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Abstract

tral imaging.

Hyperspectral imaging has attracted great attention as a non-destructive and fast method for seed quality and safety
assessment in recent years. The capability of this technique for classification and grading, viability and vigor detection,
damage (defect and fungus) detection, cleanness detection and seed composition determination is illustrated by
presentation of applications in quality and safety determination of seed in this review. The summary of hyperspectral
imaging technology for seed quality and safety inspection for each category is also presented, including the analyzed
spectral range, sample varieties, sample status, sample numbers, features (spectral features, image features, feature
extraction methods), signal mode and data analysis strategies. The successful application of hyperspectral imaging in
seed quality and safety inspection proves that many routine seed inspection tasks can be facilitated with hyperspec-
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Background

Nowadays, seed quality, which can be measured by its
germinability or physicochemical attributes, has become
increasingly important in the agriculture field due to the
fact that it is a fundamental and critical factor in plant
breeding and production. Seeds of high quality are a
good start for plant growth, which indicates an abundant
harvest. On the other hand, seed is often directly served
as foodstuft, and its quality will therefore attract exten-
sive attention. The seed quality is usually closely related
to the eating quality, such as the texture, the flavour and
the nutrient component. In order to meet the require-
ments of the consumers, seeds should be cautiously pro-
cessed and stored after harvest. In the course of harvest,
processing and storage, a fast, accurate and preferably
non-destructive detection method of the seed quality is
desired. Recently, hyperspectral imaging technique has
been investigated as a potential analytical tool for non-
destructive analysis and assessment of the seed quality
and safety.
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Hyperspectral imaging technology, which can acquire
spectral and spatial information simultaneously, com-
bines the advantages of spectroscopic and imaging tech-
niques. In other words, it can simultaneously obtain the
chemical information of heterogeneous samples and the
spatial distribution of chemical components.

In recent years, hyperspectral technology has been
widely used in the agriculture, food industry and medical
industry etc. [1-4]. The potential or practical applications
in seed industry include the detection of viability, vig-
our, defect, disease, cleanness and the seed composition
determination. However, to our knowledge, a compre-
hensive literature survey on the seed quality and safety
inspection using hyperspectral imaging has not been
conducted, but should be widely desired. The motivation
and purpose of this work is to summarize and analyse the
development in seed quality and safety inspection by the
hyperspectral technology.

Application and conclusion of hyperspectral
imaging for seed quality and safety inspection

Seed variety classification and seed grading

Application

The varieties, grades, producing regions and storage
conditions etc. all have influence on the nutrition and
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commercial price of seeds. What’s more, seed adultera-
tion is also a great concern, which bothers planters and
consumers, and sometimes can cause great losses. Thus,
it endows the identification of seed variety and grade
with great importance.

In general, there are two approaches for seed variety
identification. The first one is the bulk samples detec-
tion, and the second one is the single seed identification.
For seed variety identification based on bulk seeds, aver-
age spectra of each bulk are often extracted according to
the predefined region of interest (ROI). For single seed
identification, hyperspectral imaging can simultaneously
acquire hyperspectral images of hundreds or thousands
of single seeds. Spectrum of each single seed can be
extracted, which makes it quite suitable for seed varieties
classification to ensure the seed purity (Table 1).

Spectral features are the primary information utilized
in the application of hyperspectral imaging system in
the seed classification. Kong et al. used hyperspectral
imaging to classify 4 varieties of rice seeds, and most of
the discriminant models using full spectra and selected
optimal wavelengths obtained good classification results
(over 80%) [5]. Mahesh et al. used hyperspectral imag-
ing to classify 8 wheat classes, and the results showed
that the classification accuracy was over 90% for most of
wheat classes [6]. Yang et al. used hyperspectral imag-
ing to classify 14 maize varieties. Spectral information
was extracted from each single seed, and discriminant
models were established using full spectra and optimal
wavelengths. The classification accuracy of most maize
varieties was over 90% [7]. Liu et al. used hyperspectral
imaging to classify the soybean, maize and rice. Spectral
data were extracted and optimal wavelengths were then
selected. Discriminant models using full spectra and
optimal wavelengths all obtained good performances [8].

In addition to the classification of different varieties,
studies of classification of different regions, years and
attributes (such as moisture) of seeds are other research
priorities. Mahesh et al. used hyperspectral imaging
to identify wheat classes at five different moisture lev-
els (12%, 14%, 16%, 18% and 20%). Wheat classes inde-
pendent of moisture levels, moisture levels independent
of wheat classes and wheat classes at different moisture
levels were identified, respectively. Results indicated that
classification of moisture levels were promising without
considering wheat classes, while classification results of
wheat classes with moisture levels considered were better
than those without taking moisture level into considera-
tion [9]. Then the same team used hyperspectral imaging
to classify four wheat classes considering more variables.
Particularly, seeds were collected with variations of crop
year, growing location and moisture content. Their work
showed that the NIR hyperspectral imaging could be
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used as a potential nondestructive tool for classifying
moisture-specific wheat classes [10]. Huang et al. classi-
fied maize seeds of different years based on hyperspec-
tral imaging. Classification models were developed using
the least squares support vector machine (LS-SVM). To
ensure the accurateness of the identification, incremen-
tal support vector data description was applied to update
the LS-SVM model. The classification results of LS-SVM
model combined with model updating was 10.3% higher
than those of other non-updated models, demonstrating
that the model updating could be an effective method
for the identification of seeds of different years [11]. Guo
et al. also proposed a model-updating algorithm for dif-
ferentiating maize seed varieties from different years
using hyperspectral imaging. The average classification
accuracy was improved by 8.9%, 35.8% and 9.6% for the
three test sets, respectively [12]. He et al. discriminated 4
varieties of maize seeds harvested in different years with
the LS-SVM models updated with the clustering algo-
rithm, which achieved an overall accuracy of 98.3% [13].
Except for spectral features, hyperspectral images also
provide a large amount of image features. Choudhary
et al. used hyperspectral imaging to classify eight wheat
classes. The principal component (PC) score images
were obtained by extracting the first three PC of each
pixel after the pixel-wise principal component analysis
(PCA) of hyperspectral images is performed. Based on
the wavelet texture features, most discriminant models
obtained decent results. Yang et al. extracted five mor-
phological features (area, circularity, aspect ratio, round-
ness and solidity) and 8 texture features (energy, contrast,
correlation, entropy and their standard deviations) from
hyperspectral images to classify 4 waxy corn seed varie-
ties. Support vector machines (SVM) and partial least
squares discriminant analysis (PLS-DA) combining with
spectral and appearance characteristic were employed to
build classification models. The classification accuracy
achieved by SVM models were more satisfactory than
PLS-DA models [14]. Sun et al. extracted image features
including four textural features (contrast, correlation,
energy and homogeneity) and six morphological fea-
tures (perimeter, area, major axis length, and minor axis
length, eccentricity and equiv diameter) to classify black
beans from 3 growing locations. In addition to SVM and
PLS-DA methods, K-nearest neighbors was also used for
model establishment. All the three methods were built
based on spectral features, image features and the com-
bination of spectral and image features, respectively [15].
From the studies of aforementioned two teams, they both
extracted contrast, correlation and energy as textural fea-
tures and area as morphological feature. These two stud-
ies both obtained good results with recognition accuracy
more than 96% based on SVM model combining spectral
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and image features. Sun et al. used hyperspectral imaging
to further study seed classification based on the combina-
tion of spectral features and image features. Both spectral
features and image features were extracted from single
rice kernels. Classification models were built using spec-
tral features, morphological features, texture features,
combinations of two kinds of features and the combi-
nation of all features, respectively. Results showed that
models using all features performed better than other
kinds of models for both full spectra and optimal wave-
lengths [16]. Huang et al. used hyperspectral imaging to
classify 17 different varieties of maize kernels. Spectral
features, image features were extracted. The dimension
reduction method was applied to reduce the dimension
of the combination of spectral features and image fea-
tures. Discriminant models were built using only spectral
features, combination of spectral features and image fea-
tures and the dimension reduced data set of spectral fea-
tures and image features, respectively. The overall results
showed that models developed based on the combination
of spectral features and image features and the reduced
data set outperformed the model using only the spectral
features [17].

The studies mentioned above mainly focused on the
analysis of the single seed or quantity of seeds. They can
be treated as object-wise (OW) analysis that uses aver-
age spectra of the depicted objects for data analysis.
Apart from object-wise analysis, pixel-wise (PW) analy-
sis is also an applicable method for seed quality deter-
mination [18-22]. For pixel-wise analysis, the spectra of
individual pixels are used in the process of data analysis.
Compared with object-wise analysis, pixel-wise analysis
is more informative. Williams and Kucheryavskiy used
hyperspectral imaging to classify maize kernels with
three hardness categories (hard, medium and soft). Pixel-
wise and object-wise PCA were used to indicate the dif-
ferences between maize kernels with different hardness.
Different methods (PLS-DA classification of individual
pixels followed by a thresholding procedure, PLS-DA
classification of kernels using mean spectrum of each
kernel or score histograms of each kernel) were used to
classify maize kernels. The classification results of models
based on score histograms and mean spectra were sig-
nificantly improved compared with models with a thresh-
olding procedure [18]. Manley et al. used hyperspectral
imaging to explore the influence of grain topography
(sample shape and texture) using near infrared hyper-
spectral images. Kernels of three cereals (barley, wheat
and sorghum) with varying topographic complexity
were examined in the study. The influence of the topog-
raphy on the spectral variation was examined using
PCA and gradients classification. Classification gradi-
ents were defined according to score values, and color
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gradients corresponding to the classification gradients of
score values were presented to assess the topographical
effects within each PC. The results of classification gra-
dient images and PC score plots showed that the prior
PCs explained an accumulated total of 91.18%, 89.43%
and 84.39% of the spectral variance, respectively, and all
were influenced by kernel topography [19]. Manley et al.
used hyperspectral imaging to detect endosperm tex-
ture in yellow maize. Hard, intermediate and soft maize
kernels of three different genotypes were prepared. PCA
was applied on hyperspectral images to form PCA scores
images. PLS-DA models were built using PC scores, and
the prediction maps were also formed [21]. Rodriguez-
Pulido et al. used PCA to explore the differences of grape
seeds of different varieties and in different growing soil.
Important wavelengths were also selected to reduce the
data volume and improve the speed of data analyses. Dis-
criminant models based on full spectra or selected wave-
lengths both obtained good classification accuracy [22].

The aforementioned studies mainly focus on ordinary
seeds. However, with the increasing concern about trans-
genic seeds all over the world, a fast and accurate detec-
tion method of transgenic seeds is also widely desired.
Genotypic changes would bring about changes on molec-
ular bonds such as C—H, C-N and C-O ultimately, thus it
would be possible to evaluate the specific gene expression
based on the phenotypic changes with the application of
hyperspectral imaging [23]. Feng et al. used hyperspec-
tral imaging to identify transgenic maize kernels. PCA
was applied to hyperspectral images to explore the dif-
ferences between transgenic and non-transgenic maize
kernels. The visualization of classified maize kernels was
also presented to show the pixel spectra combined with
the spatial distribution of the maize kernel. Discriminant
models were built using the full spectra or the optimal
wavelengths. The overall results indicated that hyper-
spectral imaging could be used to identify transgenic and
non-transgenic maize kernels [24].

Among all the factors, the sample volume plays an
important role in the robustness of the results. The char-
acteristics of hyperspectral imaging make it possible
to acquire a large number of samples at the same time.
Compared with other researches on seeds, sample prepa-
ration for seed variety and grading classification is sim-
pler and more convenient. However, most of the current
studies used small-volume samples, but a small sample
volume couldn'’t fully reflect the attributes of samples.
Some studies have focused on the application of detect-
ing large number of samples using hyperspectral imaging.
Zhao et al. evaluated maize varieties with hyperspectral
imaging and chemometrics methods. A total of 12,900
maize seeds of 3 different varieties were used in the
experiment. Satisfactory results were obtained by the



Feng et al. Plant Methods (2019) 15:91

radial basis function neural network (RBFNN) model
based on optimal wavelengths, with calibration accuracy
being 93.85% and prediction accuracy being 91.00% [25].
Zhao et al. also discriminated grape seeds using hyper-
spectral imaging technique and multivariate analyses.
Hyperspectral images were collected for 14,015, 14,300
and 15,042 grape seeds of three seed varieties. The results
indicated that the variety of each single grape seed was
accurately identified by SVM models based on effective
wavelengths, with calibration accuracy being 94.3% and
prediction accuracy being 88.7% [26]. The results of these
two studies revealed that good results can be obtained
with a large number of samples. In future studies, large
number of samples are needed to establish universal,
accurate and robust models.

Conclusion

For data acquisition, spectral features of object-wise
spectra and pixel-wise spectra, image features and their
combinations were all used in the seed variety and
grading classification. Models using these features all
obtained good results. However, spectral features are the
most convenient and easy-to-obtain features, while the
acquisition of image features are much more complex.
Specially, more works on single kernels could be found,
feature extraction of single kernels could represent the
sample individuality. The abovementioned researches
showed that the performance of models varied with dif-
ferent features but the differences were not significant. At
the current stage, spectral features might be more suita-
ble and applicable to develop real-world application com-
pared with image features and the combination of image
and spectral features.

The processing methods of hyperspectral images and
the universality of classification models are main con-
cerns for the application of hyperspectral imaging in the
seed variety classification and the seed grading. It can be
seen from Table 1 that some commonly used chemomet-
rics methods, such as PLS-DA, artificial neural networks
and LDA, have been applied to different seed researches
and achieved good results. The universality of the model
is the key to the practical application of hyperspectral
imaging technology. In order to build database for seed
variety classification and grading, a large number of
samples are needed, which contains more characteristic
information, such as water content, year, etc. [10-13]. On
the other hand, in order to ensure the validity of models,
it is also important to add appropriate upgrade methods
to the conventional models. Huang et al., Guo et al. and
He et al. all obtained good results with updated models
[11-13].

In all, hyperspectral imaging has a very large prac-
tical prospect for the application in the seed variety

Page 6 of 25

classification and grading. In the future, researches on
seed variety classification and grading should focus on
the universality of models.

Seed viability and vigor detection

Application

The seeds enter the aging process after natural matu-
rity. During this process, the vitality of the seeds gradu-
ally decreases, which is a common phenomenon in the
period of storage. Seed vigor is an important indicator
synthesizing seed germination, seedling rate, seedling
growth potential, plant stress resistance and production
potential. For farmers, seeds with low viability will have
low germination rate, which will increase the cost. Com-
pared with seeds with low viability, seeds with high vigor
have obvious growth advantages, which can save time,
labor and material resources. Thus, an appropriate seed
vigor detection method, such as hyperspectral imaging,
can help farmers engage in agricultural production activ-
ities in a better way (Table 2).

Ambrose et al. used hyperspectral imaging to evalu-
ate the corn seed viability. Artificial aging was applied
to obtain seeds with low viability, and germination test
was conducted to determine seed viability as reference.
Three different varieties of corn seeds (yellow, white and
purple) were identified. Different spectra preprocessing
methods and different spectral ranges (1000-2500 nm
and 400-1000 nm) were explored. PLS-DA models were
built to determine the viability of seeds. Visualization of
treated and non-treated corn seeds were also achieved
with hyperspectral imaging. The results demonstrated
that the spectral range in the 1000—2500 nm performed
better in the seed viability measurement [27]. Arngren
et al. et al. used hyperspectral imaging to identify the
pre-germinated barley. Eight pre-germination levels were
prepared by setting pre-germination time of 0, 12, 18, 24,
30, 36, 48 and 60 h, and these levels were identified into
three groups as normal, delayed and limited. PCA was
conducted on the hyperspectral images to extract single
kernel features. The maximum-likelihood multinomial
regression classifier combined single kernel features were
used to classify pre-germination degree of single barley
kernels [28]. Dumont et al. used two hyperspectral imag-
ing sensors, a thermal imaging system to identify viable
seeds, empty seeds and seeds infested by Megastigmus
sp. Larvae of Norway spruce (Picea abies), respectively.
Images of single kernels were acquired and the spectral
temperature features were extracted from these images.
Results showed the feasibility of using hyperspectral
imaging to identify viable seeds, empty seeds and seeds
infested by Megastigmus sp. Larvae. Moreover, indices
developed from the important wavelengths (1310 nm,
1710 nm and 1985 nm) showed good classification
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results, indicating the possibility to build an inexpensive
devices [29]. Kandpal et al. used hyperspectral imaging
to predict viability and vigor of muskmelon. Artificial
aging was used to produce seeds with different levels of
viability and vigor. Artificial aging periods were set a 0,
2, 4 and 6 days. Seeds were divided into three groups of
vigor level after germination test, including the non-via-
ble, 3-day germination (seeds germinated in 3 days) and
5-day germination. PLS-DA models were built to clas-
sify seeds at the three levels using full spectra and opti-
mal wavelengths, respectively. The classification accuracy
was over 88% [30]. Matsuda et al. used two hyperspectral
imaging systems at different spectral ranges (400—980 nm
and 1250-2500 nm) to identify sound and unsound
Cryptomeria japonica (sugi) and Chamaecyparis obtuse
(hinoki) seeds. There was a depression at 1730 nm cor-
responding to a lipid absorption band of sound seeds,
and this depression could help to identify seed viability. A
reflectance seed quality index (SQI) was proposed based
on three identified wavelengths (1637 nm, 1734 nm and
1854 nm), which were selected according to the spectral
depression of spectral reflectance curve. Such depression
was obvious in sound seeds and absent or less prominent
in unsound seeds. Average spectra based and pixel-wise
spectra based SQI showed the feasibility to select sound
seeds [31]. Mo et al. used a hyperspectral imaging system
with various ranges of spectra induced by blue, green, red
and RGB LED (400-500 nm for blue LED, 500—-600 nm
for green LED, 600-700 nm for red LED and 400-
700 nm for RGB LED) to predict the germination quality
of cucumber seeds. Artificial aging was used to produce
aged seeds. PLS-DA was used to build classification mod-
els using spectra from blue, green, red and RGB LED illu-
mination. The classification accuracy was over 90%. The
results were verified by applying established models to
the hyperspectral images to form prediction maps [32].
Mo et al. also used LED-induced hyperspectral imaging
to detect viable and non-viable pepper seeds. Red, green
and blue LEDs were used. Hyperspectral images were
acquired under individual LED and three LEDs. Different
spectral preprocessing methods were explored. PLS-DA
models were used to build classification models, and clas-
sification accuracy was over 90%. Moreover, the germi-
nation test was conducted to evaluate the seed viability.
PLS-DA models were used to form prediction maps [33].
Nansen et al. used hyperspectral imaging to evaluate the
germination of seeds of Acacia cowleana Tate (Fabaceae),
Banksia prionotes L.F. (Proteaceae), and Corymbia calo-
phylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae)
in Australia. Artificial aging was used to produce non-
germinated seeds. LDA models were built to classify
viable and non-viable seeds. The classification accuracy
was over 78%, and differences existed in the classification
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results of three different tree species [34]. McGoverin
et al. used the near-infrared hyperspectral imaging to
classify viable and non-viable kernels of different culti-
vars of barley, wheat and sorghum. PLS-DA models were
built to classify viable and non-viable kernels, and partial
least squares regression (PLSR) models were used to pre-
dict the proportion of viable kernels in different incuba-
tion time of each kernel cultivar in hyperspectral images.
Pre-germinated test by the tetrazolium test was used to
determine the viability of kernels as reference. The results
indicated that hyperspectral imaging could be used to
identify viable and non-viable kernels of different kinds
of crops with different cultivars [35].

The results in Table 2 verified the possibility of the seed
viability and vigor detection using hyperspectral imaging,
with all the accuracy higher than 90%. Most of the studies
only used the spectral features. Different from the seed
variety classification and seed grading, the seed viability
and vigor detection needs to be verified with germination
test, which increases the workload of researchers. Few
samples were used in current experiments, but the vol-
ume of samples should be increased to establish a model
for practical use. Specie differences of seeds are also key
factors in seed viability and vigor detection. The different
anti-aging ability of seeds should be taken into considera-
tion in seed viability and vigor detection.

Conclusion

The current researches on seed viability and vigor detec-
tion mainly focused on healthy seeds with different anti-
aging ability and unhealthy seeds (injury, insect pests,
empty shells, etc.) with low viability. Compared with
healthy seeds with different anti-aging ability, unhealthy
seeds with low viability could be easily distinguished by
obvious differences in hyperspectral imaging features.
Artificial accelerated aging treatment is a commonly
used method which is used to obtain seeds with different
viability and vigor. However, there are still some differ-
ences between artificial accelerated aging treatment and
naturally aging process. The acquisition of naturally aging
seeds is one of the key difficulties in the promotion of
using hyperspectral imaging in the practical researches of
seed germination ability and vitality. Current researches
prove the feasibility of using hyperspectral imaging in
the detection of seed germination ability and vitality. In
practical applications, the acquisition of naturally aged
samples covers a large time span, and different naturally
aging conditions also affect the characteristics of the
samples. Thus, a universal database of seed viability and
vigor detection using naturally aged samples is almost
impossible to establish, so there is still a large distance to
practical application. In future researches, cooperation
between different research institutions is advised to help
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solve the problem of model sample sources and enrich
the sample library.

Seed damage detection

Application

During natural growth, transport and storage, seed dam-
ages caused by natural germination, insects, diseases and
fungi might lead to the loss of yield and quality. Hyper-
spectral imaging can be used to identify and sort dam-
aged seeds effectively (Table 3).

Natural germination of seeds during storage is one of
the seed defects. Xing et al. used hyperspectral imaging
system at the spectral range of 400—1000 nm to identify
sprouted and severely sprouted wheat kernels. The sound
kernels had a distinctly lower spectral reflectance in the
wavelength region above 720 nm in contrast to sprouted
kernels, while the reflectance of sprouted kernels peaked
around 878 nm. Thus the ratio of reflectance at 878 and
728 nm were calculated as one of the indexes for seed
defects discrimination. Score images of PC3 which could
help to identify sprouted kernels more intuitively were
also used as one of the indicators. Combined with the
two indicators mentioned above, the classification accu-
racy of sprout damage in Canada Western Red Spring
wheat was over 90% [36].

During the seed maturing and storage, the insect dam-
age is another common damage in seeds. Preventing
insect problems in the seeds is essential during the pro-
cess of seed maturation and storage. Insects can feed on
the seeds, multiply their population and spread viruses,
which may cause serious consequences. Insects can
cause pits on the surface or in the inside of the seeds,
and insects may secrete harmful substances which could
change the chemical composition of seeds. The spec-
tral features and the image features will change accord-
ingly, which makes hyperspectral imaging quite suitable
for insect-damaged seed detection. Singh et al. used a
hyperspectral imaging system and a color imaging system
to identify healthy wheat kernels and midge-damaged
wheat kernels from different locations in western Cana-
dian. Discriminant models were built to classify healthy
and midge-damaged wheat kernels. The overall aver-
age classification accuracy of most models was over 90%
[37]. Kaliramesh et al. used a hyperspectral imaging sys-
tem to classify the healthy mung bean and mung bean
infested by Cowpea weevil (callosobruchus maculates
E). Spectral features and image features were extracted.
Average classification accuracy more than 85% and 82%
were obtained using statistical classifiers in identifying
uninfected and infected mung bean kernels [38]. Chella-
durai et al. used hyperspectral imaging to identify healthy
soybeans and soybeans infested by Cowpea weevil (Cal-
losobruchus maculatus (F.)). Degree of infestation was
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determined by form of insects in each soybean (egg, lar-
vae, pupae and hollowed-out (with adults in the seed)).
For hyperspectral images, significant wavelengths were
identified by PCA loadings, and histogram features and
spectral features of the selected significant wavelengths
were extracted. Results showed that hollowed-out sam-
ples had the highest classification accuracy (98% and 99%
for LDA and QDA, respectively) [39].

In recent years, the research on the seed safety inspec-
tion using hyperspectral imaging has been extended
to the area of the fungus infection detection. Fungi is
another severe damage to seeds. Under suitable envi-
ronments, fungi could grow and spread quickly. Fungal
growth would result in germination loss, discoloration,
dry matter loss, increase in free fatty acids, heating,
mustiness, and occasional production of mycotoxins
[40]. Early and rapid detection of fungi infested seeds is
important for the control of fungal growth and spread.
Due to the characteristics of acquiring spatial and spec-
tral information simultaneously, hyperspectral imaging
has been widely used to detect seeds infested by fungi.

Wang et al. used hyperspectral imaging to detect
Aflatoxin B1 on maize kernel surface. Different levels of
Aflatoxin B1 were manually added to maize kernel sur-
face. The classification accuracy of discriminant model
using spectral features was 98% for different levels of
Aflatoxin B1 [41]. Shahin and Symons used hyperspec-
tral imaging to detect fusarium damaged Canada West-
ern Red Spring wheat kernels. Healthy and damaged
kernels with different damage degrees were studied.
PCA analysis was conducted on the hyperspectral
images, and standard deviation of scores of each kernel
were extracted as features. Two modeling procedures of
LDA were explored. Firstly, LDA model was used to
classify sound and infected wheat kernels, and then
LDA model was built to classify infected wheat kernels
with different infection degree. The overall classifica-
tion accuracy was over 80% for each category [42]. Sen-
thilkumar et al. used hyperspectral imaging to detect
barley infected by three fungi Aspergillus glaucus, Peni-
cillium spp. and Penicillium verrucosum, respectively.
Results indicated that after 4-week infection, the classi-
fication accuracy was 100% [43]. Senthilkumar et al.
also used hyperspectral imaging to identify different
stages of fungal infection (Aspergillus glaucus and Peni-
cillium spp.) in canola. With the increase of fungal
infection level, the classification accuracy increased
from more than 90% at the initial infection stage to
100% [44]. Qiao et al. used hyperspectral imaging to
detect fungi-contaminated peanuts of different varie-
ties. Kernels fully besieged with fungi and healthy pea-
nut kernels were acquired. Pixel-wise classification
maps were obtained and the kernel-scale classification
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maps were also developed for qualitative analyses. The
classification accuracy of calibration and validation sets
was over 90% for different varieties of peanuts [45]. Lee
et al. used hyperspectral imaging to detect watermelon
seeds infected by Acidovorax citrulli. Classification
accuracy of discriminant models was over 90%. Moreo-
ver, classification visualization images were obtained
[46]. Lee et al. used hyperspectral imaging to detect
watermelon seeds infected by cucumber green mottle
mosaic viruses. Classification accuracy of discriminant
models was over 83% [47]. Karuppiah et al. used hyper-
spectral imaging to detect fungal infection (Penicillium
commune Thom, C. and A. flavus Link, J.) in five differ-
ent pulses (chick peas, green peas, lentils, pinto beans
and kidney beans). Two-way (healthy and beans with
each infection level) and six-way (healthy and beans
with different infection levels) classification models
were built. All models obtained good performances,
with classification accuracy over 80% [48]. Kandpal
et al. used hyperspectral imaging to detect corn kernels
contaminated by aflatoxin B, (AFB,). Different varieties
of corn contaminated by different concentrations of
AFB, were studied. Discriminant models were built to
identify different contamination levels of corn kernels,
and the classification accuracy was over 90% [49]. Jiang
et al. used hyperspectral imaging to detect moldy pea-
nuts. PCA analysis was conducted on hyperspectral
images. A marker-controlled watershed algorithm was
adopted to segment the kernels from the background.
Threshold values were adopted to classify the infected
pixels and infected kernels. The classification accuracy
of learning and validation images was over 87% [50].
Del Fiore et al. used hyperspectral imaging to detect
different varieties of maize kernels contaminated by
different Aspergillus strains and different Fusarium
strains. Optimal wavelengths were selected. Then anal-
ysis of variance (ANOVA) and significance of differ-
ences tested at the 95% confidence level by Fisher’s
Least Significant Difference (LSD) test were conducted.
The results showed that hyperspectral imaging is able
to detect toxigenic fungi on maizes [51]. Barbedo et al.
used a hyperspectral imaging system to detect wheat
kernels contaminated by deoxynivalenol. Different vari-
eties of wheat kernels produced in different years were
used. A new index deoxynivalenol preliminary index
(DPI) was proposed, and classification functions were
developed based on DPI. The wheat kernels were
divided into three classes and two classes based on dif-
ferent concentrations of deoxynivalenol. The classifica-
tion functions obtained results with classification
accuracy over 70% [52]. Zhu et al. used a fluorescence
hyperspectral imaging to detect aflatoxins in corn ker-
nels. Images were acquired for endosperm and germ
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side of maize kernels were acquired. The kernels were
divided into different categories according to aflatoxins
concentrations. Discriminant models were built using
the two kinds of the spectral features. The classification
accuracy was over 90% [53]. Yao et al. used the fluores-
cence hyperspectral imaging to detect single corn ker-
nels infected with Aspergillus flavus. Narrow-band
fluorescence indices were developed based on the
extracted spectra, including the normalized difference
fluorescence index (NDFI), the difference fluorescence
index, and the ratio fluorescence index. Maximum like-
lihood and binary encoding classifiers were used to
developed classification models [54]. Barbedo et al.
used a hyperspectral imaging system to detect Fusar-
ium head blight in wheat kernels. A Fusarium index
(FI) was defined as the proportion of pixels with values
over 0.58 in a kernel. Healthy and infected kernels were
identified based on the threshold value of 0.5 of FI. The
classification results were robust faced with factors
such as shape, orientation, shadowing and clustering.
The relationship between FI and deoxynivalenol were
also explored, and good correlation indicated that
hyperspectral imaging could be used to detect deoxyni-
valenol concentrations [55]. Yao et al. used a fluores-
cence hyperspectral imaging to detect maize inoculated
with toxigenic (AF13) and atoxigenic (AF38) fungal
strains. Hyperspectral images of germ side and
endosperm side were acquired. Healthy kernels,
infected kernels and kernels adjacent to the infected
kernels were visually determined, respectively. Results
of discriminant models indicated that the visually
determined classes were not separated well. Specifi-
cally, classification accuracy of the maize kernels using
100 pb as threshold was over 90%. Results indicated
that germ side was more effective for classification of
contaminated and healthy maize kernels than
endosperm side [56]. Serranti et al. used hyperspectral
imaging to detect fusarium-damaged yellow berries and
vitreous Italian durum wheat kernels. Bulk samples
were used to build classification models, and images
with single wheat kernels were used to validate the clas-
sification models. PCA was conducted for qualitative
exploration of the separation of the three kind of wheat
kernels. Discriminant models built using full spectra or
optimal wavelengths all obtained decent results, with
classification accuracy over 90% [57]. Wang et al. used
hyperspectral imaging to detect aflatoxin B, (AFB;) on
maize kernel surface. Different concentrations of AFB,
were added to the kernels surface. PCA was conducted
for the qualitative exploration of the separation of the
different concentrations of AFB,. Discriminant models
obtained good classification results, with minimum
classification accuracy over 80% [58]. Williams et al.
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used hyperspectral imaging to detect fungal develop-
ment (E verticillioides) in maize kernels. Hyperspectral
images were acquired under different stages of fungal
development. PCA was conducted on hyperspectral
images to explore the differences under different fungal
growing time. Regression models were built to evaluate
the fungal development degrees, with R? of the calibra-
tion set over 0.8 and R? of the prediction set over 0.7
[59]. Williams et al. used two hyperspectral imaging
instruments to detect fungi infected maize kernels.
PCA was firstly conducted on hyperspectral images to
qualitatively identify healthy and infected maize
regions. Discriminated models were applied on pixel-
wise spectra to discriminate the infected and non-
infected classes. R? of two different hyperspectral
imaging systems was both over 0.7 [60]. Tekle et al.
used hyperspectral imaging to detect Fusarium-dam-
aged oat kernels. Microscopy analysis was conducted
for microanalysis of different Fusarium infection
degrees. LDA model was applied to classify pixel-wise
spectra within hyperspectral images to form classifica-
tion maps of different degrees of infection. What’s
more, based on the LDA model, ratio of damaged pixels
in each grain was predicted [61]. Siripatrawan and
Makino used hyperspectral imaging to monitor fungal
growth on brown rice grains for 0, 2, 4, 6, 8 and 10 days.
Scanning electron microscopy was also used to observe
the fungal growth. Discriminant model was used for
fungal growth degree determination, and then regres-
sion model for fungal colony counts was also devel-
oped, with R*=0.97, RMSEV =0.39 1og(CFU/g) [62].
Chu et al. used hyperspectral imaging to detect AFB,
produced by Aspergillus flavus in single maize kernel of
different varieties. Discriminant models were built to
classify three different concentration levels of AFB,,
with classification accuracy of calibration and predic-
tion sets over 80%. Regression models were built to
predict AFB; content, with R* of the calibration and
prediction sets over 0.7 [63].

Although spectral features could reflect seeds suffer-
ing from fungal damage effectively, researchers have also
used the image features to detect fungi infected sam-
ples. Singh et al. used hyperspectral imaging to detect
wheat infected by Penicillium spp., Aspergillus glaucus
and Aspergillus niger, respectively. PCA was applied to
hyperspectral images, and significant wavelengths were
identified by PCA loadings. After the PCA analysis, the
mean, maximum and minimum reflectance intensities
of the images at the significant wavelengths were calcu-
lated and used as inputs of discriminant models. Discri-
minant models obtained good results, with classification
accuracy over 90%. However, there were difficulties in the
detection of different fungal species [64].
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As shown in Table 3, both the spectral features and
image features were used to detect quality defects caused
by pre-germination or insect damage. In these situations,
the defects could be reflected by image information. As
shown in Table 4, most of the studies of fungi damage
on seeds used spectral features. The differences could be
attributed to the defect types.

From above researches, it can be seen that the
researches on the seed damage can mainly be divided
into the seed quality defect and seed fungal damage
detection. For seed fungal damage, qualitative judgment
and quantitative analysis were both performed in the ref-
erences mentioned in Table 4. Good results have been
achieved for seeds of different varieties, different fungal
damages, most of which show accuracy above 90%.

Conclusion

Current researches indicate that hyperspectral imaging
technique can detect whether seeds are affected by fun-
gal damage, as well as the amount of toxicants produced
by fungi to some extent. The abovementioned researches
focused on several kinds of fungal damage and the pro-
duced toxicants. These studies showed the feasibility and
repeatability of hyperspectral imaging to detect the seed
fungal damage. More researches concerning more fungal
damage types are needed. The main limit of the fungal
damage detection lies in the detection limit of toxicant
amount. At present, no research has yielded a specific
result about the detection limits of early fungal infec-
tions that can be detected. For fungi such as aflatoxin
Bl1, there are also uncertainties in the detection limit.
The methods mentioned in the above references were not
ideal for actual application, because the concentrations
of fungi in these researches might exceed the concentra-
tions in actual detection. The future studies can focus on
the improvement of the detection limits. Besides, a large
number of samples covering more sample features are
also needed to establish a universal and robust model.

Seed cleanness detection

Application

Seeds may be mixed with dry leaf or stalk pieces, or
some other materials during harvest. Keeping seed
clean is important for seed storage, trading and con-
sumption. Studies that focused on examining spectral
differences between different seeds and foreign materi-
als (Table 5) are available in Table 5. Wallays et al. used
a hyperspectral imaging system to detect material other
than grain (MOG, such as chaff and straw) in different
varieties of wheat, barley and corn. Spectral differences
were observed between seeds and MOG. Genetic algo-
rithm combined with PLS-DA was used to select sensi-
tive wavelengths, and images at the selected wavelengths
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were used to detect the foreign materials, and predic-
tion map was also formed [65]. Ravikanth et al. used a
near-infrared hyperspectral imaging system covering the
spectral range of 960—1700 nm to detect contaminants
in Canada Western Red Spring wheat. Foreign materials
(barley, canola, maize, flaxseed, oats, rye, and soybean),
dockage types (broken wheat kernels, buckwheat, chaff,
wheat spikelets, stones, and wild oats) and animal excreta
types (deer and rabbit droppings) were studied. Spectral
differences were observed between wheat and contami-
nants. Different spectral preprocessing methods and dif-
ferent discriminant models were used. Results of two-way
classification models and multi-way classification models
indicated the feasibility of using hyperspectral imaging to
detect contaminants in wheat [66].

Conclusion

As for seed cleanness detection, spectral features were
the mostly used features. This phenomenon can be attrib-
uted to the spectral differences between the seeds and
the foreign materials, and the spectral differences might
be easier to be obtained rather than image features, espe-
cially for those foreign materials with great similarity.
Previous studies (Table 1) have shown the possibility of
seed variety classification. Same as the seed classification,
seed cleanness detection is the classification of seeds
and extraneous materials. Compared with the different
varieties of seeds, significant differences could be found
in spectral curves of extraneous materials such as straw,
animal droppings, small stones, etc. The results in Table 5
indicate the feasibility of detecting different extraneous
materials mixed with seeds using hyperspectral imaging.
Future researches should improve sample size in order to
enhance the robustness of models.

Seed composition and properties determination
Application

Hyperspectral imaging has been widely used in seed
compositions and properties determination. Moreover,
the advantage of hyperspectral imaging makes it fea-
sible to fast screen seed compositions and properties,
especially for single seeds (Table 6). Zhang et al. used
hyperspectral imaging to determine total iron-reactive
phenolics, anthocyanins and tannins in wine grapes of
skins and seeds of different varieties of wine grapes and
different sampling dates. Outliers were identified and
removed by a Monte—Carlo method. Different spectral
preprocessing methods and different regression meth-
ods were used. As for grape seeds, the combination of
MSC (used for spectral pretreatment) and SVR (used for
model building) achieved the coefficient of determination
(R?) over 0.8 for tannins and total iron-reactive pheno-
lics [67]. Xing et al. used hyperspectral imaging to detect
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alpha-amylase activities in individual Canadian Western
Red Spring (CWRS) wheat. A FT-Near-infrared spectro-
photometer (FT-NIR) was also applied for comparison.
PLSR model using spectral information from hyperspec-
tral imaging performed better than FT-NIR, due to the
fact that hyperspectral imaging also had the advantage
of being able to localize the region where spectra were
extracted from [68]. Wang et al. used hyperspectral imag-
ing to predict textural properties (hardness, springiness
and resilience) of maize kernels under different storage
conditions. PLSR models were built using the full spectra
or important wavelengths. Good prediction results were
obtained with R? of prediction over 0.7. The prediction
maps of textural properties of single maize kernels were
also obtained [69]. William et al. used two hyperspectral
imaging systems to detect maize kernel hardness. Hard,
intermediate and soft maize kernels were prepared. PCA
was applied to hyperspectral images, and PCA scores
image was formed to explore the classification of differ-
ent hardness of maize kernels. PLS-DA models based
on pixel-wise spectra obtained good performances with
quite low root mean square error of prediction (RMSEP).
Prediction maps were also obtained [70]. Sun et al. used
hyperspectral imaging to detect the moisture content in
the rice samples. Regression models were built using full
spectra or optimal wavelengths. Both full spectra based
models and optimal wavelengths based models obtained
good results, and R? of calibration and prediction sets of
most models were over 0.9 [71]. Rodriguez-Pulido et al.
used hyperspectral imaging to detect the flavanol in grape
seeds. Grape seeds from two different varieties were col-
lected, and flavanols determined by two different extract
methods were studied. PCA analyses indicated that there
were differences between two different varieties. PLSR
models were built based on each variety and the combina-
tion of the two varieties. R? of most models was over 0.8
[72]. Mahesh et al. used hyperspectral imaging to detect
the protein content and hardness of Canadian wheat. Dif-
ferent varieties of wheat collected from different regions
and different years were prepared. Hyperspectral images
of bulk samples were acquired. Regression models were
built using full spectra or optimal wavelengths, and class
(variety) specific models and non-class specific models
were built. The results showed that the variety had influ-
ence on prediction performances. Moreover, the corre-
lation coefficient (r) was lower than 0.8 for protein and
hardness of each variety [73]. Caporaso et al. used hyper-
spectral imaging to detect protein content in single wheat
kernels. Wheat kernels were collected from 2013 to 2014,
covering the wide variations caused by environment and
agronomic conditions. Regression models were built to
predict the protein content and kernel weight. Moreo-
ver, the impacts of different preprocessing methods on
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model performances were explored. Influences of kernel
position, hardness and spectral region on model per-
formances were also studied, and the first two factors
showed little influence on the model performances. As
for protein content prediction, R* was over 0.7, but as for
the kernel weight, R* was much worse [74]. Cogdill et al.
used hyperspectral imaging to detect the moisture and
oil content in single maize kernels. Different spectral pre-
processing methods and regression methods were stud-
ied. R? for the moisture content prediction would reach
0.872, while R? for the oil content was lower than 0.6 [75].
Weinstock et al. used hyperspectral imaging to detect oil
and oleic acid concentrations in individual corn kernels.
Different spectral ranges were used for determination
of the oil and oleic acid concentrations, and the wave-
lengths were also selected by genetic algorithm. Images
were acquired from germ side up or germ side down ker-
nels. Moreover, hyperspectral imaging system was opti-
mized by germ side, focal plane placement, orientation,
temporal drift. Regression models obtained good perfor-
mances, with R? of most models over 0.6 [76]. Yang et al.
used hyperspectral imaging to detect the protein content
in wheat kernels. In total, eleven varieties of wheat were
collected. Hyperspectral images of bulk wheat samples
were acquired. Different spectral preprocessing methods
and regression methods were explored. Good prediction
results of the protein content were obtained with R? of
calibration and prediction over 0.9 [77].

Spectral features were used in the detection of seed
chemical compositions. The spectral features related to
the chemical compositions according to the principles of
the spectroscopy technique. The results of above refer-
ences indicate that hyperspectral imaging technique can
be used to detect the content of seed components, and
the R? of most researches can reach a satisfactory level.
Another advantage of seed composition and properties
determination using hyperspectral imaging is that the
seed components can be visually distributed with PCA
scores images, which make it possible to detect single
seeds in industries.

Conclusion

From Table 6, good results have been achieved for vari-
ous components detection of seeds. Current data sets
are mainly based on a small amount of samples. Further
researches should also focus on the sample size promo-
tion. Apart from the component detection for a same
seed variety, the same component in different seed vari-
eties also should be taken into consideration in order
to improve the universality of models. Same as the seed
fungi damage detection, detection thresholds of low-con-
tent components should also be paid attention to.
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Summary of data analysis

As a fast and non-destructive method, hyperspectral
imaging has been widely applied in the seed quality and
safety inspection. In this review, the applications of this
technique involve the seed classification and grading,
viability and vigor detection, damage (defect and fungus)
detection, cleanness detection and composition determi-
nation. The summary for each category is presented in
Tables 1, 2, 3, 4, 5 and 6. These Tables are further sum-
marized in this section, including the analyzed spectral
range, signal mode, sample numbers, features (spectral
features, image features and feature extraction meth-
ods), spectral preprocessing methods and data analysis
strategies.

Researches have showed that different spectral wave-
bands can be adopted for the detection with a same pur-
pose, and satisfactory results could be achieved. Thus,
researchers can select the wavebands depending on their
practical conditions. For example, the 972-1642 nm and
400-1000 nm wavebands were utilized by Feng et al. [24]
and He et al. [13] respectively, and they both accom-
plished classification accuracy over 90% in the maize
variety classification.

Although there are three different signal modes for
hyperspectral imaging (i.e. reflectance, transmittance and
interactance), all the references in the Tables adopted the
reflectance mode. The reason might be that the reflec-
tance mode could detect internal quality features as well
as external quality features, such as shape, size and sur-
face texture, and that the reflectance mode is simple and
easy to operate. As discussed above, the requirement of
equipment with certain spectral wavebands and modes
is not compulsory, and the selection of certain spectral
wavebands and modes mainly depend on the researchers.

When it comes to the extraction of spectral features,
PCA [16, 19, 28, 50, 64, 78] is the most common method.
PCA can transform a set of variables with possible cor-
relations into a set of linearly independent variables by
the orthogonal transformation. The first few principal
components contain most of the information. Therefore,
PCA can not only be utilized in the qualitative analysis
of spectral data (e.g. PCA score plot or PCA score image
visualization), but also help to select the characteris-
tic wavelengths according to the PCA loadings for the
quantitative analyses. Hyperspectral imaging will gen-
erate a large amount of data. Extracting useful features
from the large amount of data can significantly reduce
the data volume, and therefore increase the computa-
tion efficiency. In addition to PCA, successive projec-
tions algorithm (SPA) and stepwise discriminant analysis
(STEPDISC) are also commonly used methods in char-
acteristic wavelengths selection. In this review, charac-
teristic wavelengths selection by SPA was applied in the
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seed classification, grading and composition determina-
tion [14, 15, 71]. STEPDISC was utilized in not only the
seed classification and grading but also the seed damage
detection [6, 9, 36, 42, 79].

Apart from spectral features, image features, such as
texture features, color features (HSV and RGB), mor-
phological features (perimeter, area and roundness, etc.),
and statistical features of gray value also showed great
potential in the seed quality and safety detection [14, 17,
20, 29, 78, 79]. Gray level co-occurrence matrix (GLCM)
can reflect the comprehensive information of image gray-
scale about directions, adjacent intervals and amplitudes
of variations, which makes it the most commonly used
image feature selection method [14, 15, 37, 39, 78]. How-
ever, spectral features is still the mostly used information
in hyperspectral imaging data analysis, which may be due
to its convenience of acquisition. Models based on the
combination of spectra and image usually obtained supe-
rior results compared with models using only spectral
features or image features. The results of models using
only image features are usually inferior to those of mod-
els based on spectral features [14-16, 38]. The analysis
of spectral features is easier than that of image features,
and results have proved the efficiency of models based on
spectral features. Given this background, most of the ref-
erences focus on only the spectral features [12, 13, 22, 30,
31, 33,57, 61, 67].

After the acquisition of spectra, preprocessing methods
were adopted by some researches to denoise the spectra
and therefore improve the performance of the model.
Normalization, standard normal variate (SNV), multi-
plicative scatter correction (MSC) and savitzky—golay
(Ist and 2nd derivative) smoothing are commonly used
spectra preprocessing methods. Normalization is used
to normalize data and fit the data within 0—1, which can
reduce the spectral difference caused by the inconsistent
height of the sample surface. SNV is often applied in scat-
ter correction to attenuate the slope variation of spectra.
MSC is the most commonly method which could be used
to remove the undesirable scatter effect. Savitzky—golay
smoothing can be used to eliminate spectral noise, such
as baseline-offset, tilt and reverse, etc. Ambrose et al. [27]
used all these pretreatment methods in their research.
As for the vigor detection of different varieties of corns,
the optimal preprocessing method varied. In the vigor
detection by the visible near infrared, the 2nd derivative
savitzky—golay smoothing performed best for the yellow
corn while the 1st derivative savitzky—golay smoothing
was more suitable for the white corn and the purple corn.
For the same sample, the best preprocessing method
may be different for different spectral bands. In the vigor
detection of purple corn by the short-wave near-infrared,
the accuracy could be improved by the MSC and SNV
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spectral preprocessing. Therefore, there is no definite
selection criteria for the spectral preprocessing method
and it needs to be selected according to the practical
application situation.

Calibration models are of significant importance in
seed quality and safety inspection. For discriminant
models and regression models, PLS was the widely used
chemometric method for data analyses of hyperspectral
images. PLS had the characteristic of dealing with large
number of data rapidly and efficiently, and it worked
well for both discriminant (PLS-DA) [14, 27, 30, 32] and
regression analysis (PLSR) [31, 68, 72]. Except for PLS,
neural network (BPNN), LDA, QDA, SVM, LS-SVM,
PCA were also widely used chemometric methods. As
supervised linear discriminant analysis models, PLS-
DA, LDA and QDA have a wide range of applications in
early studies using hyperspectral imaging techniques to
detect the seed quality and safety [6, 14, 35, 42, 46, 57,
79]. Although BPNN, SVM and LS-SVM are also super-
vised discriminant analysis models, they have excellent
performance in nonlinearly separable problems, so these
methods are often used to build models [5, 6, 9, 47, 79].
In addition to the commonly used modeling approaches
mentioned above, RF, KNN, SIMCA, FDA, GDA, etc.
have also been used to establish models [5, 8, 22, 41].
Performances of discriminant and regression models
varied due to their different principles, so the modelling
approach should be selected based on the actual situ-
ation. For example, Feng et al. [24] and Yang et al. [14]
both utilized PLS-DA and SVM in the classification of
maize. PLS-DA achieved an accuracy of 99.5% in the for-
mer study while SVM performed best in the latter with
the accuracy being 98.2%.

In sum, the use of these chemometric methods showed
their effectiveness in hyperspectral image analysis.
Researchers conducted data analysis procedures based
on their own demands and interests, which resulted in
the use of many different methods. Indeed, the optimal
methods for data analysis could not be simply identi-
fied. Most of the studies used small samples volume, so
the universality and robustness of these methods needed
to be verified using large amount of samples in fur-
ther studies to meet the demand of practical real-world
application.

Opportunities and challenges

Hyperspectral imaging, as mentioned above, has the
advantage of acquiring the spectral features and spa-
tial features simultaneously. This advantage makes it
quite convenient for researchers to define the study
region within hyperspectral images. Seed is quite suit-
able for hyperspectral image analysis, in the forms of
single seeds or bulk samples. Researches show a great
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potential of applying hyperspectral imaging to seed
quality and safety inspection.

As for single seeds, there would be hundreds of
seeds in one hyperspectral image, which could highly
increase the sampling and detection efficiency. With
the high efficiency of sampling, more seeds with more
variations could be used for analyses, and hyperspec-
tral image databases of seeds could thus be established
and studied. The high sampling efficiency endows
hyperspectral imaging with great potential in real-
world industrial application.

Discriminant and regression models were built using
limited number of samples, and the number of sam-
ples could increase to a certain number due to the high
sampling efficiency. With more samples covering more
variations, representative discriminant models could
be built for real-world industrial application. In recent
years, the deep learning has been used in various fields
as an effective modelling tool. Deep learning has the
obvious advantage of dealing with large amount of
data, which can learn and extract sample features
automatically. Qiu et al. used hyperspectral imaging
combined with the deep learning to identify rice seed
varieties and achieved good results. Deep learning has
great potential of using hyperspectral imaging in seed
quality and safety inspection [80].

Hyperspectral imaging also provides the feasibility
to obtain visualization prediction maps, which could
be helpful for industrial applications. With the devel-
opment of hardware and software, the computation
time and efficiency has been significantly improved.
The large amount of data generated by hyperspectral
images can be dealt with in a high efficient way. Still,
how to build models with such a large number of sam-
ples remains as a challenging problem.

Although great opportunities could be foreseen,
great challenges are still on the road. A quite common
challenge is the development and maintenance of cali-
bration models. Universal and representative calibra-
tion models are the basis of real-world application of
hyperspectral imaging. But it is quite difficult to build
such calibration models, due to the fact that great vari-
ations caused by varieties, growth condition, growth
location, crop years etc. exist. Although high sampling
efficiency can help to cover more variations, which
makes model maintenance more efficient. Besides,
model maintenance is still a complex issue. Moreo-
ver, as can be seen in Tables 1, 2, 3, 4 and 5, various
data analysis methods and strategies have been used
for hyperspectral image analysis. However, one or few
optimal strategies of data analysis should be selected
for real-world application.

Page 23 of 25

Conclusion

Hyperspectral imaging is a complex, highly multidis-
ciplinary field with the aim of realizing efficient and
reliable measurement of both contents and spatial dis-
tributions of multiple chemical constituents and physi-
cal attributes simultaneously without monotonous
sample preparation, and therefore offering the possibil-
ity of designing inspection systems for the automatic
grading and defects determination of seeds. The vari-
ous applications outlined in this review show the capa-
bility of using hyperspectral imaging for seed grading,
viability and vigor detection, defect and disease detec-
tion, cleanness detection, and seed composition deter-
mination. Moreover, some practical implementations
for real-time monitoring are currently available. It can
be anticipated that real-time seed monitoring systems
with this technique will meet the requirements of the
modern industrial control and sorting systems of seeds
in the near future.
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