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Abstract 

Hyperspectral imaging has attracted great attention as a non-destructive and fast method for seed quality and safety 
assessment in recent years. The capability of this technique for classification and grading, viability and vigor detection, 
damage (defect and fungus) detection, cleanness detection and seed composition determination is illustrated by 
presentation of applications in quality and safety determination of seed in this review. The summary of hyperspectral 
imaging technology for seed quality and safety inspection for each category is also presented, including the analyzed 
spectral range, sample varieties, sample status, sample numbers, features (spectral features, image features, feature 
extraction methods), signal mode and data analysis strategies. The successful application of hyperspectral imaging in 
seed quality and safety inspection proves that many routine seed inspection tasks can be facilitated with hyperspec-
tral imaging.
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Background
Nowadays, seed quality, which can be measured by its 
germinability or physicochemical attributes, has become 
increasingly important in the agriculture field due to the 
fact that it is a fundamental and critical factor in plant 
breeding and production. Seeds of high quality are a 
good start for plant growth, which indicates an abundant 
harvest. On the other hand, seed is often directly served 
as foodstuff, and its quality will therefore attract exten-
sive attention. The seed quality is usually closely related 
to the eating quality, such as the texture, the flavour and 
the nutrient component. In order to meet the require-
ments of the consumers, seeds should be cautiously pro-
cessed and stored after harvest. In the course of harvest, 
processing and storage, a fast, accurate and preferably 
non-destructive detection method of the seed quality is 
desired. Recently, hyperspectral imaging technique has 
been investigated as a potential analytical tool for non-
destructive analysis and assessment of the seed quality 
and safety.

Hyperspectral imaging technology, which can acquire 
spectral and spatial information simultaneously, com-
bines the advantages of spectroscopic and imaging tech-
niques. In other words, it can simultaneously obtain the 
chemical information of heterogeneous samples and the 
spatial distribution of chemical components.

In recent years, hyperspectral technology has been 
widely used in the agriculture, food industry and medical 
industry etc. [1–4]. The potential or practical applications 
in seed industry include the detection of viability, vig-
our, defect, disease, cleanness and the seed composition 
determination. However, to our knowledge, a compre-
hensive literature survey on the seed quality and safety 
inspection using hyperspectral imaging has not been 
conducted, but should be widely desired. The motivation 
and purpose of this work is to summarize and analyse the 
development in seed quality and safety inspection by the 
hyperspectral technology.

Application and conclusion of hyperspectral 
imaging for seed quality and safety inspection
Seed variety classification and seed grading
Application
The varieties, grades, producing regions and storage 
conditions etc. all have influence on the nutrition and 
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commercial price of seeds. What’s more, seed adultera-
tion is also a great concern, which bothers planters and 
consumers, and sometimes can cause great losses. Thus, 
it endows the identification of seed variety and grade 
with great importance.

In general, there are two approaches for seed variety 
identification. The first one is the bulk samples detec-
tion, and the second one is the single seed identification. 
For seed variety identification based on bulk seeds, aver-
age spectra of each bulk are often extracted according to 
the predefined region of interest (ROI). For single seed 
identification, hyperspectral imaging can simultaneously 
acquire hyperspectral images of hundreds or thousands 
of single seeds. Spectrum of each single seed can be 
extracted, which makes it quite suitable for seed varieties 
classification to ensure the seed purity (Table 1).

Spectral features are the primary information utilized 
in the application of hyperspectral imaging system in 
the seed classification. Kong et  al. used hyperspectral 
imaging to classify 4 varieties of rice seeds, and most of 
the discriminant models using full spectra and selected 
optimal wavelengths obtained good classification results 
(over 80%) [5]. Mahesh et  al. used hyperspectral imag-
ing to classify 8 wheat classes, and the results showed 
that the classification accuracy was over 90% for most of 
wheat classes [6]. Yang et  al. used hyperspectral imag-
ing to classify 14 maize varieties. Spectral information 
was extracted from each single seed, and discriminant 
models were established using full spectra and optimal 
wavelengths. The classification accuracy of most maize 
varieties was over 90% [7]. Liu et al. used hyperspectral 
imaging to classify the soybean, maize and rice. Spectral 
data were extracted and optimal wavelengths were then 
selected. Discriminant models using full spectra and 
optimal wavelengths all obtained good performances [8].

In addition to the classification of different varieties, 
studies of classification of different regions, years and 
attributes (such as moisture) of seeds are other research 
priorities. Mahesh et  al. used hyperspectral imaging 
to identify wheat classes at five different moisture lev-
els (12%, 14%, 16%, 18% and 20%). Wheat classes inde-
pendent of moisture levels, moisture levels independent 
of wheat classes and wheat classes at different moisture 
levels were identified, respectively. Results indicated that 
classification of moisture levels were promising without 
considering wheat classes, while classification results of 
wheat classes with moisture levels considered were better 
than those without taking moisture level into considera-
tion [9]. Then the same team used hyperspectral imaging 
to classify four wheat classes considering more variables. 
Particularly, seeds were collected with variations of crop 
year, growing location and moisture content. Their work 
showed that the NIR hyperspectral imaging could be 

used as a potential nondestructive tool for classifying 
moisture-specific wheat classes [10]. Huang et al. classi-
fied maize seeds of different years based on hyperspec-
tral imaging. Classification models were developed using 
the least squares support vector machine (LS-SVM). To 
ensure the accurateness of the identification, incremen-
tal support vector data description was applied to update 
the LS-SVM model. The classification results of LS-SVM 
model combined with model updating was 10.3% higher 
than those of other non-updated models, demonstrating 
that the model updating could be an effective method 
for the identification of seeds of different years [11]. Guo 
et al. also proposed a model-updating algorithm for dif-
ferentiating maize seed varieties from different years 
using hyperspectral imaging. The average classification 
accuracy was improved by 8.9%, 35.8% and 9.6% for the 
three test sets, respectively [12]. He et al. discriminated 4 
varieties of maize seeds harvested in different years with 
the LS-SVM models updated with the clustering algo-
rithm, which achieved an overall accuracy of 98.3% [13].

Except for spectral features, hyperspectral images also 
provide a large amount of image features. Choudhary 
et al. used hyperspectral imaging to classify eight wheat 
classes. The principal component (PC) score images 
were obtained by extracting the first three PC of each 
pixel after the pixel-wise principal component analysis 
(PCA) of hyperspectral images is performed. Based on 
the wavelet texture features, most discriminant models 
obtained decent results. Yang et  al. extracted five mor-
phological features (area, circularity, aspect ratio, round-
ness and solidity) and 8 texture features (energy, contrast, 
correlation, entropy and their standard deviations) from 
hyperspectral images to classify 4 waxy corn seed varie-
ties. Support vector machines (SVM) and partial least 
squares discriminant analysis (PLS-DA) combining with 
spectral and appearance characteristic were employed to 
build classification models. The classification accuracy 
achieved by SVM models were more satisfactory than 
PLS-DA models [14]. Sun et al. extracted image features 
including four textural features (contrast, correlation, 
energy and homogeneity) and six morphological fea-
tures (perimeter, area, major axis length, and minor axis 
length, eccentricity and equiv diameter) to classify black 
beans from 3 growing locations. In addition to SVM and 
PLS-DA methods, K-nearest neighbors was also used for 
model establishment. All the three methods were built 
based on spectral features, image features and the com-
bination of spectral and image features, respectively [15]. 
From the studies of aforementioned two teams, they both 
extracted contrast, correlation and energy as textural fea-
tures and area as morphological feature. These two stud-
ies both obtained good results with recognition accuracy 
more than 96% based on SVM model combining spectral 
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and image features. Sun et al. used hyperspectral imaging 
to further study seed classification based on the combina-
tion of spectral features and image features. Both spectral 
features and image features were extracted from single 
rice kernels. Classification models were built using spec-
tral features, morphological features, texture features, 
combinations of two kinds of features and the combi-
nation of all features, respectively. Results showed that 
models using all features performed better than other 
kinds of models for both full spectra and optimal wave-
lengths [16]. Huang et al. used hyperspectral imaging to 
classify 17 different varieties of maize kernels. Spectral 
features, image features were extracted. The dimension 
reduction method was applied to reduce the dimension 
of the combination of spectral features and image fea-
tures. Discriminant models were built using only spectral 
features, combination of spectral features and image fea-
tures and the dimension reduced data set of spectral fea-
tures and image features, respectively. The overall results 
showed that models developed based on the combination 
of spectral features and image features and the reduced 
data set outperformed the model using only the spectral 
features [17].

The studies mentioned above mainly focused on the 
analysis of the single seed or quantity of seeds. They can 
be treated as object-wise (OW) analysis that uses aver-
age spectra of the depicted objects for data analysis. 
Apart from object-wise analysis, pixel-wise (PW) analy-
sis is also an applicable method for seed quality deter-
mination [18–22]. For pixel-wise analysis, the spectra of 
individual pixels are used in the process of data analysis. 
Compared with object-wise analysis, pixel-wise analysis 
is more informative. Williams and Kucheryavskiy used 
hyperspectral imaging to classify maize kernels with 
three hardness categories (hard, medium and soft). Pixel-
wise and object-wise PCA were used to indicate the dif-
ferences between maize kernels with different hardness. 
Different methods (PLS-DA classification of individual 
pixels followed by a thresholding procedure, PLS-DA 
classification of kernels using mean spectrum of each 
kernel or score histograms of each kernel) were used to 
classify maize kernels. The classification results of models 
based on score histograms and mean spectra were sig-
nificantly improved compared with models with a thresh-
olding procedure [18]. Manley et  al. used hyperspectral 
imaging to explore the influence of grain topography 
(sample shape and texture) using near infrared hyper-
spectral images. Kernels of three cereals (barley, wheat 
and sorghum) with varying topographic complexity 
were examined in the study. The influence of the topog-
raphy on the spectral variation was examined using 
PCA and gradients classification. Classification gradi-
ents were defined according to score values, and color 

gradients corresponding to the classification gradients of 
score values were presented to assess the topographical 
effects within each PC. The results of classification gra-
dient images and PC score plots showed that the prior 
PCs explained an accumulated total of 91.18%, 89.43% 
and 84.39% of the spectral variance, respectively, and all 
were influenced by kernel topography [19]. Manley et al. 
used hyperspectral imaging to detect endosperm tex-
ture in yellow maize. Hard, intermediate and soft maize 
kernels of three different genotypes were prepared. PCA 
was applied on hyperspectral images to form PCA scores 
images. PLS-DA models were built using PC scores, and 
the prediction maps were also formed [21]. Rodríguez-
Pulido et al. used PCA to explore the differences of grape 
seeds of different varieties and in different growing soil. 
Important wavelengths were also selected to reduce the 
data volume and improve the speed of data analyses. Dis-
criminant models based on full spectra or selected wave-
lengths both obtained good classification accuracy [22].

The aforementioned studies mainly focus on ordinary 
seeds. However, with the increasing concern about trans-
genic seeds all over the world, a fast and accurate detec-
tion method of transgenic seeds is also widely desired. 
Genotypic changes would bring about changes on molec-
ular bonds such as C–H, C–N and C–O ultimately, thus it 
would be possible to evaluate the specific gene expression 
based on the phenotypic changes with the application of 
hyperspectral imaging [23]. Feng et  al. used hyperspec-
tral imaging to identify transgenic maize kernels. PCA 
was applied to hyperspectral images to explore the dif-
ferences between transgenic and non-transgenic maize 
kernels. The visualization of classified maize kernels was 
also presented to show the pixel spectra combined with 
the spatial distribution of the maize kernel. Discriminant 
models were built using the full spectra or the optimal 
wavelengths. The overall results indicated that hyper-
spectral imaging could be used to identify transgenic and 
non-transgenic maize kernels [24].

Among all the factors, the sample volume plays an 
important role in the robustness of the results. The char-
acteristics of hyperspectral imaging make it possible 
to acquire a large number of samples at the same time. 
Compared with other researches on seeds, sample prepa-
ration for seed variety and grading classification is sim-
pler and more convenient. However, most of the current 
studies used small-volume samples, but a small sample 
volume couldn’t fully reflect the attributes of samples. 
Some studies have focused on the application of detect-
ing large number of samples using hyperspectral imaging. 
Zhao et al. evaluated maize varieties with hyperspectral 
imaging and chemometrics methods. A total of 12,900 
maize seeds of 3 different varieties were used in the 
experiment. Satisfactory results were obtained by the 
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radial basis function neural network (RBFNN) model 
based on optimal wavelengths, with calibration accuracy 
being 93.85% and prediction accuracy being 91.00% [25]. 
Zhao et  al. also discriminated grape seeds using hyper-
spectral imaging technique and multivariate analyses. 
Hyperspectral images were collected for 14,015, 14,300 
and 15,042 grape seeds of three seed varieties. The results 
indicated that the variety of each single grape seed was 
accurately identified by SVM models based on effective 
wavelengths, with calibration accuracy being 94.3% and 
prediction accuracy being 88.7% [26]. The results of these 
two studies revealed that good results can be obtained 
with a large number of samples. In future studies, large 
number of samples are needed to establish universal, 
accurate and robust models.

Conclusion
For data acquisition, spectral features of object-wise 
spectra and pixel-wise spectra, image features and their 
combinations were all used in the seed variety and 
grading classification. Models using these features all 
obtained good results. However, spectral features are the 
most convenient and easy-to-obtain features, while the 
acquisition of image features are much more complex. 
Specially, more works on single kernels could be found, 
feature extraction of single kernels could represent the 
sample individuality. The abovementioned researches 
showed that the performance of models varied with dif-
ferent features but the differences were not significant. At 
the current stage, spectral features might be more suita-
ble and applicable to develop real-world application com-
pared with image features and the combination of image 
and spectral features.

The processing methods of hyperspectral images and 
the universality of classification models are main con-
cerns for the application of hyperspectral imaging in the 
seed variety classification and the seed grading. It can be 
seen from Table 1 that some commonly used chemomet-
rics methods, such as PLS-DA, artificial neural networks 
and LDA, have been applied to different seed researches 
and achieved good results. The universality of the model 
is the key to the practical application of hyperspectral 
imaging technology. In order to build database for seed 
variety classification and grading, a large number of 
samples are needed, which contains more characteristic 
information, such as water content, year, etc. [10–13]. On 
the other hand, in order to ensure the validity of models, 
it is also important to add appropriate upgrade methods 
to the conventional models. Huang et al., Guo et al. and 
He et al. all obtained good results with updated models 
[11–13].

In all, hyperspectral imaging has a very large prac-
tical prospect for the application in the seed variety 

classification and grading. In the future, researches on 
seed variety classification and grading should focus on 
the universality of models.

Seed viability and vigor detection
Application
The seeds enter the aging process after natural matu-
rity. During this process, the vitality of the seeds gradu-
ally decreases, which is a common phenomenon in the 
period of storage. Seed vigor is an important indicator 
synthesizing seed germination, seedling rate, seedling 
growth potential, plant stress resistance and production 
potential. For farmers, seeds with low viability will have 
low germination rate, which will increase the cost. Com-
pared with seeds with low viability, seeds with high vigor 
have obvious growth advantages, which can save time, 
labor and material resources. Thus, an appropriate seed 
vigor detection method, such as hyperspectral imaging, 
can help farmers engage in agricultural production activ-
ities in a better way (Table 2).

Ambrose et  al. used hyperspectral imaging to evalu-
ate the corn seed viability. Artificial aging was applied 
to obtain seeds with low viability, and germination test 
was conducted to determine seed viability as reference. 
Three different varieties of corn seeds (yellow, white and 
purple) were identified. Different spectra preprocessing 
methods and different spectral ranges (1000–2500  nm 
and 400–1000 nm) were explored. PLS-DA models were 
built to determine the viability of seeds. Visualization of 
treated and non-treated corn seeds were also achieved 
with hyperspectral imaging. The results demonstrated 
that the spectral range in the 1000–2500 nm performed 
better in the seed viability measurement [27]. Arngren 
et  al. et  al. used hyperspectral imaging to identify the 
pre-germinated barley. Eight pre-germination levels were 
prepared by setting pre-germination time of 0, 12, 18, 24, 
30, 36, 48 and 60 h, and these levels were identified into 
three groups as normal, delayed and limited. PCA was 
conducted on the hyperspectral images to extract single 
kernel features. The maximum-likelihood multinomial 
regression classifier combined single kernel features were 
used to classify pre-germination degree of single barley 
kernels [28]. Dumont et al. used two hyperspectral imag-
ing sensors, a thermal imaging system to identify viable 
seeds, empty seeds and seeds infested by Megastigmus 
sp. Larvae of Norway spruce (Picea abies), respectively. 
Images of single kernels were acquired and the spectral 
temperature features were extracted from these images. 
Results showed the feasibility of using hyperspectral 
imaging to identify viable seeds, empty seeds and seeds 
infested by Megastigmus sp. Larvae. Moreover, indices 
developed from the important wavelengths (1310  nm, 
1710  nm and 1985  nm) showed good classification 
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results, indicating the possibility to build an inexpensive 
devices [29]. Kandpal et  al. used hyperspectral imaging 
to predict viability and vigor of muskmelon. Artificial 
aging was used to produce seeds with different levels of 
viability and vigor. Artificial aging periods were set a 0, 
2, 4 and 6 days. Seeds were divided into three groups of 
vigor level after germination test, including the non-via-
ble, 3-day germination (seeds germinated in 3 days) and 
5-day germination. PLS-DA models were built to clas-
sify seeds at the three levels using full spectra and opti-
mal wavelengths, respectively. The classification accuracy 
was over 88% [30]. Matsuda et al. used two hyperspectral 
imaging systems at different spectral ranges (400–980 nm 
and 1250–2500  nm) to identify sound and unsound 
Cryptomeria japonica (sugi) and Chamaecyparis obtuse 
(hinoki) seeds. There was a depression at 1730  nm cor-
responding to a lipid absorption band of sound seeds, 
and this depression could help to identify seed viability. A 
reflectance seed quality index (SQI) was proposed based 
on three identified wavelengths (1637 nm, 1734 nm and 
1854 nm), which were selected according to the spectral 
depression of spectral reflectance curve. Such depression 
was obvious in sound seeds and absent or less prominent 
in unsound seeds. Average spectra based and pixel-wise 
spectra based SQI showed the feasibility to select sound 
seeds [31]. Mo et al. used a hyperspectral imaging system 
with various ranges of spectra induced by blue, green, red 
and RGB LED (400–500 nm for blue LED, 500–600 nm 
for green LED, 600–700  nm for red LED and 400–
700 nm for RGB LED) to predict the germination quality 
of cucumber seeds. Artificial aging was used to produce 
aged seeds. PLS-DA was used to build classification mod-
els using spectra from blue, green, red and RGB LED illu-
mination. The classification accuracy was over 90%. The 
results were verified by applying established models to 
the hyperspectral images to form prediction maps [32]. 
Mo et al. also used LED-induced hyperspectral imaging 
to detect viable and non-viable pepper seeds. Red, green 
and blue LEDs were used. Hyperspectral images were 
acquired under individual LED and three LEDs. Different 
spectral preprocessing methods were explored. PLS-DA 
models were used to build classification models, and clas-
sification accuracy was over 90%. Moreover, the germi-
nation test was conducted to evaluate the seed viability. 
PLS-DA models were used to form prediction maps [33]. 
Nansen et al. used hyperspectral imaging to evaluate the 
germination of seeds of Acacia cowleana Tate (Fabaceae), 
Banksia prionotes L.F. (Proteaceae), and Corymbia calo-
phylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) 
in Australia. Artificial aging was used to produce non-
germinated seeds. LDA models were built to classify 
viable and non-viable seeds. The classification accuracy 
was over 78%, and differences existed in the classification 

results of three different tree species [34]. McGoverin 
et  al. used the near-infrared hyperspectral imaging to 
classify viable and non-viable kernels of different culti-
vars of barley, wheat and sorghum. PLS-DA models were 
built to classify viable and non-viable kernels, and partial 
least squares regression (PLSR) models were used to pre-
dict the proportion of viable kernels in different incuba-
tion time of each kernel cultivar in hyperspectral images. 
Pre-germinated test by the tetrazolium test was used to 
determine the viability of kernels as reference. The results 
indicated that hyperspectral imaging could be used to 
identify viable and non-viable kernels of different kinds 
of crops with different cultivars [35].

The results in Table 2 verified the possibility of the seed 
viability and vigor detection using hyperspectral imaging, 
with all the accuracy higher than 90%. Most of the studies 
only used the spectral features. Different from the seed 
variety classification and seed grading, the seed viability 
and vigor detection needs to be verified with germination 
test, which increases the workload of researchers. Few 
samples were used in current experiments, but the vol-
ume of samples should be increased to establish a model 
for practical use. Specie differences of seeds are also key 
factors in seed viability and vigor detection. The different 
anti-aging ability of seeds should be taken into considera-
tion in seed viability and vigor detection.

Conclusion
The current researches on seed viability and vigor detec-
tion mainly focused on healthy seeds with different anti-
aging ability and unhealthy seeds (injury, insect pests, 
empty shells, etc.) with low viability. Compared with 
healthy seeds with different anti-aging ability, unhealthy 
seeds with low viability could be easily distinguished by 
obvious differences in hyperspectral imaging features. 
Artificial accelerated aging treatment is a commonly 
used method which is used to obtain seeds with different 
viability and vigor. However, there are still some differ-
ences between artificial accelerated aging treatment and 
naturally aging process. The acquisition of naturally aging 
seeds is one of the key difficulties in the promotion of 
using hyperspectral imaging in the practical researches of 
seed germination ability and vitality. Current researches 
prove the feasibility of using hyperspectral imaging in 
the detection of seed germination ability and vitality. In 
practical applications, the acquisition of naturally aged 
samples covers a large time span, and different naturally 
aging conditions also affect the characteristics of the 
samples. Thus, a universal database of seed viability and 
vigor detection using naturally aged samples is almost 
impossible to establish, so there is still a large distance to 
practical application. In future researches, cooperation 
between different research institutions is advised to help 
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solve the problem of model sample sources and enrich 
the sample library.

Seed damage detection
Application
During natural growth, transport and storage, seed dam-
ages caused by natural germination, insects, diseases and 
fungi might lead to the loss of yield and quality. Hyper-
spectral imaging can be used to identify and sort dam-
aged seeds effectively (Table 3).

Natural germination of seeds during storage is one of 
the seed defects. Xing et al. used hyperspectral imaging 
system at the spectral range of 400–1000 nm to identify 
sprouted and severely sprouted wheat kernels. The sound 
kernels had a distinctly lower spectral reflectance in the 
wavelength region above 720 nm in contrast to sprouted 
kernels, while the reflectance of sprouted kernels peaked 
around 878 nm. Thus the ratio of reflectance at 878 and 
728  nm were calculated as one of the indexes for seed 
defects discrimination. Score images of PC3 which could 
help to identify sprouted kernels more intuitively were 
also used as one of the indicators. Combined with the 
two indicators mentioned above, the classification accu-
racy of sprout damage in Canada Western Red Spring 
wheat was over 90% [36].

During the seed maturing and storage, the insect dam-
age is another common damage in seeds. Preventing 
insect problems in the seeds is essential during the pro-
cess of seed maturation and storage. Insects can feed on 
the seeds, multiply their population and spread viruses, 
which may cause serious consequences. Insects can 
cause pits on the surface or in the inside of the seeds, 
and insects may secrete harmful substances which could 
change the chemical composition of seeds. The spec-
tral features and the image features will change accord-
ingly, which makes hyperspectral imaging quite suitable 
for insect-damaged seed detection. Singh et  al. used a 
hyperspectral imaging system and a color imaging system 
to identify healthy wheat kernels and midge-damaged 
wheat kernels from different locations in western Cana-
dian. Discriminant models were built to classify healthy 
and midge-damaged wheat kernels. The overall aver-
age classification accuracy of most models was over 90% 
[37]. Kaliramesh et al. used a hyperspectral imaging sys-
tem to classify the healthy mung bean and mung bean 
infested by Cowpea weevil (callosobruchus maculates 
F.). Spectral features and image features were extracted. 
Average classification accuracy more than 85% and 82% 
were obtained using statistical classifiers in identifying 
uninfected and infected mung bean kernels [38]. Chella-
durai et al. used hyperspectral imaging to identify healthy 
soybeans and soybeans infested by Cowpea weevil (Cal-
losobruchus maculatus (F.)). Degree of infestation was 

determined by form of insects in each soybean (egg, lar-
vae, pupae and hollowed-out (with adults in the seed)). 
For hyperspectral images, significant wavelengths were 
identified by PCA loadings, and histogram features and 
spectral features of the selected significant wavelengths 
were extracted. Results showed that hollowed-out sam-
ples had the highest classification accuracy (98% and 99% 
for LDA and QDA, respectively) [39].

In recent years, the research on the seed safety inspec-
tion using hyperspectral imaging has been extended 
to the area of the fungus infection detection. Fungi is 
another severe damage to seeds. Under suitable envi-
ronments, fungi could grow and spread quickly. Fungal 
growth would result in germination loss, discoloration, 
dry matter loss, increase in free fatty acids, heating, 
mustiness, and occasional production of mycotoxins 
[40]. Early and rapid detection of fungi infested seeds is 
important for the control of fungal growth and spread. 
Due to the characteristics of acquiring spatial and spec-
tral information simultaneously, hyperspectral imaging 
has been widely used to detect seeds infested by fungi.

Wang et  al. used hyperspectral imaging to detect 
Aflatoxin B1 on maize kernel surface. Different levels of 
Aflatoxin B1 were manually added to maize kernel sur-
face. The classification accuracy of discriminant model 
using spectral features was 98% for different levels of 
Aflatoxin B1 [41]. Shahin and Symons used hyperspec-
tral imaging to detect fusarium damaged Canada West-
ern Red Spring wheat kernels. Healthy and damaged 
kernels with different damage degrees were studied. 
PCA analysis was conducted on the hyperspectral 
images, and standard deviation of scores of each kernel 
were extracted as features. Two modeling procedures of 
LDA were explored. Firstly, LDA model was used to 
classify sound and infected wheat kernels, and then 
LDA model was built to classify infected wheat kernels 
with different infection degree. The overall classifica-
tion accuracy was over 80% for each category [42]. Sen-
thilkumar et  al. used hyperspectral imaging to detect 
barley infected by three fungi Aspergillus glaucus, Peni-
cillium spp. and Penicillium verrucosum, respectively. 
Results indicated that after 4-week infection, the classi-
fication accuracy was 100% [43]. Senthilkumar et  al. 
also used hyperspectral imaging to identify different 
stages of fungal infection (Aspergillus glaucus and Peni-
cillium spp.) in canola. With the increase of fungal 
infection level, the classification accuracy increased 
from more than 90% at the initial infection stage to 
100% [44]. Qiao et  al. used hyperspectral imaging to 
detect fungi-contaminated peanuts of different varie-
ties. Kernels fully besieged with fungi and healthy pea-
nut kernels were acquired. Pixel-wise classification 
maps were obtained and the kernel-scale classification 
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maps were also developed for qualitative analyses. The 
classification accuracy of calibration and validation sets 
was over 90% for different varieties of peanuts [45]. Lee 
et al. used hyperspectral imaging to detect watermelon 
seeds infected by Acidovorax citrulli. Classification 
accuracy of discriminant models was over 90%. Moreo-
ver, classification visualization images were obtained 
[46]. Lee et  al. used hyperspectral imaging to detect 
watermelon seeds infected by cucumber green mottle 
mosaic viruses. Classification accuracy of discriminant 
models was over 83% [47]. Karuppiah et al. used hyper-
spectral imaging to detect fungal infection (Penicillium 
commune Thom, C. and A. flavus Link, J.) in five differ-
ent pulses (chick peas, green peas, lentils, pinto beans 
and kidney beans). Two-way (healthy and beans with 
each infection level) and six-way (healthy and beans 
with different infection levels) classification models 
were built. All models obtained good performances, 
with classification accuracy over 80% [48]. Kandpal 
et al. used hyperspectral imaging to detect corn kernels 
contaminated by aflatoxin  B1  (AFB1). Different varieties 
of corn contaminated by different concentrations of 
 AFB1 were studied. Discriminant models were built to 
identify different contamination levels of corn kernels, 
and the classification accuracy was over 90% [49]. Jiang 
et al. used hyperspectral imaging to detect moldy pea-
nuts. PCA analysis was conducted on hyperspectral 
images. A marker-controlled watershed algorithm was 
adopted to segment the kernels from the background. 
Threshold values were adopted to classify the infected 
pixels and infected kernels. The classification accuracy 
of learning and validation images was over 87% [50]. 
Del Fiore et  al. used hyperspectral imaging to detect 
different varieties of maize kernels contaminated by 
different Aspergillus strains and different Fusarium 
strains. Optimal wavelengths were selected. Then anal-
ysis of variance (ANOVA) and significance of differ-
ences tested at the 95% confidence level by Fisher’s 
Least Significant Difference (LSD) test were conducted. 
The results showed that hyperspectral imaging is able 
to detect toxigenic fungi on maizes [51]. Barbedo et al. 
used a hyperspectral imaging system to detect wheat 
kernels contaminated by deoxynivalenol. Different vari-
eties of wheat kernels produced in different years were 
used. A new index deoxynivalenol preliminary index 
(DPI) was proposed, and classification functions were 
developed based on DPI. The wheat kernels were 
divided into three classes and two classes based on dif-
ferent concentrations of deoxynivalenol. The classifica-
tion functions obtained results with classification 
accuracy over 70% [52]. Zhu et al. used a fluorescence 
hyperspectral imaging to detect aflatoxins in corn ker-
nels. Images were acquired for endosperm and germ 

side of maize kernels were acquired. The kernels were 
divided into different categories according to aflatoxins 
concentrations. Discriminant models were built using 
the two kinds of the spectral features. The classification 
accuracy was over 90% [53]. Yao et al. used the fluores-
cence hyperspectral imaging to detect single corn ker-
nels infected with Aspergillus flavus. Narrow-band 
fluorescence indices were developed based on the 
extracted spectra, including the normalized difference 
fluorescence index (NDFI), the difference fluorescence 
index, and the ratio fluorescence index. Maximum like-
lihood and binary encoding classifiers were used to 
developed classification models [54]. Barbedo et  al. 
used a hyperspectral imaging system to detect Fusar-
ium head blight in wheat kernels. A Fusarium index 
(FI) was defined as the proportion of pixels with values 
over 0.58 in a kernel. Healthy and infected kernels were 
identified based on the threshold value of 0.5 of FI. The 
classification results were robust faced with factors 
such as shape, orientation, shadowing and clustering. 
The relationship between FI and deoxynivalenol were 
also explored, and good correlation indicated that 
hyperspectral imaging could be used to detect deoxyni-
valenol concentrations [55]. Yao et  al. used a fluores-
cence hyperspectral imaging to detect maize inoculated 
with toxigenic (AF13) and atoxigenic (AF38) fungal 
strains. Hyperspectral images of germ side and 
endosperm side were acquired. Healthy kernels, 
infected kernels and kernels adjacent to the infected 
kernels were visually determined, respectively. Results 
of discriminant models indicated that the visually 
determined classes were not separated well. Specifi-
cally, classification accuracy of the maize kernels using 
100 pb as threshold was over 90%. Results indicated 
that germ side was more effective for classification of 
contaminated and healthy maize kernels than 
endosperm side [56]. Serranti et al. used hyperspectral 
imaging to detect fusarium-damaged yellow berries and 
vitreous Italian durum wheat kernels. Bulk samples 
were used to build classification models, and images 
with single wheat kernels were used to validate the clas-
sification models. PCA was conducted for qualitative 
exploration of the separation of the three kind of wheat 
kernels. Discriminant models built using full spectra or 
optimal wavelengths all obtained decent results, with 
classification accuracy over 90% [57]. Wang et al. used 
hyperspectral imaging to detect aflatoxin  B1  (AFB1) on 
maize kernel surface. Different concentrations of  AFB1 
were added to the kernels surface. PCA was conducted 
for the qualitative exploration of the separation of the 
different concentrations of  AFB1. Discriminant models 
obtained good classification results, with minimum 
classification accuracy over 80% [58]. Williams et  al. 
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used hyperspectral imaging to detect fungal develop-
ment (F. verticillioides) in maize kernels. Hyperspectral 
images were acquired under different stages of fungal 
development. PCA was conducted on hyperspectral 
images to explore the differences under different fungal 
growing time. Regression models were built to evaluate 
the fungal development degrees, with  R2 of the calibra-
tion set over 0.8 and  R2 of the prediction set over 0.7 
[59]. Williams et  al. used two hyperspectral imaging 
instruments to detect fungi infected maize kernels. 
PCA was firstly conducted on hyperspectral images to 
qualitatively identify healthy and infected maize 
regions. Discriminated models were applied on pixel-
wise spectra to discriminate the infected and non-
infected classes.  R2 of two different hyperspectral 
imaging systems was both over 0.7 [60]. Tekle et  al. 
used hyperspectral imaging to detect Fusarium-dam-
aged oat kernels. Microscopy analysis was conducted 
for microanalysis of different Fusarium infection 
degrees. LDA model was applied to classify pixel-wise 
spectra within hyperspectral images to form classifica-
tion maps of different degrees of infection. What’s 
more, based on the LDA model, ratio of damaged pixels 
in each grain was predicted [61]. Siripatrawan and 
Makino used hyperspectral imaging to monitor fungal 
growth on brown rice grains for 0, 2, 4, 6, 8 and 10 days.
Scanning electron microscopy was also used to observe 
the fungal growth. Discriminant model was used for 
fungal growth degree determination, and then regres-
sion model for fungal colony counts was also devel-
oped, with  R2 = 0.97, RMSEV = 0.39 1og(CFU/g) [62]. 
Chu et  al. used hyperspectral imaging to detect  AFB1 
produced by Aspergillus flavus in single maize kernel of 
different varieties. Discriminant models were built to 
classify three different concentration levels of  AFB1, 
with classification accuracy of calibration and predic-
tion sets over 80%. Regression models were built to 
predict  AFB1 content, with  R2 of the calibration and 
prediction sets over 0.7 [63].

Although spectral features could reflect seeds suffer-
ing from fungal damage effectively, researchers have also 
used the image features to detect fungi infected sam-
ples. Singh et  al. used hyperspectral imaging to detect 
wheat infected by Penicillium spp., Aspergillus glaucus 
and Aspergillus niger, respectively. PCA was applied to 
hyperspectral images, and significant wavelengths were 
identified by PCA loadings. After the PCA analysis, the 
mean, maximum and minimum reflectance intensities 
of the images at the significant wavelengths were calcu-
lated and used as inputs of discriminant models. Discri-
minant models obtained good results, with classification 
accuracy over 90%. However, there were difficulties in the 
detection of different fungal species [64].

As shown in Table  3, both the spectral features and 
image features were used to detect quality defects caused 
by pre-germination or insect damage. In these situations, 
the defects could be reflected by image information. As 
shown in Table  4, most of the studies of fungi damage 
on seeds used spectral features. The differences could be 
attributed to the defect types.

From above researches, it can be seen that the 
researches on the seed damage can mainly be divided 
into the seed quality defect and seed fungal damage 
detection. For seed fungal damage, qualitative judgment 
and quantitative analysis were both performed in the ref-
erences mentioned in Table  4. Good results have been 
achieved for seeds of different varieties, different fungal 
damages, most of which show accuracy above 90%.

Conclusion
Current researches indicate that hyperspectral imaging 
technique can detect whether seeds are affected by fun-
gal damage, as well as the amount of toxicants produced 
by fungi to some extent. The abovementioned researches 
focused on several kinds of fungal damage and the pro-
duced toxicants. These studies showed the feasibility and 
repeatability of hyperspectral imaging to detect the seed 
fungal damage. More researches concerning more fungal 
damage types are needed. The main limit of the fungal 
damage detection lies in the detection limit of toxicant 
amount. At present, no research has yielded a specific 
result about the detection limits of early fungal infec-
tions that can be detected. For fungi such as aflatoxin 
B1, there are also uncertainties in the detection limit. 
The methods mentioned in the above references were not 
ideal for actual application, because the concentrations 
of fungi in these researches might exceed the concentra-
tions in actual detection. The future studies can focus on 
the improvement of the detection limits. Besides, a large 
number of samples covering more sample features are 
also needed to establish a universal and robust model.

Seed cleanness detection
Application
Seeds may be mixed with dry leaf or stalk pieces, or 
some other materials during harvest. Keeping seed 
clean is important for seed storage, trading and con-
sumption. Studies that focused on examining spectral 
differences between different seeds and foreign materi-
als (Table 5) are available in Table 5. Wallays et al. used 
a hyperspectral imaging system to detect material other 
than grain (MOG, such as chaff and straw) in different 
varieties of wheat, barley and corn. Spectral differences 
were observed between seeds and MOG. Genetic algo-
rithm combined with PLS-DA was used to select sensi-
tive wavelengths, and images at the selected wavelengths 
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were used to detect the foreign materials, and predic-
tion map was also formed [65]. Ravikanth et  al. used a 
near-infrared hyperspectral imaging system covering the 
spectral range of 960–1700  nm to detect contaminants 
in Canada Western Red Spring wheat. Foreign materials 
(barley, canola, maize, flaxseed, oats, rye, and soybean), 
dockage types (broken wheat kernels, buckwheat, chaff, 
wheat spikelets, stones, and wild oats) and animal excreta 
types (deer and rabbit droppings) were studied. Spectral 
differences were observed between wheat and contami-
nants. Different spectral preprocessing methods and dif-
ferent discriminant models were used. Results of two-way 
classification models and multi-way classification models 
indicated the feasibility of using hyperspectral imaging to 
detect contaminants in wheat [66].

Conclusion
As for seed cleanness detection, spectral features were 
the mostly used features. This phenomenon can be attrib-
uted to the spectral differences between the seeds and 
the foreign materials, and the spectral differences might 
be easier to be obtained rather than image features, espe-
cially for those foreign materials with great similarity. 
Previous studies (Table  1) have shown the possibility of 
seed variety classification. Same as the seed classification, 
seed cleanness detection is the classification of seeds 
and extraneous materials. Compared with the different 
varieties of seeds, significant differences could be found 
in spectral curves of extraneous materials such as straw, 
animal droppings, small stones, etc. The results in Table 5 
indicate the feasibility of detecting different extraneous 
materials mixed with seeds using hyperspectral imaging. 
Future researches should improve sample size in order to 
enhance the robustness of models.

Seed composition and properties determination
Application
Hyperspectral imaging has been widely used in seed 
compositions and properties determination. Moreover, 
the advantage of hyperspectral imaging makes it fea-
sible to fast screen seed compositions and properties, 
especially for single seeds (Table  6). Zhang et  al. used 
hyperspectral imaging to determine total iron-reactive 
phenolics, anthocyanins and tannins in wine grapes of 
skins and seeds of different varieties of wine grapes and 
different sampling dates. Outliers were identified and 
removed by a Monte–Carlo method. Different spectral 
preprocessing methods and different regression meth-
ods were used. As for grape seeds, the combination of 
MSC (used for spectral pretreatment) and SVR (used for 
model building) achieved the coefficient of determination 
 (R2) over 0.8 for tannins and total iron-reactive pheno-
lics [67]. Xing et al. used hyperspectral imaging to detect 

alpha-amylase activities in individual Canadian Western 
Red Spring (CWRS) wheat. A FT-Near-infrared spectro-
photometer (FT-NIR) was also applied for comparison. 
PLSR model using spectral information from hyperspec-
tral imaging performed better than FT-NIR, due to the 
fact that hyperspectral imaging also had the advantage 
of being able to localize the region where spectra were 
extracted from [68]. Wang et al. used hyperspectral imag-
ing to predict textural properties (hardness, springiness 
and resilience) of maize kernels under different storage 
conditions. PLSR models were built using the full spectra 
or important wavelengths. Good prediction results were 
obtained with  R2 of prediction over 0.7. The prediction 
maps of textural properties of single maize kernels were 
also obtained [69]. William et al. used two hyperspectral 
imaging systems to detect maize kernel hardness. Hard, 
intermediate and soft maize kernels were prepared. PCA 
was applied to hyperspectral images, and PCA scores 
image was formed to explore the classification of differ-
ent hardness of maize kernels. PLS-DA models based 
on pixel-wise spectra obtained good performances with 
quite low root mean square error of prediction (RMSEP). 
Prediction maps were also obtained [70]. Sun et al. used 
hyperspectral imaging to detect the moisture content in 
the rice samples. Regression models were built using full 
spectra or optimal wavelengths. Both full spectra based 
models and optimal wavelengths based models obtained 
good results, and  R2 of calibration and prediction sets of 
most models were over 0.9 [71]. Rodríguez-Pulido et al. 
used hyperspectral imaging to detect the flavanol in grape 
seeds. Grape seeds from two different varieties were col-
lected, and flavanols determined by two different extract 
methods were studied. PCA analyses indicated that there 
were differences between two different varieties. PLSR 
models were built based on each variety and the combina-
tion of the two varieties.  R2 of most models was over 0.8 
[72]. Mahesh et al. used hyperspectral imaging to detect 
the protein content and hardness of Canadian wheat. Dif-
ferent varieties of wheat collected from different regions 
and different years were prepared. Hyperspectral images 
of bulk samples were acquired. Regression models were 
built using full spectra or optimal wavelengths, and class 
(variety) specific models and non-class specific models 
were built. The results showed that the variety had influ-
ence on prediction performances. Moreover, the corre-
lation coefficient (r) was lower than 0.8 for protein and 
hardness of each variety [73]. Caporaso et al. used hyper-
spectral imaging to detect protein content in single wheat 
kernels. Wheat kernels were collected from 2013 to 2014, 
covering the wide variations caused by environment and 
agronomic conditions. Regression models were built to 
predict the protein content and kernel weight. Moreo-
ver, the impacts of different preprocessing methods on 
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model performances were explored. Influences of kernel 
position, hardness and spectral region on model per-
formances were also studied, and the first two factors 
showed little influence on the model performances. As 
for protein content prediction,  R2 was over 0.7, but as for 
the kernel weight,  R2 was much worse [74]. Cogdill et al. 
used hyperspectral imaging to detect the moisture and 
oil content in single maize kernels. Different spectral pre-
processing methods and regression methods were stud-
ied.  R2 for the moisture content prediction would reach 
0.872, while  R2 for the oil content was lower than 0.6 [75]. 
Weinstock et al. used hyperspectral imaging to detect oil 
and oleic acid concentrations in individual corn kernels. 
Different spectral ranges were used for determination 
of the oil and oleic acid concentrations, and the wave-
lengths were also selected by genetic algorithm. Images 
were acquired from germ side up or germ side down ker-
nels. Moreover, hyperspectral imaging system was opti-
mized by germ side, focal plane placement, orientation, 
temporal drift. Regression models obtained good perfor-
mances, with  R2 of most models over 0.6 [76]. Yang et al. 
used hyperspectral imaging to detect the protein content 
in wheat kernels. In total, eleven varieties of wheat were 
collected. Hyperspectral images of bulk wheat samples 
were acquired. Different spectral preprocessing methods 
and regression methods were explored. Good prediction 
results of the protein content were obtained with  R2 of 
calibration and prediction over 0.9 [77].

Spectral features were used in the detection of seed 
chemical compositions. The spectral features related to 
the chemical compositions according to the principles of 
the spectroscopy technique. The results of above refer-
ences indicate that hyperspectral imaging technique can 
be used to detect the content of seed components, and 
the  R2 of most researches can reach a satisfactory level. 
Another advantage of seed composition and properties 
determination using hyperspectral imaging is that the 
seed components can be visually distributed with PCA 
scores images, which make it possible to detect single 
seeds in industries.

Conclusion
From Table 6, good results have been achieved for vari-
ous components detection of seeds. Current data sets 
are mainly based on a small amount of samples. Further 
researches should also focus on the sample size promo-
tion. Apart from the component detection for a same 
seed variety, the same component in different seed vari-
eties also should be taken into consideration in order 
to improve the universality of models. Same as the seed 
fungi damage detection, detection thresholds of low-con-
tent components should also be paid attention to.

Summary of data analysis
As a fast and non-destructive method, hyperspectral 
imaging has been widely applied in the seed quality and 
safety inspection. In this review, the applications of this 
technique involve the seed classification and grading, 
viability and vigor detection, damage (defect and fungus) 
detection, cleanness detection and composition determi-
nation. The summary for each category is presented in 
Tables 1, 2, 3, 4, 5 and 6. These Tables are further sum-
marized in this section, including the analyzed spectral 
range, signal mode, sample numbers, features (spectral 
features, image features and feature extraction meth-
ods), spectral preprocessing methods and data analysis 
strategies.

Researches have showed that different spectral wave-
bands can be adopted for the detection with a same pur-
pose, and satisfactory results could be achieved. Thus, 
researchers can select the wavebands depending on their 
practical conditions. For example, the 972–1642 nm and 
400–1000 nm wavebands were utilized by Feng et al. [24] 
and He et  al. [13] respectively, and they both accom-
plished classification accuracy over 90% in the maize 
variety classification.

Although there are three different signal modes for 
hyperspectral imaging (i.e. reflectance, transmittance and 
interactance), all the references in the Tables adopted the 
reflectance mode. The reason might be that the reflec-
tance mode could detect internal quality features as well 
as external quality features, such as shape, size and sur-
face texture, and that the reflectance mode is simple and 
easy to operate. As discussed above, the requirement of 
equipment with certain spectral wavebands and modes 
is not compulsory, and the selection of certain spectral 
wavebands and modes mainly depend on the researchers.

When it comes to the extraction of spectral features, 
PCA [16, 19, 28, 50, 64, 78] is the most common method. 
PCA can transform a set of variables with possible cor-
relations into a set of linearly independent variables by 
the orthogonal transformation. The first few principal 
components contain most of the information. Therefore, 
PCA can not only be utilized in the qualitative analysis 
of spectral data (e.g. PCA score plot or PCA score image 
visualization), but also help to select the characteris-
tic wavelengths according to the PCA loadings for the 
quantitative analyses. Hyperspectral imaging will gen-
erate a large amount of data. Extracting useful features 
from the large amount of data can significantly reduce 
the data volume, and therefore increase the computa-
tion efficiency. In addition to PCA, successive projec-
tions algorithm (SPA) and stepwise discriminant analysis 
(STEPDISC) are also commonly used methods in char-
acteristic wavelengths selection. In this review, charac-
teristic wavelengths selection by SPA was applied in the 



Page 22 of 25Feng et al. Plant Methods           (2019) 15:91 

seed classification, grading and composition determina-
tion [14, 15, 71]. STEPDISC was utilized in not only the 
seed classification and grading but also the seed damage 
detection [6, 9, 36, 42, 79].

Apart from spectral features, image features, such as 
texture features, color features (HSV and RGB), mor-
phological features (perimeter, area and roundness, etc.), 
and statistical features of gray value also showed great 
potential in the seed quality and safety detection [14, 17, 
20, 29, 78, 79]. Gray level co-occurrence matrix (GLCM) 
can reflect the comprehensive information of image gray-
scale about directions, adjacent intervals and amplitudes 
of variations, which makes it the most commonly used 
image feature selection method [14, 15, 37, 39, 78]. How-
ever, spectral features is still the mostly used information 
in hyperspectral imaging data analysis, which may be due 
to its convenience of acquisition. Models based on the 
combination of spectra and image usually obtained supe-
rior results compared with models using only spectral 
features or image features. The results of models using 
only image features are usually inferior to those of mod-
els based on spectral features [14–16, 38]. The analysis 
of spectral features is easier than that of image features, 
and results have proved the efficiency of models based on 
spectral features. Given this background, most of the ref-
erences focus on only the spectral features [12, 13, 22, 30, 
31, 33, 57, 61, 67].

After the acquisition of spectra, preprocessing methods 
were adopted by some researches to denoise the spectra 
and therefore improve the performance of the model. 
Normalization, standard normal variate (SNV), multi-
plicative scatter correction (MSC) and savitzky–golay 
(1st and 2nd derivative) smoothing are commonly used 
spectra preprocessing methods. Normalization is used 
to normalize data and fit the data within 0–1, which can 
reduce the spectral difference caused by the inconsistent 
height of the sample surface. SNV is often applied in scat-
ter correction to attenuate the slope variation of spectra. 
MSC is the most commonly method which could be used 
to remove the undesirable scatter effect. Savitzky–golay 
smoothing can be used to eliminate spectral noise, such 
as baseline-offset, tilt and reverse, etc. Ambrose et al. [27] 
used all these pretreatment methods in their research. 
As for the vigor detection of different varieties of corns, 
the optimal preprocessing method varied. In the vigor 
detection by the visible near infrared, the 2nd derivative 
savitzky–golay smoothing performed best for the yellow 
corn while the 1st derivative savitzky–golay smoothing 
was more suitable for the white corn and the purple corn. 
For the same sample, the best preprocessing method 
may be different for different spectral bands. In the vigor 
detection of purple corn by the short-wave near-infrared, 
the accuracy could be improved by the MSC and SNV 

spectral preprocessing. Therefore, there is no definite 
selection criteria for the spectral preprocessing method 
and it needs to be selected according to the practical 
application situation.

Calibration models are of significant importance in 
seed quality and safety inspection. For discriminant 
models and regression models, PLS was the widely used 
chemometric method for data analyses of hyperspectral 
images. PLS had the characteristic of dealing with large 
number of data rapidly and efficiently, and it worked 
well for both discriminant (PLS-DA) [14, 27, 30, 32] and 
regression analysis (PLSR) [31, 68, 72]. Except for PLS, 
neural network (BPNN), LDA, QDA, SVM, LS-SVM, 
PCA were also widely used chemometric methods. As 
supervised linear discriminant analysis models, PLS-
DA, LDA and QDA have a wide range of applications in 
early studies using hyperspectral imaging techniques to 
detect the seed quality and safety [6, 14, 35, 42, 46, 57, 
79]. Although BPNN, SVM and LS-SVM are also super-
vised discriminant analysis models, they have excellent 
performance in nonlinearly separable problems, so these 
methods are often used to build models [5, 6, 9, 47, 79]. 
In addition to the commonly used modeling approaches 
mentioned above, RF, KNN, SIMCA, FDA, GDA, etc. 
have also been used to establish models [5, 8, 22, 41]. 
Performances of discriminant and regression models 
varied due to their different principles, so the modelling 
approach should be selected based on the actual situ-
ation. For example, Feng et  al. [24] and Yang et  al. [14] 
both utilized PLS-DA and SVM in the classification of 
maize. PLS-DA achieved an accuracy of 99.5% in the for-
mer study while SVM performed best in the latter with 
the accuracy being 98.2%.

In sum, the use of these chemometric methods showed 
their effectiveness in hyperspectral image analysis. 
Researchers conducted data analysis procedures based 
on their own demands and interests, which resulted in 
the use of many different methods. Indeed, the optimal 
methods for data analysis could not be simply identi-
fied. Most of the studies used small samples volume, so 
the universality and robustness of these methods needed 
to be verified using large amount of samples in fur-
ther studies to meet the demand of practical real-world 
application.

Opportunities and challenges
Hyperspectral imaging, as mentioned above, has the 
advantage of acquiring the spectral features and spa-
tial features simultaneously. This advantage makes it 
quite convenient for researchers to define the study 
region within hyperspectral images. Seed is quite suit-
able for hyperspectral image analysis, in the forms of 
single seeds or bulk samples. Researches show a great 
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potential of applying hyperspectral imaging to seed 
quality and safety inspection.

As for single seeds, there would be hundreds of 
seeds in one hyperspectral image, which could highly 
increase the sampling and detection efficiency. With 
the high efficiency of sampling, more seeds with more 
variations could be used for analyses, and hyperspec-
tral image databases of seeds could thus be established 
and studied. The high sampling efficiency endows 
hyperspectral imaging with great potential in real-
world industrial application.

Discriminant and regression models were built using 
limited number of samples, and the number of sam-
ples could increase to a certain number due to the high 
sampling efficiency. With more samples covering more 
variations, representative discriminant models could 
be built for real-world industrial application. In recent 
years, the deep learning has been used in various fields 
as an effective modelling tool. Deep learning has the 
obvious advantage of dealing with large amount of 
data, which can learn and extract sample features 
automatically. Qiu et  al. used hyperspectral imaging 
combined with the deep learning to identify rice seed 
varieties and achieved good results. Deep learning has 
great potential of using hyperspectral imaging in seed 
quality and safety inspection [80].

Hyperspectral imaging also provides the feasibility 
to obtain visualization prediction maps, which could 
be helpful for industrial applications. With the devel-
opment of hardware and software, the computation 
time and efficiency has been significantly improved. 
The large amount of data generated by hyperspectral 
images can be dealt with in a high efficient way. Still, 
how to build models with such a large number of sam-
ples remains as a challenging problem.

Although great opportunities could be foreseen, 
great challenges are still on the road. A quite common 
challenge is the development and maintenance of cali-
bration models. Universal and representative calibra-
tion models are the basis of real-world application of 
hyperspectral imaging. But it is quite difficult to build 
such calibration models, due to the fact that great vari-
ations caused by varieties, growth condition, growth 
location, crop years etc. exist. Although high sampling 
efficiency can help to cover more variations, which 
makes model maintenance more efficient. Besides, 
model maintenance is still a complex issue. Moreo-
ver, as can be seen in Tables  1, 2, 3, 4 and 5, various 
data analysis methods and strategies have been used 
for hyperspectral image analysis. However, one or few 
optimal strategies of data analysis should be selected 
for real-world application.

Conclusion
Hyperspectral imaging is a complex, highly multidis-
ciplinary field with the aim of realizing efficient and 
reliable measurement of both contents and spatial dis-
tributions of multiple chemical constituents and physi-
cal attributes simultaneously without monotonous 
sample preparation, and therefore offering the possibil-
ity of designing inspection systems for the automatic 
grading and defects determination of seeds. The vari-
ous applications outlined in this review show the capa-
bility of using hyperspectral imaging for seed grading, 
viability and vigor detection, defect and disease detec-
tion, cleanness detection, and seed composition deter-
mination. Moreover, some practical implementations 
for real-time monitoring are currently available. It can 
be anticipated that real-time seed monitoring systems 
with this technique will meet the requirements of the 
modern industrial control and sorting systems of seeds 
in the near future.
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