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Abstract 

Background:  Hyperspectral imaging is emerging as a promising approach for plant disease identification. The large 
and possibly redundant information contained in hyperspectral data cubes makes deep learning based identification 
of plant diseases a natural fit. Here, we deploy a novel 3D deep convolutional neural network (DCNN) that directly 
assimilates the hyperspectral data. Furthermore, we interrogate the learnt model to produce physiologically meaning-
ful explanations. We focus on an economically important disease, charcoal rot, which is a soil borne fungal disease 
that affects the yield of soybean crops worldwide.

Results:  Based on hyperspectral imaging of inoculated and mock-inoculated stem images, our 3D DCNN has a clas-
sification accuracy of 95.73% and an infected class F1 score of 0.87. Using the concept of a saliency map, we visualize 
the most sensitive pixel locations, and show that the spatial regions with visible disease symptoms are overwhelm-
ingly chosen by the model for classification. We also find that the most sensitive wavelengths used by the model for 
classification are in the near infrared region (NIR), which is also the commonly used spectral range for determining the 
vegetative health of a plant.

Conclusion:  The use of an explainable deep learning model not only provides high accuracy, but also provides 
physiological insight into model predictions, thus generating confidence in model predictions. These explained pre-
dictions lend themselves for eventual use in precision agriculture and research application using automated pheno-
typing platforms.
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Background
Plant diseases negatively impact yield potential of crops 
worldwide, including soybean [Glycine max (L.) Merr.], 
reducing the average annual soybean yield by an esti-
mated 11% in the United States [1, 2]. From 2010 to 

2014, soybean economic damage due to diseases have 
accounted for over an estimated $23 billion US dollars 
in the United States and Canada alone making efforts to 
predict and control disease outbreaks as well as develop 
disease resistant soybean varieties of economic impor-
tance [3]. However, today’s disease scouting and phe-
notyping techniques rely on human scouts and visual 
ratings. Human visual ratings are dependent on rater 
ability, rater reliability, and can be prone to human error, 
subjectivity, and inter/intra-rater variability [4–7]. There 
is an established need for improved technologies for dis-
ease detection and identification beyond visual ratings 
in order to improve yield protection through mitigation 
strategies.
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Charcoal rot, Macrophomina phaseolina (Tassi) Goid, 
is an important fungal disease for producers in the 
United States and Canada ranking among the top seven 
most severe diseases in soybean from 2006 to 2014 
and as high as the 2nd most yield limiting soybean dis-
ease in 2012 [3, 8]. Charcoal rot has a large host range 
affecting other important economic crops such as corn, 
cotton, and sorghum making crop rotation a difficult 
management strategy [9, 10]. In addition, there are lim-
ited chemical control measures leaving resistance breed-
ing as an important approach to manage charcoal rot in 
soybean [11]. Symptoms of infection include reddish-
brown lesions on the hypocotyl of seedlings, but are 
generally not seen until the later developmental stages, 
R5–R7, as a reddish-brown discoloration of the vascular 
tissue, wilting, chlorosis, and early senesce of plants leav-
ing leaves and petioles still attached to the plant [12–14]. 
Small black fungal survival structures called microscle-
rotia, which also act as an inoculum source, develop at 
the nodes and in the epidermal and sub epidermal tissue, 
pods, and even on seed [2, 12]. In an effort to develop 
methods for earlier screening of resistance, one study 
proposed the cut-stem inoculation method for inocu-
lating soybean seedlings in a growth chamber or green-
house environment to measure lesion progression within 
a month after planting [15]. Recently, a Genome Wide 
Association (GWA) study reported a total of 19 SNPs 
associated with charcoal rot resistance in soybean [16]. 
However, both field scouting for disease detection and 
small-scale methods for charcoal rot evaluation still rely 
on visual ratings. These field and greenhouse screening 
methods for charcoal rot are time consuming and labor 
intensive.

Unlike visual ratings, which only utilize visible wave-
lengths, hyperspectral imaging can capture spectral and 
spatial information from wavelengths beyond human 
vision, offering more usable information for disease 
detection. In addition, hyperspectral imaging offers 
a potential solution to the scalability and repeatabil-
ity issues faced with human visual ratings. In [17], the 
authors investigated hyperspectral image analysis tech-
niques for early detection and classification of plant 
diseases. Hyperspectral imaging has been used for the 
detection and identification of plant diseases in barley, 
sugar beet, and wheat among others [18–20]. Roscher 
et  al. [21] studied hyperspectral 3D plant models for 
detection of Cercospora leaf spot disease in sugar beet 
leaves. Thomas et al. [20] explored Blumeria graminis f. 
sp hordei infection in barley using hyperspectral reflec-
tion and transmission measurements. Zhu et  al. [22] 
studied early detection of tobacco mosaic virus in plant 
leaves using hyperspectral imaging. Knauer et al. [23] uti-
lized hyperspectral images for improving classification 

accuracy of powdery mildew infection levels in wine 
grapes. Pandey et al. [24] used hyperspectral imaging to 
study the chemical properties of plant leaves. Feng et al. 
[25] determined plant water status of wheat affected by 
powdery mildew stress using canopy vegetation indices 
derived from hyperspectral data. Yeh et al. [26] compared 
different machine learning methods for plant disease 
identification using hyperspectral imaging. These prior 
activities suggest the utility of using hyperspectral infor-
mation to identify various plant diseases. Furthermore, 
the large data dimensions and redundancy of hyperspec-
tral data makes machine learning based methods well 
suited to converting hyperspectral data into actionable 
information [27, 28].

Deep convolutional neural networks (DCNN) have 
been successfully used in diverse applications such as 
object recognition, speech recognition, document read-
ing and sentiment analysis [29–32]. The standard convo-
lutional filter is tailored to extract spatial features (and 
correlations) in 2D and is naturally suited to RGB images. 
In contrast, hyperspectral images can be considered as a 
stack of 2D images, exhibiting correlations both in space 
as well as in the spectral directions. To extend DCNN’s 
applicability to hyperspectral images, a 3D analogue of 
the convolutional filter was proposed and such 3D-CNN 
models have been used in classification of hyperspectral 
images for some interesting engineering applications 
[33–35]. This is a promising approach to use for hyper-
spectral image based classification of plant diseases. 
However, a potential issue with the use of such sophis-
ticated ‘black box’ techniques is the lack of physiological 
insight into why the model makes a specific classification. 
This lack of explainability—especially when using highly 
detailed hyperspectral data cubes—makes the plant sci-
ence community resistant to the use of these powerful 
techniques. The field of explainable ML models is an area 
of intense research effort in the machine learning com-
munity and has resulted in the development of various 
approaches to interrogate the learnt model to identify 
meaningful cues that are used for model prediction [36, 
37]. Recently, activation maps from a DCNN were used 
for classification and quantification of plant stress using 
RGB images captured using a mobile device [38].

In this work, we build upon these advances by inte-
grating a 3D DCNN based architecture with a model 
explanation and visualization approach called saliency 
map-based visualization [39] for accurate and explainable 
disease identification. We develop a supervised 3D-CNN 
based model to learn the spectral and spatial informa-
tion of hyperspectral images for classification of healthy 
and charcoal rot infected samples. A saliency map-based 
visualization method is used to identify the hyperspec-
tral wavelengths that make significant contribution to 
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classification accuracy. We infer the importance of the 
wavelengths by analyzing the magnitude of saliency map 
gradient distribution of the image across the hyperspec-
tral wavelengths. To the best of our knowledge, this is the 
first work to interpret the learnt classification model of 
hyperspectral data using saliency maps. This work is a 
societally relevant example of utilizing saliency maps to 
enable explanation of cues from hyperspectral data for 
disease identification. The availability of physiologically 
meaningful explanations from the saliency visualization 
makes us more confident in the predictions of the model.

Materials and method
Plant cultivation
Four soybean genotypes were selected for this work 
including Pharaoh (susceptible), DT97-4290 (moderately 
resistant), PI479719 (susceptible), and PI189958 (mod-
erately resistant). The experiment was planted in four 
replications. Two treatments were imposed: inoculation 
and mock-inoculation. Each replication contained eight 
separate plants for each time point of data collection 
due to the destructive nature of lesion length measure-
ment. Four of these plants were designated for mock-
inoculation and the second set of four for inoculation. 
Replication 1 was planted in September 2016 and con-
tained 5-time points of data collection post inoculation at 
3, 6, 9, 12, and 15 days after inoculation (DAI). To focus 
on early disease detection, replications 2–4 contained 
3-time points of data collection at 3, 6, and 9 DAI and 
were planted in November 2016. Replication 1 contained 
eight plants per time point (four inoculated and four 
mock-inoculated) for a total of 40 plants. Replications 
2–4 contained eight plants per time point for a total of 
72 plants. All replications were planted in growth cham-
bers set at 30 °C with a 16-h photoperiod and were rand-
omized within the replication. Seeds were double planted 
into 8  oz styrofoam cups in the growth chamber, sup-
plemented with 0.65 g of osmocote 15-9-12, and thinned 
down to one plant per cup selecting the most vigorous 
plant 10 days after planting.

Pathogen
A culture of M. phaseolina (M. phaseolina 2013X), origi-
nally collected in Iowa, was used in inoculations of soy-
bean stems. Inoculations were performed following the 
cut-stem inoculation method outlined in [15]. Briefly, a 
culture of M. phaseolina cultured on potato dextrose 
agar (PDA) was incubated at 30° for 4 days prior to inoc-
ulations. Twenty-one days after planting, sterile 200  µL 
pipette tips were pushed into the media wide end down 
around the outer border of the culture. Soybean stems 
were cut, using a razor blade, 40 mm above the unifoli-
ate node. A pipette tip, containing a plug of media + M. 

phaseolina for inoculated plants or PDA media alone for 
mock-inoculated plants was placed onto the open wound 
site, imbedding the tip of the stem into the media allow-
ing the pathogen to spread into the plant tissue.

After mock-inoculation, the mock-inoculated plants 
remained green and healthy. However, in response to the 
fungal colonization in the inoculated plants, a reddish-
brown exterior lesion developed, followed by progress-
ing dead tissue often containing black microsclerotia. 
A reddish-brown interior lesion also developed, often 
progressing farther down the inside of the stem than 
was visible on the exterior of the stem. To capture symp-
tom progression, three lesion length measurements 
were obtained in millimeters by measuring the distance 
from the unifoliate node to the farthest progressed vis-
ible edge of the lesion on the exterior of the stem to pre-
vent necrosis of the inoculated site from interfering with 
accurate measurements. The progression of dead tissue 
was measured in the same manner. Then the stems were 
sliced open lengthwise and the interior lesion measured 
in relation to the unifoliate node. Stem segments from 
inoculated and mock-inoculated plants were sterilized 
in ethanol and bleach and re-cultured onto half strength 
PDA media amended with chloramphenicol to inhibit 
bacterial growth. M. phaseolina colonies grew from the 
inoculated stems while no fungal colonies developed 
from the mock-inoculated stem culture plates fulfilling 
Koch’s postulates.

Hyperspectral imaging
Healthy and infected soybean stem samples were col-
lected at 3, 6, 9, 12, and 15 days after charcoal rot infec-
tion. Hyperspectral data cubes of the exterior of the 
inoculated and mock-inoculated stems were captured at 
each time point of data collection prior to lesion length 
measurements. The imaging systems consisted of a Pika 
XC hyperspectral line imaging scanner, including the 
imager mounted on a stand, a translational stage, a lap-
top with Spectronon-Pro software for operating the 
imager and translational stage during image collection 
(Resonon, Bozeman, MT), and two 70-watt quartz-tung-
sten-halogen Illuminator lamps (ASD Inc., Boulder, CO) 
to provide stable illumination over a 350–2500 nm range. 
The Pika XC Imager collects 240 wavebands over a spec-
tral range of 400–1000 nm with a 2.5 nm spectral reso-
lution. The lights were positioned at a 45° angle, 54  cm 
away from the stem sample resting on the translational 
stage. The camera’s objective lens was set at an aperture 
of ƒ/1.4. Focus was manually adjusted in relation to the 
height of the camera to the stem being imaged. Expo-
sure was automatically adjusted by the computer in 
response the lighting environment. The aspect ratio was 
set manually by adjusting frame rate and stage speed by 
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referencing the calibration sheet and guidelines provided 
by Resonon. White and dark references were captured 
prior to imaging. The leaves were carefully removed from 
each soybean stem and the stems were cut at the soil line 
and placed one at a time on the stage for imaging. The 
images were captured using the Spectronon-Pro software 
and the hyperspectral data cubes and accompanying RGB 
images were saved onto an external hard drive. Figure 1 
shows the hyperspectral dataset generation procedure 
used in our study.

The data-set contains 111 hyperspectral stem images 
of size 500 × 1600 × 240 (height × length × spectral fre-
quency). Among the 111 images, 64 represent healthy 
stems and 47 represent infected stems.

Dataset pre‑processing
We used the RGB wavebands of the hyperspectral image 
for segmenting the charcoal rot stem in the hyperspec-
tral image. The RGB images were transformed to HSV 
(Hue, Saturation and Value) color space, followed by seg-
menting of the charcoal rot stem by simple thresholding. 
Since the number of images were insufficient for training 
a deep learning model, we augmented the sample size 
of the dataset by extracting data patches of resolution 
500 × 64 × 240 pixels from the 500 × 1600 × 240 reso-
lution segmented hyperspectral images. The non-zero 
pixel locations in the 500 × 64 × 240 images patches were 
resized into 64 × 64 × 240 image patches without affect-
ing the third dimension and were applied as input to the 
3D-CNN model. The choice of the patch size resulted 
in enough data samples for training a 3D CNN, while 
ensuring that each patch contains physiologically mean-
ingful information. The training dataset consists of 1090 
images. Out of 1090 training images, 940 images rep-
resent healthy stem and 150 images represent infected 

stem. Although the training dataset is highly imbalanced, 
we were able to handle this problem in this study (see 
“Model architecture” section). All the images were nor-
malized between 0 and 1. The validation and test dataset 
consist of 194 and 539 samples, respectively. Figure  2a 
shows an example of soybean stem captured at different 
hyperspectral wavelengths and Fig.  2b shows the RGB 
image of the disease progression comparison between 
interior and exterior region of a soybean stem.

Spectral reflectance
Figure  3 illustrates the difference in reflectance spectral 
between healthy and infected pixels in the charcoal rot 
stem. It is seen that the maximum reflectance value of 
infected pixels is less than the healthy pixels. We observe 
that the reflectance value at several wavebands decrease 
as the severity of the charcoal rot disease increases. We 
also noticed that the hyperspectral measurements near 
300  nm and 1000  nm were noisy and not useful for 
classification.

Model architecture
3D-CNN models can be used to extract features jointly 
across the spatial and spectral dimension for classifica-
tion of a 3D hyperspectral data. This is particularly useful 
when information (i.e. the disease signatures) are local-
ized both in spatial and spectral domains thus exhibit-
ing correlations in space and spectral domains. Having a 
model that can jointly extract features will enable accu-
rate capture of this localized signature. The 3D-CNN 
model consists of two convolutional layers interspersed 
with two max pooling layers followed by two fully con-
nected layers. A relatively small architecture was used to 
prevent overfitting during training. Two kernels of size 
3 × 3 × 16 (3 × 3 in spatial dimension and 16 in spectral 

Fig. 1  Illustration of the hyperspectral data generation procedure used in our study
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dimension) were used for convolving the input of the 
first convolution layer and four kernels of size 3 × 3 × 16 
were used in the second convolution layer. Rectified Lin-
ear Input (ReLU) was used as the activation function for 
the convolution output [40]. A 2 × 2 × 2 max pooling was 
applied on the output of each convolutional layer. Drop-
out with a probability of 0.25 was performed after first 
max pooling operation and with a probability of 0.5 after 
the first fully-connected layer. Dropout mechanism was 
used to prevent overfitting during training [29]. The first 
fully-connected layer consists of 16 nodes. The output 
of the second fully-connected layer (2 nodes) is fed to a 

softmax layer. Figure 4 summarizes the 3D convolutional 
neural network architecture used in the study.

Training
The Adam optimizer was used to train our convolu-
tional network weights based on mini-batches of size 32 
[41]. We used a learning rate of 10−6 and set β1 = 0.9 , 
β2 = 0.999 and ǫ = 10−8. The convolution layer kernels 
were initialized with normal distribution with standard 
deviation of 0.05. The dense layer neurons were initial-
ized using glorot initialization [42]. The 3D-CNN model 
was trained for 126 epochs. Here, we used all the 240 
wavelength bands of hyperspectral images for classifica-
tion purpose. We trained 3DCNN model using Keras [43] 
with the Tensorflow [44] backend on a NVIDIA Tesla P40 
GPU. The time required for training was approximately 
50 s/epoch. The plot of model accuracy on training and 
validation datasets during training is shown in Fig. 5.

Class balanced loss function
Because of imbalanced training data, weighted binary 
cross-entropy was used as a loss function. The loss ratio 
was 1:6.26 between the more frequent healthy class sam-
ples and less frequent infected class samples. The class 
balanced loss significantly improved our classification 
accuracy and F1-score.

Fig. 2  a An example of a soybean stem imaged at different hyperspectral wavelengths. b RGB image of the disease progression comparison 
between interior and exterior region of soybean stem. Soybean stem was sliced in half, interior lesion length and exterior lesion length were 
measured in mm

Fig. 3  Illustration of reflectance spectra of healthy and infected 
pixels in charcoal rot stem
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Identification of most sensitive hyperspectral wavelengths 
and pixels using saliency maps
We visualize the parts of the image that were most sen-
sitive to the classification using an approach called class 
saliency map [39]. Specifically, the magnitude of the gra-
dient of the maximum predicted class score with respect 
to the input image was used to identify the most sensi-
tive pixel locations for classification. While saliency maps 
have traditionally been used to identify spatially impor-
tant pixels, we extended the notion of saliency maps to 
visualize the most important spectral bands used for 
classification. This was done as follows: Denote the set 
of N test hyperspectral images as I1, I2, . . . IN . W is the 
gradient of the maximum predicted class score Sc with 
respect to the input image Ii.

The magnitude of gradient quantifies how much 
change in each input value would change the maximum 
predicted class score Sc . Each pixel (x,y) in the image Ii is 
maximally activated by one of the 240 wavelength chan-
nels. We denote the element index of W corresponding to 
a pixel location (x,y) in wavelength channel C of an image 
Ii as ( x, y,C ). For each pixel location (x,y) in image Ii , we 
identify the wavelength C∗ which exhibits the maximum 
magnitude of W across all channels. This is the most ‘sali-
ent’ wavelength. Note, that C∗ is a function of (x,y). 

Another way to interpret the relative sensitivity of 
each hyperspectral wavelength in the learnt classifier 
is by summing the magnitude of all saliency gradients 
(L1-norm) in each wavelength. The L1-norm of the sali-
ency gradients of a wavelength indicates the sensitiv-
ity of that wavelength in classification. Denote as Gi 
( i ∈ (1, 2, . . .N ) ) the 240-length vector containing the 
L1-norm of saliency gradients in each wavelength for a 
test image Ii as shown in Eq. 3. 

We consider the histogram constructed by aggregat-
ing this 240-length vector across healthy and infected 
images. These histograms, GH and GI (for healthy and 
infected, respectively), are constructed from Gi as:

(1)W =

∂Sc

∂Ii

(2)C∗
= argmax

C∈(1,2,...240)

∣

∣

∣
W(x,y,C)

∣

∣

∣
for all

(

x, y
)

∈ Ii

(3)Gi =

∑

x

∑

y

∣

∣

∣
W(x,y,C)

∣

∣

∣
For(x, y) ∈ I i

Fig. 4  3D convolutional neural network architecture for charcoal rot image classification

Fig. 5  Plot of model classification accuracy on training and validation 
data
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This histogram can also be used to highlight the wave-
lengths that are most used by the classifier in making its 
decisions.

Results
Classification results
We evaluate the learnt 3D-CNN model on 539 test 
images. The model achieved a classification accuracy of 
95.73%. The recall, precision and F1-score values of the 
model were 0.92, 0.82 and 0.87 respectively. The clas-
sification accuracy of 95.73% and recall value of 0.92 
indicates a good generalizing capacity of the model for 
different stages of the disease. The F1-score of infected 
class of the test data was 0.87. Table 1 shows the confu-
sion matrix of the results.

To understand the generalization of the model (as well 
as to test the robustness), we performed fivefold cross-
validation. We randomly split the data into train, valida-
tion, and test subsets (60%, 20%, 20%) five times. Each of 

(4)GH =

∑

i ∈ Healthy images Gi
∣

∣

∣

∣

∣

∣

∑

i ∈ Healthy images Gi

∣

∣

∣

∣

∣

∣

1

(5)GI =

∑

i ∈ Infected images Gi
∣

∣

∣

∣

∣

∣

∑

i ∈ Infected images Gi

∣

∣

∣

∣

∣

∣

1

this split data is used to train a 3D-CNN. The classifica-
tion accuracies of the five different models were 94.23%, 
97.25%, 96.97%, 92.58% and 96.42%. The mean classifi-
cation accuracy across the five models is 95.49% with a 
standard deviation of 2.01%.

Saliency map visualization: identifying spatial pixels
The saliency map visualizations of the healthy and 
infected samples are shown in Fig.  6. The magnitude of 
gradient of each pixel indicates the relative importance of 
the pixel in the prediction of the output class score. It is 
clearly seen that the saliency maps of the infected stem 
images have high magnitude of gradient values in the 
locations corresponding to the severely infected regions 
(reddish-brown). This indicates that the severely infected 
regions of the image contain the most sensitive pixels 
for prediction of the infected class score. For both the 
healthy and infected images, the saliency map gradients 
were concentrated around the middle region of the stem.

Most sensitive hyperspectral wavelengths for classification 
using saliency maps
The histogram of C∗ from all pixel locations of the test 
images is shown in Fig.  7. It illustrates the distribution 
of the most sensitive wavelength across all the pixels. 
The histogram reveals several important aspects of our 
model. First, wavelengths around 733 nm ( C∗ = 130 of the 
240 bands) from the near-infrared region were the most 
sensitive among all of the wavelengths. Second, the 15 
wavelengths in the spectral region of 703 to 744 nm were 
responsible for maximum magnitude of gradient values 
in 33% of the pixel locations of the test image. Further, 
the wavelengths in the visible spectra (400–700 nm) were 
more sensitive for the infected samples compared to the 
healthy samples. The NIR bands have been shown in the 

Table 1  Confusion matrix

Infected (true) Healthy (true)

Infected (predicted) 78 17

Healthy (predicted) 6 438

Fig. 6  Image specific class saliency maps for the charcoal rot infected (top) and healthy (bottom) test images. The magnitude of the gradient of the 
maximum predicted class score with respect to the input image in the visualizations illustrates the sensitivity of the pixels to classification



Page 8 of 10Nagasubramanian et al. Plant Methods           (2019) 15:98 

literature [45] to indicate vegetative health and the fact 
that the model is picking up on a physiologically mean-
ingful metric for classification provides more confidence 
in the model predictions. We also note that this hyper-
spectral range was identified as the most discriminative 
in a previous band-selection problem [46].

The histograms of GH and GI (as discussed in “Train-
ing” section) is shown in Fig. 8. The histograms indicate 

that 10 wavelengths in the region of 709 to 739  nm 
(wavelength numbers 120 to 132) with large GH  and GI 
values are the most sensitive bands for classification of 
healthy and infected images. This again suggests that 
the model is utilizing physiologically meaningful wave-
lengths for model predictions.

Discussion
We used a 3D CNN model for charcoal rot disease classi-
fication because of its ability to learn the spatio-temporal 
features automatically without handcrafting and its abil-
ity to achieve high classification accuracy. Using a 3D 
CNN allows accounting for both spatial and spectral cor-
relations simultaneously. We incorporated saliency map 
enabled interpretability to track the physiological insights 
of model predictions. Hence, we are more confident of 
the predictive capability of our model and its biological 
basis. We envision that these explainability based strate-
gies for machine learning will be widely used in the plant 
science community as they decrease much of the mystery 
behind many current black box techniques.

Selection of individual wavebands for the detection of 
disease symptoms, among other traits, is of increasing 
importance. Many fields in the plant sciences are expand-
ing to be able to utilize high throughput technologies in 
data collection. However, utilizing the high dimensional 
3D data sets takes enormous computing power promot-
ing a need for a selection method to discriminate the 
most important information. In the future, trait specific 
band selection based on robust interpretability mecha-
nisms will be helpful in dimensionality reduction of the 
large hyperspectral data and in designing a multispec-
tral camera system for high throughput phenotyping in 
field conditions for an array of stress related signatures. 
A multispectral camera would incorporate only the 
most important wavelengths for a targeted set of stresses 
streamlining data collection and analysis necessary for 
monitoring and improving crop health. The approach 
presented in this research allows for applications in pre-
cision and high throughput phenotyping as well as pre-
cision agriculture. This approach can help increase the 
throughput of disease assessment, after model develop-
ment in other stem diseases, enabling more robust large 
scale genetic studies [16, 47, 48].

One potential limitation is the smaller dataset size 
used in this study. We perform fivefold cross-validation 
based assessment to test the robustness of the model. 
The architecture of the convolutional neural network can 
have a strong prior on the feature importance estimation 
[49], and this could be more problematic in noisy saliency 
maps. This is an open problem in the machine learning 
community with several interesting avenues being cur-
rently explored.

Fig. 7  Histogram of C∗ from all the test images. It illustrates the 
percentage of pixel locations from all N test images with maximum 
magnitude of saliency gradient from each wavelength for healthy 
and infected test images

Fig. 8  Histogram of normalized L1-norm of saliency gradients in 
each wavelength for healthy (GH) and infected images (GI)
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Conclusion
We have demonstrated that a 3D CNN model can be used 
effectively to learn from hyperspectral data to identify 
charcoal rot disease in soybean stems. We have shown 
that saliency map visualization can be used to explain the 
importance of specific hyperspectral wavelengths in clas-
sification of diseased and healthy soybean stem tissue.
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