  Distribution of projected shoot area (PSA) and water use 
(WU) for allelic groups at SNP-4.30279060. PSA values are shown in a, 
while water use values are shown in b. The x-axis shows allele counts 
at SNP-4.30279060, where 0, 1 and 2 indicate accessions that are 
homozygous for the reference allele, heterozygous, and homozygous 
for the alternative allele

Table 4  Candidate genes for water use efficiency (WUE) identified through SEM-GWAS

Chr: chromosome; BP: gene position in base pairs; GA: gibberellic acid

Gene ID Chr BP SNP Rice Annotation Putative Function Reference

LOC_Os01g11150 1 5,968,819 SNP-1.5964363. GA2OX7 GA catabolism [47]

LOC_Os01g11054 1 5,899,555 SNP-1.5964363. OsPPC4 Growth, NH+
4

 assimilation [65]

LOC_Os06g43660 6 26,272,897 SNP-6.26293126. OVP1 Plant growth [49]

Table 5  Candidate genes for water use (WU) identified through SEM-GWAS

Chr: chromosome; BP: gene position in base pairs

Gene ID Chr BP SNP Rice Annotation Putative Function Reference

LOC_Os01g71990 1 41,718,016 SNP-1.41687755. P5C Proline biosynthesis [66]

LOC_Os04g51350 4 30,410,105 SNP-4.30279060. MPR25 Plant development [53]

LOC_Os10g05720 10 2,885,293 SNP-10.2860531. OsDIL1 Drought tolerance [52]
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Effective water use and water capture are essential for 
the growth of plants in arid environments, where water is 
a limiting factor. These processes are tightly intertwined, 
and therefore must be studied in a holistic manner. In the 
current study, we sought to understand the genetic basis 
of water use, water capture, and growth by examining 
PSA, RB, WU, and WUE in a diverse panel of rice acces-
sions. The identification of several QTL that affect one or 
more of these processes highlights the interconnected-
ness of PSA, RB, WU, and WUE. Water use is a complex 
trait that is affected by several morphological character-
istics (e.g. leaf area, stomatal density, leaf anatomical fea-
tures, root architecture, anatomy, etc.), and physiological 
processes (e.g. stomatal aperture) that are greatly influ-
enced by the environment. Thus, any approach that can 
partition genetic effects for WU among the multiple bio-
logical processes that may influence this trait can greatly 
enhance our understanding of how WU is regulated. 
Although many of the factors influencing WU were unac-
counted for in the current study, the automated pheno-
typing platform provided an effective means to quantify 
water use for each plant while simultaneously quantify-
ing shoot biomass. Thus, with these data and the SEM-
GWAS framework we can begin to uncouple the complex 
interrelationship between plant size and water use.

Several QTL were identified for WU through MTM-
GWAS. SEM-GWAS revealed that for most loci, the 
total SNP effect was driven largely by direct effects on 
WU rather than indirect effects on WU through PSA. In 
contrast, SEM-GWAS showed that for WUE, total SNP 
effects were driven largely by effects originating from 
PSA and acting indirectly on WUE. In the current study, 
WUE is a composite trait that is defined as the ratio of 
PSA to WU. The genomic correlation for PSA and WUE 
was quite high. Although genetic correlation may be due 
to pleiotropy or linkage disequilibrium, given the defini-
tion of WUE the high genetic correlation is likely largely 
due to the pleiotropy [64]. Thus, these two traits are likely 
controlled by similar QTL, and so it may be very diffi-
cult to partition total QTL effect into direct and indirect 
paths.

Several of the candidate genes associated with loci 
from MTM-GWAS shed light on the possible biological 
mechanisms underlying pleiotropic relationships for WU 
and WUE with PSA. For instance, a SNP located on chro-
mosome 4 was identified for WU and harbored a gene 
encoding a pentatricopeptide repeat protein (MPR25). A 
closer inspection of this region with SEM-GWAS showed 
that total SNP effects on WU were largely due to indirect 
effects originating from PSA. Toda et al. [53] showed that 
MPR25 participates in RNA editing and disruption of this 
gene results in slow growing plants with reduced chloro-
phyll content. Although considerable work is necessary 

to determine if MPR25 underlies natural variation for 
shoot growth (i.e., PSA) and water use, the presence of 
this gene near this SNP and the effects of this SNP on 
PSA and WU present an interesting direction for future 
studies. In addition to MPR25, a second gene was found 
near a SNP associated with WUE that had a large indirect 
effect through PSA, GA2OX7. The GA2OX gene family 
are involved in the catabolism of the growth promoting 
hormone gibberellic acid (GA) [47, 48]. GA play impor-
tant roles in many processes, but are most well known for 
their role in shaping semi-dwarf rice and wheat cultivars 
[47, 48]. Modifications in shoot size are likely to influence 
water use, as larger plants will have greater surface are for 
evapotranspiration. Thus the presence of this gene within 
this region on chromosome 1 may explain the larger indi-
rect effects on WUE through PSA compared to the direct 
effects on WUE.

A deep understanding of the complex relationship 
between effective water use and water capture, and its 
impact on plant growth in arid environments, is critical 
as we continue to develop germplasm that is resilient 
to climatic variability. As with the significant recent 
advances in phenomics and remote sensing technolo-
gies, future plant breeders will have a new suite of tools 
to quantify morphological, physiological, and environ-
mental variables at high resolutions. To fully harness 
these emerging technologies and leverage these multi-
dimensional datasets for crop improvement, new ana-
lytical approaches must be developed that integrate 
genomic and phenomic data in a biologically mean-
ingful framework. This study examined multiple phe-
notypes using a Bayesian network that can serve as 
potential factors to allow intervention in complex trait 
GWAS. The SEM-GWAS seems to provide enhanced 
statistical analysis of MTM-GWAS by accounting for 
trait network structures.

Conclusions
We extended the scope of multivariate GWAS by incor-
porating trait network structures into GWAS using SEM. 
The main significance of SEM-GWAS is to include the 
relationship between SNPs and measured phenotypes, 
coupled with relationships that are potentially mediated by 
other phenotypes. Using four traits in rice, we showed that 
SEM-GWAS can partition the total SNP effects into direct 
and indirect effects. For instance, SEM-GWAS revealed 
that for many SNPs associated with WU, total SNP effects 
were largely due to direct effects on WU rather than indi-
rectly through the upstream phenotype PSA. However, 
for WUE, total SNP effects for many of the top associated 
SNPs were largely due to effects acting on WUE indirectly 
through PSA. Thus, SEM-GWAS offers new perspectives 
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into how these traits are regulated and how intervention 
on one trait may affect the outcome of another.
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