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REVIEW

Measuring crops in 3D: using geometry 
for plant phenotyping
Stefan Paulus* 

Abstract 

Using 3D sensing for plant phenotyping has risen within the last years. This review provides an overview on 3D traits 
for the demands of plant phenotyping considering different measuring techniques, derived traits and use-cases of 
biological applications. A comparison between a high resolution 3D measuring device and an established measur-
ing tool, the leaf meter, is shown to categorize the possible measurement accuracy. Furthermore, different measuring 
techniques such as laser triangulation, structure from motion, time-of-flight, terrestrial laser scanning or structured 
light approaches enable the assessment of plant traits such as leaf width and length, plant size, volume and develop-
ment on plant and organ level. The introduced traits were shown with respect to the measured plant types, the used 
measuring technique and the link to their biological use case. These were trait and growth analysis for measurements 
over time as well as more complex investigation on water budget, drought responses and QTL (quantitative trait loci) 
analysis. The used processing pipelines were generalized in a 3D point cloud processing workflow showing the single 
processing steps to derive plant parameters on plant level, on organ level using machine learning or over time using 
time series measurements. Finally the next step in plant sensing, the fusion of different sensor types namely 3D and 
spectral measurements is introduced by an example on sugar beet. This multi-dimensional plant model is the key to 
model the influence of geometry on radiometric measurements and to correct it. This publication depicts the state 
of the art for 3D measuring of plant traits as they were used in plant phenotyping regarding how the data is acquired, 
how this data is processed and what kind of traits is measured at the single plant, the miniplot, the experimental field 
and the open field scale. Future research will focus on highly resolved point clouds on the experimental and field 
scale as well as on the automated trait extraction of organ traits to track organ development at these scales.
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Background
Measuring three-dimensional (3D) surface information 
from plants has been introduced during the last three 
decades [1–3]. Having access to the plant architecture 
[4] enables tracking the geometrical development of the 
plant and the parameterization of plant canopies, sin-
gle plants and plant organs. As 3D measuring is non-
destructive the implementation of a monitoring over 
time is possible [5]. Doing this in 3D is essential to dif-
ferentiate between plant movement and real growth on 
plant and organ level [6]. Plant phenotyping defines 
the goal of bridging the gap between genomics, plant 

function and agricultural traits [7]. Therefore 3D measur-
ing devices are a well-suited tool as these devices enable 
exact geometry and growth measurements.

This can be reached using different techniques as there 
are laserscanning, structure from motion, terrestrial laser 
scanning or structured light approaches, as well as time 
of flight sensors or light field cameras. Each of these tech-
nologies has its own use cases for (single) plant scale (lab-
oratory, < 10 plants), miniplot scale (greenhouse, < 1000 
plants), experimental field (< 10,000 of plants) or use on 
an open field (<  10,000 of plants) to meet the different 
requirements regarding robustness, accuracy, resolution 
and speed for the demands of plant phenotyping as there 
are the generation of functional structural plant models 
to link the geometry with function, [8] to differentiate 
between movement and growth to visualize and measure 
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diurnal patterns [6] to monitor the influence of environ-
mental stress to the plant development [9].

All techniques result in a point cloud, where each sin-
gle point provides a set of X, Y, Z coordinates that locate 
the point in the 3D space. Depending on the measuring 
device, this coordinate can be enriched with intensity- or 
color-information representing the reflected light into 
the direction of recording. Existing 2.5D approaches 
measure distances from one single point of view. In con-
trast to this real 3D models depict point clouds recorded 
from different views showing different spatial levels of 
points and thus show a smaller amount of occlusion, a 
higher spatial resolution and accuracy. Furtheron reso-
lution is defined as the smallest possible point to point 
distance for a scan—also known as sampling distance. 
Accuracy depicts the distance between real and meas-
ured target point.

A technical categorization of 3D measuring tech-
niques is shown in Fig.  1a. It mentions the two main 
categories which use active illumination based and pas-
sive approaches. Active illumination describes sensors 
that use an active light emitter, passive sensors use the 

environmental light condition to measure. Triangula-
tion based systems and time of flight measurements are 
active measurement techniques. Triangulation based 
techniques are laser triangulation (LT) and structured 
light (SL) techniques, time of flight based techniques are 
terrestrial laser scanning (TLS) and time of flight (ToF) 
cameras. Light field cameras (LF) and structure from 
motion (SfM) approaches belong to the group of passive 
methods. A more technical description with focus on the 
output and price is shown in Table 1.

This review aims to giving an answer to significant 
questions regarding 3D plant phenotyping. What are the 
point cloud requirements used for 3D plant phenotyping 
at different scales regarding point resolution and accu-
racy? What are the sensor techniques that can be used 
for specific plant phenotyping tasks? How are these data-
sets processed, what kind of traits have been extracted 
and what is their biological relevance?

Laser triangulation, LT
LT is mostly applied in laboratory environment due to its 
high resolution and high accuracy measurements [10] or 

Fig. 1  The hierarchy of the introduced 3D measuring techniques which are most relevant for plant phenotyping (highlighted in color) is presented. 
Laser triangulation, structured light approaches, time of flight sensing, structure from motion and light field imaging are shown in their technical 
connection (a). The two most important techniques laser triangulation (b) and structure from motion (c) are introduced in detail to show the 
procedure of point measuring
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due to its easy setup using low-cost components [11, 12]. 
Laserscanning describes systems based on laser distance 
measurement and a sensor movement. Typically this 
means the use of a laser triangulation system. Hereby a 
laser ray is spread into a laser line to illuminate the sur-
face of interest. The reflection of the laser line is recorded 
using a sensitive photoactive array (CCD or PSD). The 
calibration of the setup enables an interpretation of the 
measurement on the camerachip as a distance measure-
ment (see Fig.  1b). A complete 3D point cloud can be 
extracted by moving the sensor setup. LT systems work 
with active illumination and can be used independently 
of the outer illumination. A point resolution of a few 
microns can be reached [10].

LT setups always include a trade-off between possible 
point resolution and measurable volume. Either a small 
volume can be measured with highest resolution or a big 
volume is measured in low resolution. This requires a 
sensor system adaption for a complete experiment before 
and a good estimation of the necessary resolution and 
measurable volume.

Adapted sensor systems aiming at plant point clouds 
with a resolution of millimeters have risen within the 
last few years. These sensors use laser triangulation 
for measurements on field scale using non-visible laser 
wavelength (NIR, usually 700–800 nm), which results in 
a better reflection under sunlight [13, 14].

Structure from motion, SfM
SfM approaches use a set of 2D images captured by RGB 
cameras to reconstruct a 3D model from the object of 
interest [15]. After estimation of intrinsic (distortion, 
focal length etc.) and extrinsic (position and orienta-
tion) camera parameters the images were set into context 
[16] using corresponding points within the images (see 
Fig. 1c). These corresponding points are used to connect 
the images and to calculate the 3D model. Depending on 
the camera type the result is a 3D point cloud including 
color (RGB) or intensity of the measured reflection [17]. 

The resolution is comparable to LT point clouds but it 
strongly depends on the number of images used for 3D 
calculation, the amount of different viewing angles from 
where the pictures were taken as well as from the camera 
chip (CCD) resolution [17].

In contrast to LT where most effort is needed dur-
ing measuring and the immediate result is the point 
cloud, SfM approaches need a short time for capturing 
the image, but need much effort for the reconstruction 
algorithm.

SfM approaches are mostly used on UAV (unmanned 
areal vehicle) platforms as they do not need a special 
active illumination or complex camera setups. As this 
approach just needs a camera for the image acquisition 
the hardware setup is very small and lightweight. Thus, 
this approach fulfills the lightweight demands that were 
defined by UAV restrictions on weight. As cheap con-
sumer cameras can be used and the algorithms are mostly 
free to use, this technique is commonly used for model-
ling input models for 3D printers from the non-profes-
sional community using handheld or tripod mountings. 
Thus many applications are available focusing not on 
accuracy but reproducibility.

Structured light (SL) and time of flight (ToF) and light field 
(LF) and terrestrial laser scanning (TLS)
There are various other techniques to image three-
dimensional data beside LT and SfM approaches. Most 
common are SL, ToF and LF approaches. SL uses pat-
terns, mostly a grid or horizontal bars, in a specific tem-
poral order. For each pattern an image is recorded from 
the camera. By using a pre-defined camera-projector 
setup the 2D points on the pattern are connected to their 
3D information by measuring the deformation of the pat-
tern [18, 19]. As SL setups are rather big regarding the 
used space for the measuring setup and need a lot of time 
to acquire the images either the object or the measur-
ing system has to be moved to connect different points 
of view. SL approaches are implemented in industry to 

Table 1  Technical overview of 3D measuring methods

The differences in illumination, direct or needed postprocessing, pricing and resulting values is given. Pricing is encoded by € < 1000 Euro, €€ < 10,000 Euro and €€€ > 
10,000 Euro. The output values show XYZ coordinates and a possible enrichment with I for intensity/reflectance or RGB for a Red-Green-Blue image combination

Name Abbr. Resolution Active 
illumination

Direct point 
cloud access

Output values Price Literature

Laser triangulation LT < mm Yes Yes XYZ (I) €€€ [10, 26]

Structured light approaches SL < mm Yes No XYZI (RGB) €€ [18, 27]

Structure from motion SfM mm No No XYZRGB € [17, 28]

Time of flight ToF mm Yes Yes XYZ (I) €€ [29, 30]

Light field measuring LF mm No No XYZRGB €€€ [31, 32]

Terrestrial laserscanning TLS cm Yes Yes XYZ (I/RGB) €€€ [33, 34]
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perform reverse engineering or for quality control pro-
viding high resolution and high accuracy in a bigger 
measuring volume [20].

ToF uses active illumination, the time between emit-
ting light and returning of the reflection is measured by 
using highly accurate time measuring methods [21]. This 
can be performed for thousands of points at the same 
time. ToF cameras are small regarding the hardware size 
but capture images with a rather small resolution. These 
cameras are mostly used for indoor navigation [22] or in 
the gaming industry (see Kinect 2, [23]).

LF cameras [24] provide, beside a RGB image, addi-
tional depth information by measuring the direction 
of the incoming light using small lenses on each pixel 
of the camera array. This enables reconstruction of 3D 
information.

Tof and LF Setups have to be moved to get a complete 
3D point cloud, but as ToF is rather slow it suffers on a 
low resolution similar to LF approaches, when compared 
to LT and SfM measuring approaches (see Fig. 1).

A technique coming from land surveying is terrestrial 
laser scanning. Using a time of flight or a phase shift 
approach these scanners scan the environment and have 
to be moved to another position to capture occlusions. 
Nevertheless these systems are very well established for 
surveying jobs like landslides detection of deformation 
monitoring of huge areas [25]. For plant monitoring their 
advantage of big measurable volume ( < 300 m), accura-
cies of millimeters are possible but surveying knowledge 
is needed especially when using more than one point of 
view. Nevertheless the technique is well established tool 
for canopy parameters. Nevertheless as it is cost inten-
sive, hard to process as the different position measure-
ments have to be connected and its time consuming 
measuring procedure it is not very appropriate for plant 
measuring.

Point cloud resolution—its effect on the extracted 
traits
To answer the question for the needed requirements on 
point clouds and thus on 3D measuring devices for the 
demands of plant phenotyping it is important to com-
pare these tools regarding their accuracy with established 
tools for trait measuring. 3D plant measuring has proven 
to be a reliable tool for plant phenotyping when com-
pared to established manual or invasive measurements 
[3].

Nevertheless the comparison between proven non-
invasive technologies as well as the requirements regard-
ing the scan resolution for an accurate measurement in a 
specific scenario remains an open question.

An experiment was conducted to show the compari-
son between a high precision LT system and a non-invase 

established technology—a leafmeter. Both techniques 
were compared to an established, but invasive photo 
based reference method [35, 36] with an accuracy of 
below mm. The photo based method uses a RGB image 
and a metric reference frame and comes together with 
destruction of the plant as the leaves were cutted and 
positioned within the metric frame. The reference experi-
ment includes ten different barley plants. Each plant had 
six to seven leaves, where at least five leaves have been 
measured due to constraints of the leafmeter which 
makes it impossible to measure the inner leaves. Dur-
ing the measurement the plants were in the BBCH 30 
growth stage. The plants were cultivated in a greenhouse. 
For the measurements a leafmeter (Portable Laser Leaf 
Meter CI-203, CID Inc., Camas, WA, USA) was used as 
a well established tool for leaf area measuring [37] and 
a laserscanner (Romer measuring arm + Perceptron v5, 
[38]) were used. The laser scanner point cloud consists 
of several thousand 3D lines, which were automatically 
merged. To receive an evenly distributed point cloud it 
has been rastered (0.3  mm point to point distance) and 
meshed using a surface smoothing approach as it has 
been provided by CloudCompare (version 2.10 Alpha, 
http://www.cloud​compa​re.org). The leaf area was calcu-
lated by summing up the area of all triangles of the mesh, 
a method that has been applied to corn measurements 
before [39]. The error metric (RMSE and MAPE) was cal-
culated according to [3].

Figure  2a shows a correlation between laserscanner 
and reference measurements ( R2

= 0.99 ), same for the 
leafmeter and the reference measurements ( R2

= 0.99 ). 
The leafmeter shows a small offset due to its way of 
handling, as there is a small offset while positioning the 
leafmeter at the leaf base. Error measurements were pro-
vided in Table 2.

By reducing the laser scanned point cloud regarding 
resolution and point accuracy the error levels compared 
to the established leafmeter can be determined.

A further analysis focusing on the applicability of dif-
ferent point resolutions (1–15 mm) was conducted as the 
introduced 3D measuring techniques provide differences 
regarding resolution and accuracy (Fig.  2b). Therefore, 
the scans of the first experiment were resampled and the 
amount of points was reduced. In addition, noise in the 
dimension of the resolution (1–15 mm) was added to the 
single points to simulate other 3D sensing sensors and 
technology in a more accurate way. In Table 2 the results 
of the correlation analysis and related error measure-
ments were described. Errors were below 1% (MAPE) for 
all point clouds with reduced quality compared to the 
reference measurement. Point resolutions above 15 mm 
were not investigated as not enough points were left to 
model the leaf.

http://www.cloudcompare.org
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As expected with decreasing resolution the error is 
increasing. A laser based 3D measuring device that pro-
vides a resolution of 5 mm is comparable with a leafme-
ter regarding the proportional error measurement. Down 
to a resolution of 15  mm the percentage error was still 
below 1% although the RMSE raised up to 30 cm2. This 
means, that even with low resolution 3D measuring 
devices exact trait measurements are possible.

Data processing and 3D trait analysis
3D scanning of plants enables capture of the geometry 
of the plant and individual organs like leaves or stems. 
Thus, parameters for the whole plant and the organs can 
be calculated to describe size, shape and development. 
Subsequent traits using the complete plant point cloud 
(canopy) are depicted as non-complex traits, whereas 
parameters describing geometry at the organ level are 
depicted as complex traits, as they require a previous 

identification of plant organs by using classification rou-
tines. Non-complex traits are height, width, volumet-
ric measures, maps showing information about height 
or inclination or a rough leaf area estimation. The lat-
ter describes the trait leaf area from a non-segmented 
point cloud where a large percentage of the points are 
leaf points. Complex plant traits describe plant traits 
on organ level such as the exact leaf area, stem length, 
internode distance, fruit counting or ear volume estima-
tion. By repeating these measuring/analysis setups over 
time the extraction of time lapse traits like leaf surface 
development, leaf movement or field maps showing the 
growth at different locations is possible. As time can be 
described as an additional dimension time lapse traits are 
named 4D traits.

Even non-complex traits often need a definition before 
a comparison to well-established measuring tools is pos-
sible. For example the internode distance can be depicted 
to be the distance between two consecutive leaf petiole 
at the stem, or as the distance between leaf centre points 
projected to the plant stem [27].

Figure 3 illustrates the derivation of traits from a barley 
point cloud without any reflection information. It shows 
the derivation of the parameters plant height, plant 
width, convex hull, projected leaf area, the leaf area den-
sity, the number of leaves, the single leaf length as well as 
height and inclination maps.

Height or width can be extracted by using the differ-
ence between lowest and highest z-axis coordinate for 
height and same for x- and y-axis to get a measurement 
for the width [3]. A more complex trait is the convex hull. 
In 2D this describes the smallest convex polygon covering 
all the points. It approximates the volume of the plants 
in 3D [3]. The projected leaf area represents the cover of 

Fig. 2  Laserscanning accuracy—reference experiment using a photogrammetric method as reference to evaluate the accuracy of the 
Laserscanning device and the Leafmeter as a device for measuring leaf area [35, 36]. Both methods show a high correlation compared to the 
reference method (a). The comparison between the laser scanner using different point resolutions and the introduced reference method is 
visualized in addition (b). The transparent color in both plots indicates the confidence intervals (95%). The black line describes the bisecting line of 
the angle as the line of highest correlation

Table 2  Comparison of  the  error measurements 
for  the  leafmeter–laserscanner combination using 
different sampling resolutions for  the  laserscanned point 
cloud between 0.3 and 15 mm

Sampling included a reduction in resolution as well as adding noise in the same 
dimension. R2 error measurements are shown as well as a MAPE and RMSE 
calculation

Resolution 
[mm]

R
2 MAPE % RMSE cm2

Leafmeter 0.99 0.16 5.01

Laserscanner 0.3 0.99 0.04 1.34

1.0 0.91 0.05 3.94

5.0 0.89 0.11 5.4

10.0 0.89 0.43 13.96

15.0 0.68 0.90 30.66
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the ground by the plants leaves. It is widely used to char-
acterize canopy light conditions and is used to calculate 
(projected) leaf area index [40]. The height distribution of 
leaf surface points it is an indication for variation in leaf 
mass per area as it was shown for rice between different 
varieties and different nitrogen levels [41]. The number 
of leaves is one important trait as it is used, among oth-
ers, to describe the growth stage of plants in the BBCH 
scale [42]. Unfortunately accessing the leaf number auto-
matically is difficult. For 2D plant images this problem 
has already been addressed but it was noted to be rather 
complicated [43]. Existing datasets have been used to 
raise a challenge to solve this problem [44]. In 3D differ-
ent methods can be used to identify the plant organs and 
to give semantic meaning to the point cloud or respec-
tively to the organs. There are approaches using meshing 
algorithms [45] that uses the mesh structure for segmen-
tation, approaches that fit the plant measurements into 
a model [46], others use the point environment within 
the point cloud and machine learning methods like Sup-
port Vector Machines coupled to Conditional Random 
Field techniques to overcome errors in the classification 
to identify the organs [47]. Further methods are Region 
Growing [48] and clustering routines [49] and Skeleton 
Extraction approaches [50] which can be used. Neverthe-
less, results of these approaches correlate with the quality 
of the underlying point cloud.

When the single leaves are identified the parameteriza-
tion can be performed on organ level to calculate the leaf 

area of single leaves. Paulus et al. [3] showed an approach 
for manual leaf tracking and to monitor the leaf devel-
opment over time. Leaf organs can be parameterized by 
using a triangle mesh. Here the sum of all triangles cor-
responds to the leaf area. Organs like the plant stems 
need a more sophisticated parameterization. Mathemati-
cal primitives like cylinders show a good approximation 
of the stem shape [51] and enable extract measurements 
like height or volume [5]. Further analysis of point height 
distribution mostly is used to generate maps to identify 
areas of differences in growth [13].

Figure  4 shows a processing pipeline for 3D point 
clouds coming from a common point cloud generat-
ing 3D scanning device. After cutting the point cloud 
to the region of interest and a first cleaning step using 
an outlier removal algorithm non-complex parameters 
like height and width can be derived based on the point 
cloud parameters. Using routines from standard data 
processing software libraries like Matlab (MATLAB, The 
MathWorks, Inc., Natick, Massachusetts, United States.), 
OpenCV [52] or the Point Cloud Library [53] non-com-
plex traits like the convex hull volume, projected leaf area 
or height maps can be extracted. By use of plane fitting 
and meshing algorithms parameters, leaf area and incli-
nation can be calculated (see Fig. 4, part 1).

Further processing uses either machine learning 
approaches to identify (segment) plant organs like leaf, 
stem or ears [54]. These routines work on 3D features like 
surface feature histograms or point feature histograms 

Fig. 3  Traits that can be extracted from a 3D point cloud of a young barley plant. From the XYZ point cloud (a) non-complex parameters like plant 
height (b), plant width (c), the convex hull (d) and the projected leaf area (e) can be extracted. Furthermore the leaf area density (f) can be derived. 
The number of leaves (g) and the respective leaf length (h) can be measured after identifying the individual plant organs. For each point the 
inclination and its height can be calculated resulting in a inclination (i) or height map (j)
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[55, 56] and encode the surface structure. Machine learn-
ing algorithms such as Support Vector Machines (as 
provided by LibSVM [57]) needs pre-labeled data for 
training and belong to the supervised learning methods. 
They can be applied if labeled data is available and use 
this training data to develop a model for classification. 
Unlike this, methods that use the structure within the 
data are called unsupervised learning methods, they do 
not need any labelling but they are hard to optimize. 3D 
geometry features and clustering methods have been suc-
cessfully applied to divide barley point clouds into logical 
groups for stem and leaf points [49] (see Fig. 4, part 2).

Measurements over time (4D) and repeated application 
of the described workflow growth parameters for plant 
development like growth curves on plant and organ level 
can be derived. As 3D devices enable a differentiation 
between growth and movement the diurnal cycle can be 
observed and can be compared to the daily growth [6]. 
As growth is a direct indicator of stress high precision 3D 
measuring devices are well suited to detect this stress by 
measuring the 3D shape change [2] (see Fig. 4, part 3).

3D parameters on different scales
The following section gives an overview of different 
parameters that have been described in literature. The 
parameters have been grouped into four different scales 
“Single Plant”, “Miniplot”, “Experimental Field” and 

“Open Field”. Single plant scale as it is focused in labo-
ratories describes the scale from seedlings to fully grown 
plants but with a focus on single plants or smallest 
groups of plants. Here, high resolution sensors (<  mm) 
working in a reproducible setup with highest accuracy 
were used. Miniplots in greenhouses describe production 
farms with fixed plant locations as well as high through-
put plant phenotyping facilities where the plants stand 
on conveyor belts and were imaged in imaging cabinets. 
These setups are commonly used for research studies 
[58]. The experimental field scale describes measure-
ments in the field with stationary sensors, maybe on a 
tripod or slowly moving sensor platforms. The largest 
scale shown here describes open fields. Sensors that are 
used here are commonly mounted on UAV platforms. 
These sensors provide a lower resolution (cm), but a high 
scan speed (> 50 Hz), which is essential when used dur-
ing motion. The accuracy measurements (see Table 3) are 
based on a linear correlation using R2 notation or the use 
of the MAPE [3].

To define the different scenarios of applications on the 
plant, miniplot, experimental field and open field scale. 
Table  3 provides an overview of measured plants, traits 
and biological connection.

Multiple studies focus on scenarios with just a few 
plants in laboratories. Here a differentiation between 
single organs is mostly not necessary. Non-complex 

Fig. 4  A common 3D processing pipeline including the use of a region of interest and outlier handling to extract non-complex parameters as 
height, width and volume (1). The use of routines like machine learning/deep learning enables the identification and parameterization of plant 
organ parameters (2). Using multiple recordings over time monitoring of development and differentiation between growth and movement is 
possible (3)
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parameters that are easy to measure like height, vol-
ume, number of leaves or projected leaf area have been 
extracted with high precision ( R2

> 0.9 , [17]). A further 

step that needs either a modelling of the plant [45] or 
the use of a sophisticated classifier working on the pure 
point cloud [54] enables a differentiation between the 

Table 3  Overview of  plant traits that  have been measured for  the  single plant scale, miniplot, experimental field 
and open field scale

If possible an error measurement is provided as well as the plant type, the sensor and the biological connection as the purpose of the study

Trait Plant Sensor Biological connection Literature

Single plant scale Plant height Sugar beet LT Drought response [3]

Plant width Sugar beet LT Drought response [3]

Root volume Sugar beet LT Trait analysis [11]

Root surface Sugar beet LT Trait analysis [11]

Root compactness Sugar beet LT Trait analysis [11]

Leaf area Barley LT Drought response [3]

Projected leaf area Sugar beet LT Trait analysis [11]

Leaf width Cotton SfM Growth analysis [45]

Leaf length Cotton SfM Growth analysis [45]

Leaf movement Arabidopsis LT Growth analysis [6]

Single leaf growth Barley LT Growth analysis [3]

Number of leaves Cabbage SL Trait analysis [27]

Cucumber SL Trait analysis [27]

Tomato SL Trait analysis [27]

Stem length/growth Barley LT Growth analysis [5]

Calyx shape Strawberry SfM Trait analysis [59]

Achene shape Strawberry SfM Trait analysis [59]

Internode distance Cabbage SL Trait analysis [27]

Cucumber SL Trait analysis [27]

Tomato SL Trait analysis [27]

Ear volume Wheat LT Yield estimation [54]

Ear shape Wheat LT Yield estimation [54]

Miniplot Plant height Pepper SfM QTL analysis [60]

Leaf angle Pepper SfM QTL analysis [60]

Leaf area Rapeseed LT Growth analysis [14]

Proj. leaf area Rapeseed LT Growth analysis [14]

Leaf angle Maize ToF Trait analysis [24]

Sorghum ToF Trait analysis [24]

Soybean SFM Drought response [61]

Fruit detection Tomato LF Trait analysis [21]

Experimental field Plant height/canopy height Wheat LT Growth analysis [13]

Proj. canopy area Cotton TLS Growth and yield [62]

Plant volume Cotton TLS Growth and yield [62]

Leaf area index (LAI) Maize, sorghum SfM Trait analysis [63]

Leaf area Grapevine SfM Trait analysis [64]

Peanut LT Water budget [65]

Cowpea LT Water budget [65]

Pearl millet LT Water budget [65]

Open field Plant height and canopy height Maize SfM Growth analysis [66]

Sorghum SfM Growth analysis [66]

Eggplant SfM Biomass estimation [67]

Tomato SfM Biomass estimation [67]

Cabbage SfM Biomass estimation [67]
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single organs. This can be used for wheat ear volume 
calculation for yield estimation [54] using the α-shape 
technique or measuring of stem parameters by using 
cylinder fitting routines [3].

On the miniplot scale, which comes along with simi-
lar prerequisites regarding resolution and accuracy 
like the single plant scale, there are further demands 
regarding recording speed as it is essential for high 
throughput phenotyping using automated greenhouses 
and conveyor systems. For trait and growth analysis 
laser triangulation systems [14] are very common, but 
time of flight sensing [24] and structure from motion 
[64] approaches are also used, mostly due their high 
speed during the recording, although a not negligible 
amount of processing time is needed after the scan 
pass. In comparison to the single plant scale parame-
ters assessed here commonly are non-complex param-
eters like height or leaf area where the stem points were 
neglected due to the smaller resolution or lower pro-
portion of measured points.

Experimental field measurements concentrate on 
parameters like plant/canopy height [13], volume [62] or 
leaf area index [63]. At this scale terrestrial laser scanners 
are often used as they provide a range of 10s to 100s of 
meters and a high resolution of a few millimeters [62]. 
Structure-from-motion approaches are used on wheeled 
carrier vehicles with mounted cameras [64] as well as on 
UAV-based measurements. The latter comes along with 
measurements of easy accessable parameters like plant 
height or canopy volume and can be utilized for growth 
analysis and biomass estimation [66, 67].

Table 3 introduces the biological connection of the 3D 
parameters as there are links to trait analysis, growth 
analysis, drought responses, analysis of water budget, 
yield estimation, biomass estimation and QTL analysis 
(quantitative trait loci, [68]).

By comparing different groups of plants regarding their 
responses on water access drought can be described [3, 
61]. Combining 3D measurements with gravimetric 
measurements of the transpiration enables measuring 
the water budget and the transpiration rate over day on 
a single plant scale [65]. These experiments use a non-
destructive measuring method to link an accompanying 
sensor to 3D plant traits. Using destructive yield meas-
urements enables linking the 3D traits to yield param-
eters like thousand kernel weight or kernel number as 
shown for wheat [54]. Similar to this, the scan of a com-
plete plant can be linked to fresh mass/biomass even on 
field scale [67]. QTL analysis describes the identification 
of genetic regions that are responsible for specific plant 
traits. 3D measuring helps to identify and describe traits 
that are linked to these regions [60] and to understand 
the genotype-phenotype interaction.

Adding information to the 3D data
The phenotype as the result of genotype and environ-
ment interaction is expressed in numerous plants traits 
which are not all expressed in geometrical differences. 
Therefore different sensors were taken into account. 
RGB cameras are common in plant phenotyping being 
used to extract different traits regarding size, shape and 
colour [69]. Multispectral- or hyperspectral cameras are 
used to identify indications or proxies in the non-visible 
spectrum to detect plant stress [70] or plant diseases 
[71]. Thermal cameras show differences in temperature 
between plants or within a single plant [72].

Depending on the plant surface geometry these record-
ing devices vary in their measurements. [73] showed a 
connection between high NDVI (normalized difference 
vegetation index [74]) values and the inclination angle 
on sugar beet leaves. By using the plant’s 3D informa-
tion the effect of different reflection angles with respect 
to illumination source, camera and observed surface can 
be recorded [75]. For combining 3D and hyperspectral 
images the camera system has to be geometrically mod-
elled. The result is a combined 3D-reflection model that 
combines 3D geometry and reflection information from 
hyperspectral cameras (see Fig. 5). As it is advantageous 
to take this into account and to reduce the described 

Fig. 5  A combination of 3D point cloud and hyperspectral image 
data is possible by calibrating the sensor setup including the 3D 
imaging sensor and the hyperspectral camera. The top (a) and 
side (b) view of a combined point cloud is shown for combination 
of 3D- and VISNIR-data (911 nm, a) as well as for 3D and SWIR 
data(1509 nm, b). The VISNIR and the SWIR spectrum can be 
investigated at the same point in the 3D point cloud (c)
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error future measurement hardware should include this 
correction method internally as by a proper modelling of 
the optical ray path [76].

A critical consideration on 3D scanning of plants
The shown experiment (see Fig.  2) and the the intense 
literature work (see Table 3) indicate that 3D measuring 
devices and especially laserscanning devices are reliable 
tools for plant parameterization with respect to plant 
phenotyping. Existing invasive tools can be replaced and 
exceeded in accuracy. Furthermore an estimation for the 
required resolution for a laboratory/greenhouse experi-
ment was given together with resulting error measure-
ments. A MAPE of 5–10% was previously defined to be 
acceptable for morphological scale phenotyping, as this 
limit reflects the magnitude of errors already inherent 
in manual measurements and which is low enough to to 
distinguish changes in relevant traits between to imag-
ing dates during development [45]. Although the resolu-
tion and point accuracy was decreased down to 15.0 mm 
within this experiment the MAPE measurement never 
broke this limit.

One big advantage that is shared by all 3D measuring 
devices is the fact that the point cloud represents the 
surface at a specific point in time. As this is, a very gen-
eral representation of the plant surface and not a single 
measurement, many different traits can be extracted even 
afterwards. If leaf area is focused in an experiment and 
later on leaf inclination becomes relevant, this trait can 
be calculated afterwards and compared to the current 
experiment [77].

All the 3D measuring methods have in common that 
with increasing age of the plants the complexity and 
thus the amount of occlusion is increasing. This can be 
reduced by using more viewpoints for each sensor. Nev-
ertheless occlusion is always present independent of sen-
sor, number of viewpoints or sensor setup as the inner 
center of the plant is at a specific time occluded by the 
plant (leaves) itself. One solution could be to use MRI 
(magnetic resonance imaging) or radar systems that use 
volumetric measurements [78], taking into account a 
more complex and expensive measuring setup. Depend-
ing on the measuring technique the registration (fusion) 
of different views is rather difficult when wind occurs 
or plants were rotated during single scans. Referencing 
becomes impossible and the results loses quality. This 
holds for almost any 3D measuring technique as long as 
imaging is not performed in one shot from many differ-
ent positions at the same time as it has been already pub-
lished for tracking of human motion [79].

Although 3D measuring devices provide a very high 
resolution they are only able to measure visible objects. 
Plant roots can be imaged when growing in transparent 

soil like agar. Their traits can be distinguished into 
static and dynamic root traits, depending if they can be 
measured at a single point in time (static) or at multiple 
points in time (dynamic) [80]. The latter can be related 
to growth and spatiotemporal changes in root charac-
teristics, but only the static traits can be measured by 
3D devices as the roots have to be taken from the soil, 
washed and measured. One effect that has to be taken 
into account is the problem of refraction when measur-
ing through different substances.

In general, LT is able to cover applications where a 
high resolution and accuracy is needed in a rather small 
measuring volume as it is essential for organ-specific trait 
monitoring on the single plant scale. Whereas Sfm cov-
ers most of the application scenarios in plant phenotyp-
ing across all scales as the resolution and the measuring 
volume just depend on the camera and the amount of 
acquired images. The more data from different points of 
view is merged independent of the sensor the less occlu-
sion can be found in the resulting point cloud.

Summing up LT
To resolve smallest details the high resolution of microns 
using LT technique is well prepared. Its exact point 
clouds are a well suited input for machine learning meth-
ods to extract parameters of plant organs like stem length 
or calyx shape. Nevertheless, the interaction between 
laser and plant tissue has to be taken into account when 
using measuring systems with active illumination and 
laser triangulation in special. Although laser scanning is 
depicted to be non penetrating, latest experiments have 
shown that plant material below the cuticula and laser-
color and intensity have a significant influence on the 
measuring result and its accuracy [81, 82]. Furthermore 
the edge effect, measurements of partly leaf and partly 
background, can lead to outliers or completely wrong 
measurements [83].

Summing up SfM
SfM approaches provide a quick acquisition and are 
lightweight. This makes them well suited for use on flying 
platforms to image field trials. The more images recorded 
the better is the resolution of the resulting point cloud. 
SfM approaches provide a high accuracy (mm) [17], but 
strongly interfere with illumination from the environ-
ment. Light is problematic when it is changing during or 
between consecutive measurements. Furthermore wind 
is a problem as the object moves between two consecu-
tive recordings. This causes errors during the reconstruc-
tion process [84]. This can be reduced by using a high 
measuring repetition rate (>  50  Hz) but this raises the 
time needed for reconstruction (>  1  h). Latest research 
focuses on reducing the post-processing time [85] as it 
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is a key capability for autonomous driving. As autono-
mous driving is strongly pushed forward, a huge increase 
regarding the performance of the reconstruction algo-
rithms is be expected.

Summing up SL, ToF, TLS and LF
SL, ToF, TLS and LF measurements have shown their 
applicability for the demands of plant phenotyping. 
Nevertheless the accuracy and resolution have to be 
increased for the demands of high throughput plant phe-
notyping. There are prototype setups where these tech-
niques are the method of choice.

Further methods
In addition to the shown devices for 3D imaging of plants 
on the different scales there are more devices like 3D 
measuring systems for the microscopic scale using inter-
ferometry to localize the 3D position of proteins [86] or 
three-dimensional structured illumination microscopy 
to measure images of plasmodesmata in plant cells [87]. 
On a laboratory scale techniques like volume carving [88] 
were used for the determination of seed traits [89]. Mag-
netic resonance imaging (MRI) based techniques were 
used for 3D reconstruction of invisible structures [90] 
or in combination with positron emission tomography 
(PET) to allocate growth and carbon allocation in root 
systems [78]. Root imaging can also be performed using 
X-rays as a further technology that does not need visible 
contact to the object of interest to determine root length 
and angle [91]. On the beyond-UAV scale airborne meth-
ods were used like airborne laser scanning [2] to gather 
carbon stock information from 3D-tree scans. Measur-
ing traits from trees has been done since many years [92]. 
Traits like diameters at breast height (DBHs) have been 
used to predict yield at trees [93, 94], but crops and veg-
etables grow much faster than forest trees.

Opportunities and challenges
Visiting the introduced traits and methods the current 
challenges can be described as the transfer from the 
methods from the single plant scale to the field scale 
(experimental and open field). A requirement is the 
raising of the point cloud resolution which comes along 
with demands for sensor and carrier platforms. Sen-
sors and algorithms have to overcome the limitations 
of the problems of plant movement (due to wind), the 
big amount of occlusion and the combination of dif-
ferent sensors together in a way that 3D information 
help to correct the influence of the geometry on radial 
measurements [73, 75]. Drones have to increase their 
accuracy as it could be provided by RTK GPS [95] or 
sensor fusion of on-board sensors for a better localiza-
tion [96]. Nevertheless, 3D measuring sensors show a 

huge potential to measure, track and derive geometri-
cal traits of plants at the different scales non-inva-
sively. Further research should focus the definition of 
the traits, regarding the way plant height or internode 
distance is measured to enable a comparison of algo-
rithms, plants and treatments among different research 
groups and countries.

Concluding remarks
This review provides a general overview of 3D traits for 
plant phenotyping with respect to different 3D measur-
ing techniques, the derived traits and biological use-
cases. A general processing pipeline for use-cases in 3D 
was explained and connected to the derivation of non-
complex traits for the complete plant as well as for more 
complex plant traits on organ level. If performing meas-
urements over time the generation of growth curves for 
monitoring of organ development (4D) was introduced as 
well as their linking to biological scientific issues. Sensor 
techniques for the different scales from single plants to 
the field scale were recapped and discussed.

This review gives an overview about 3D measuring 
techniques used for plant phenotyping and introduces 
the extracted 3D traits so far for different plant types as 
well as the biological used-cases.
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