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Abstract 

Background:  Banana (Musa spp.) is the most popular marketable fruit crop grown all over the world, and a dominant 
staple food in many developing countries. Worldwide, banana production is affected by numerous diseases and pests. 
Novel and rapid methods for the timely detection of pests and diseases will allow to surveil and develop control 
measures with greater efficiency. As deep convolutional neural networks (DCNN) and transfer learning has been suc-
cessfully applied in various fields, it has freshly moved in the domain of just-in-time crop disease detection. The aim of 
this research is to develop an AI-based banana disease and pest detection system using a DCNN to support banana 
farmers.

Results:  Large datasets of expert pre-screened banana disease and pest symptom/damage images were collected 
from various hotspots in Africa and Southern India. To build a detection model, we retrained three different convo-
lutional neural network (CNN) architectures using a transfer learning approach. A total of six different models were 
developed from 18 different classes (disease by plant parts) using images collected from different parts of the banana 
plant. Our studies revealed ResNet50 and InceptionV2 based models performed better compared to MobileNetV1. 
These architectures represent the state-of-the-art results of banana diseases and pest detection with an accuracy of 
more than 90% in most of the models tested. These experimental results were comparable with other state-of-the-art 
models found in the literature. With a future view to run these detection capabilities on a mobile device, we evaluated 
the performance of SSD (single shot detector) MobileNetV1. Performance and validation metrics were also computed 
to measure the accuracy of different models in automated disease detection methods.

Conclusion:  Our results showed that the DCNN was a robust and easily deployable strategy for digital banana 
disease and pest detection. Using a pre-trained disease recognition model, we were able to perform deep transfer 
learning (DTL) to produce a network that can make accurate predictions. This significant high success rate makes the 
model a useful early disease and pest detection tool, and this research could be further extended to develop a fully 
automated mobile app to help millions of banana farmers in developing countries.
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networks, Mobile app
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Background
Bananas (Musa spp.) are one of the world’s most impor-
tant fruit crops in terms of production volume and trade 
[1]. Though a major staple food in Africa, Asia, and 
Latin America, only 13% of bananas produced are glob-
ally traded [2], clearly indicating the fruit’s importance in 
domestic markets and food security. In East and Central 
Africa, it is a substantial dietary component, accounting 
for over 50% of daily total food intake in parts of Uganda 
and Rwanda [3]. Smallholder farmers, representing 85% 
of the world’s farms [4], face many abiotic and biotic con-
straints. Several banana pests and diseases have caused 
significant yield losses across production landscapes [5] 
and are a significant threat to global food security. There-
fore, early detection of pests and diseases in the field is a 
first crucial step. Traditional pest and disease identifica-
tion approaches rely on agricultural extension specialists, 
but these approaches are limited in developing countries 
with low human infrastructure capacity. Many small-
holder farmers rely on empirical knowledge, which is less 
effective in overcoming farming challenges [6]. The early 
identification of a crop disease or pest can lead to faster 
interventions with resulting reduced impacts on food 
supply chains.

Artificial intelligence (AI) with deep learning mod-
els which help to identify plant diseases by the plant’s 
appearance and visual symptoms that mimic human 
behavior should be considered [7]. Smartphone-based 
AI apps could alert farmers and expedite disease diag-
nosis, thus preventing the possible outbreak of pests 
and diseases [8]. Even though many farmers of develop-
ing countries do not have access to these advanced tools, 
internet infiltration and smartphone penetration offer 
new outfits for in-field crop disease detection. The Global 
System for Mobile Association (GMSA) predicted that 
global smartphone subscriptions would reach 5 billion 
by 2020, of which nearly one billion in Africa [9]. We do 
believe that cutting-edge technologies like AI, IoT (Inter-
net of Things), robotics, satellites, cloud computing, and 
machine learning are transfiguring agriculture and help-
ing farmers foresee their near future.

Deep learning is a novel method for image processing 
and object detection with greater accuracy in the classi-
fication of various crop diseases [10]. Transfer learning 
is one such popular approach in deep learning, where 
pre-trained models are adapted to do a new task. Deep 
transfer learning (DTL) generates a fresh framework for 
digital image processing and predictive analytics, with 
greater accuracy and has huge potential in crop disease 
detection. DTL approach also offers a promising avenue 
for in-field disease recognition using large trained image 
datasets and bids a shortcut to the developed mod-
els to meet the restrictions that are offered by mobile 

application [11]. This would have a distinct practical 
value for real field environment.

Earlier investigations have validated AI-based recogni-
tion of crop diseases in wheat [12], cassava [11] and on 
datasets of healthy and diseased plants [8, 13]. Crop dis-
ease recognition based on a computerized image system 
through feature extraction has revealed promising results 
[14] but extracting features is computationally rigorous 
and involves expert knowledge for robust depiction. Only 
few restricted large, curated image datasets of crop dis-
ease library exists [10]. The PlantVillage platform holds 
over 50,000 images of different crops and diseases [15]. 
However, most of these images were taken with detached 
leaves on a plain background, and CNN trained on these 
images did not achieve well when using real field images 
[8]. To build robust and more practical detection mod-
els, plenty of healthy and diseased images taken from 
different infected parts of the plants, and growing under 
different environmental conditions are needed. These 
images subsequently need to be labeled and pre-screened 
by plant pathology experts. So far, existing crop disease 
detection models are mostly focusing on leaf symptoms. 
Unfortunately, numerous symptoms also appear in other 
parts of the plant and the best examples are banana pest 
and disease linked symptoms.

The objective of this study was to apply state-of-the-
art deep learning techniques for the detection of visible 
banana disease and pest symptoms on different parts 
of the banana plant. We also considered the potential 
for adapting pre-trained deep learning CNN models to 
detect banana disease and pest symptoms using a large 
dataset of experts’ pre-screened real field images col-
lected from Africa and India.

Materials and methods
System description
Our DTL system dataset consists of five major banana 
diseases along with their respective healthy classes; 
dried/old age leaves and banana corm weevil (Cosmopo-
lites sordidus) damage symptom classes (Table  1). Since 
these major diseases and pest can affect different parts of 
the banana plant, we ended up with six different models 
(entire plant, leaves, pseudostem, fruit bunch, cut fruits 
and corm) and 18 different classes (Table  1) to achieve 
maximum accuracy. An overview of the DTL system is 
illustrated in Fig. 1.

Dataset collection
Our dataset comprises of about 18,000 field images 
of banana, collected by banana experts, from Biover-
sity International (Africa) and Tamil Nadu Agricul-
tural University (TNAU, Southern India) (Additional 
file 2: Table S1). These field images were captured under 
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different environmental conditions to build a robust 
model. For that purpose, various banana experts visited 
several banana farms located in disease/pest hotspots 
of Africa (Eastern Democratic Republic of Congo, Cen-
tral Uganda, Burundi and Benin Republic) and South-
ern India (Tamil Nadu and Kerala). Our current dataset 
consists of various types of data, including images with 
various resolutions (cell phone, tablets, standard RGB 
camera); light conditions depending on time of image 
taking (e.g., illumination), season (e.g., temperature, 
humidity), and different environmental locations (e.g., 
Africa, India). We have collected the images at different 
growing phases of the crop (i.e., vegetative and repro-
ductive). To prevent our model from being confused 
between dried/old leaves and diseased leaves, we also 
collected numerous images of dried and old age leaves at 
different plant growth stages. Images of a specific disease 
were collected from different varieties, at different plant 
growth stages and in different environments (Africa and 
India) in order to enrich the image library (Additional 
file 2: Table S1).

Our current CIAT banana image library consists of 
approximately 18,000 real field images. But in this present 

study, our datasets cover healthy plants (HP), dried/old 
age leaves (DOL) and a balanced number of images (700 
images) from five major diseases such as, Xanthomonas 
wilt of banana (BXW), Fusarium wilt of banana (FWB), 
black sigatoka (BS), yellow sigatoka (YS) and banana 
bunchy top disease (BBTV) along with the banana corm 
weevil (BCW) pest class. The major pest (corm weevil) 
and disease class symptoms and their control measures 
are presented in Additional file 2: Table S2. Since symp-
toms of different diseases and pests are seen at different 
parts of the banana plants, we captured images of all the 
plant parts (Fig.  2). Our current library was structured 
based on the disease and the affected plant parts so each 
part of the plant represents a model.

Data labeling
The image tagging process was done using LabelImg soft-
ware [16]. Labels and coordinates of the boxes were saved 
as an XML file, in the same format (PASCAL VOC) used 
by ImageNet [17]. The number of annotated samples cor-
responded to the number of bounding boxes labeled in 
each image. Every image could contain more than one 

Table 1  Description of annotated banana datasets used in this study

Model/classes Entire plant Leaf Pseudostem Fruit bunch Cut fruit Corm Total

Healthy plant (HP) 948 2583 702 716 8180 702 13,831

Xanthomonas wilt (BXW) 731 842 704 711 6196 9184

Bunchy top disease (BBTD) 902 902

Black sigatoka (BS) 980 980

Yellow sigatoka (YS) 1066 1066

Fusarium wilt (FWB) 759 967 1726

Dried/old leaves (DOL) 2562 2562

Corm weevil (BCW) 701 701

TOTAL 3340 9000 1406 1427 14,376 1403 30,952

Fig. 1  Overview of deep transfer learning (DTL) system for banana disease and pest detection
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annotation depending on the number of infected areas of 
the plant parts (Fig. 3).

CNN architectures
To train the models, we used three different architec-
tures, such as ResNet50 [18], InceptionV2 [19] and 
MobileNetV1 [20]. For the object detector model archi-
tecture, we chose Faster RCNN with ResNet50 and 
InceptionV2 due to their accuracy. Single Shot Multi-
box (SSD) model was selected with the MobileNetV1 
since this was one of the fastest object detection mod-
els available in TensorFlow [21]. To train these models, 

we used a python deep learning library called Tensor-
Flow and its object detection Application Programming 
Interface (API) with the Graphics Process Unit (GPU) 
version [22]. Pre-trained models were trained with 
COCO (Common objects in context) data set [23], and 
it is openly available in the TensorFlow object detection 
API zoo models. These three architectures were re-
trained using the transfer learning approach from the 
pre-trained versions. To finetune the original hyper-
parameters, the following configuration changes were 
executed, batch size and epoch number. The batch size 
was changed only in the MobileNetV1 from 24 to 6, 
and the epoch number was kept 15,000 for all the archi-
tectures trained.

Training
One of the most challenging tasks in machine learning 
is splitting the data without suffering from overfitting, 
under fitting or generalization hitches. Nevertheless, 
there are several refined statistical sampling methods 
which provide a path to deal with these common dis-
putes [24]. For developing banana model, our dataset was 
divided into the following proportions of 70%, 20%, 10%, 
for training (Ttr), validation (Tv) and testing (Tt), respec-
tively. The simple random sampling (SRS) technique was 
selected, considering that it is efficient and simple to 
implement [24].

Fig. 2  Detected classes and expected output from each model. a Entire plant affected by banana bunchy top virus (BBTV), b leaves affected 
by black sigatoka (BS), c cut pseudostem of Xanthomonas wilt (BXW) affected plant showing yellow bacterial ooze, d fruit bunch affected by 
Xanthomonas wilt (BXW), e cut fruit affected by Xanthomonas wilt (BXW), f corm affected by banana corm weevil (BCW)

Fig. 3  Demonstration of the disease detection process during 
training. a Original raw images, b labeled process (desired output), c 
disease detection



Page 5 of 11Selvaraj et al. Plant Methods           (2019) 15:92 

Performance metrics
Loss function
Classification loss is used to measure the model’s confi-
dence by classifying the pixels region delimitated by the 
bounding box [25] and the localization loss measures the 
geometric distance between the predicted bounding box 
and the ground truth annotation (validation bounding 
boxes). In this paper, we used the object detection API 
[26] to estimate the total loss function to measure model 
performance. The overall loss function or total loss was 
a weighted combination of the classification loss (classif ) 
and the localization loss (loc).

MaP score
The mean average precision (mAP) was used as the vali-
dation metric for banana disease and pest detection. Pre-
cision refers to the accuracy. mAP score was calculated as 
follows: Average across the number of classes of the true 
positive divided by the true positives plus false positive as 
in the following equation

Confusion matrix
In addition to mAP score, we also computed a confu-
sion matrix (CM) for each selected model based on 
the object detection script [27]. Computation of CM 
protocol is described below. For each detection, the 

mAP =
1

#classes

#classes∑

1

#TP

#TP + #FP
.

algorithm mines all the ground-truth boxes and classes, 
along with the detected boxes, classes, and scores of 
Intersection over Union (IoU). Only detections with 
a score ≥ 0.5 were considered and anything under this 
threshold were excluded. For each ground-truth box, 
the algorithm creates the IoU with each detected box. 
A match was found if both boxes had an IoU ≥ 0.5. 
The list of matches was trimmed to remove duplicates 
(ground-truth boxes that match with more than one 
detection box or vice versa). If there are duplicates, 
the best match (greater IoU) was continually selected. 
The CM was updated to reflect the resultant matches 
between ground-truth and detections. A detected 
box was reflected as correct where the intersection 
over union (IoU) of that box and the corresponding 
ground-truth box was ≥ 0.5. The formula for calculating 
IoU is shown in Fig.  4. In the final step, the CM was 
normalized.

Software and hardware system
The list of hardware and software used in this study was 
depicted in Table 2. For algorithm implementation, and 
data wrangling scripts, python 3.6 was used. Then mod-
els were re-trained using the powerful library called 
TensorFlow object detection API [28] developed by 
Google, this library support control process unit (CPU) 
and GPU training and inference.

B1

B2

Intersection

B1

B2

Union

, = =

~0.9 ~ 0.53 ~ 0.391 0.143 0.0

a

b

B1 = Ground truth bounding box

B2 = Predicted bounding box

Fig. 4  Diagram explaining intersect over union (IOU) calculation. a Intersection over union (IoU) formula where B1: ground truth bounding box and 
B2: predicted bounding box, b samples of calculated scores
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Results and discussion
Banana dataset collection and annotation
Banana is liable to various types of pests and dis-
eases for which symptoms occur in different parts of 
the plant (Table  1). The occurrences of these diseases 
depends on many factors, such as environment, tem-
perature, humidity, rainfall, variety, season, nutri-
tion, etc. For instance, certain diseases are localized 
in a particular country, region or continent, such as, 
Xanthomonas wilt of banana which is very specific to 
Africa. Therefore, reliable and accurate image collec-
tion at hotspots and strong labeling is very important. 
Since we are aiming for a global solution, we collected 
the image dataset of major banana diseases from differ-
ent disease hotspots through our CGIAR network. Pub-
licly available datasets poorly cover banana disease/pest 
symptom images, and the PlantVillage public dataset so 
far doesn’t include banana images. We collected our 
own datasets of leaves infected by specific pathogens 
at different infection stages and other infected plant 
parts such as entire plants, fruit bunch, cut fruits, pseu-
dostem and corms etc. with the help of well-trained 
banana experts using different cameras with vari-
ous resolutions (Table  1, Fig.  2). Currently our CIAT-
Bioversity, CGIAR dataset contains more than 18,000 
expert pre-screened original field images, but in this 
study we utilized only 12,600 images to create banana 
image data sets. Since our ultimate aim is to develop a 
mobile-assisted banana disease detection tool targeting 
banana farmers across the globe/wordwide and the sci-
entific community around the world, we enriched our 
image library with a diverse collection of images from 
different disease hot spots (Additional file 2: Table S1). 
To build a robust model, images were captured in real 
field scenarios on banana farms. A heterogeneous back-
ground is an essential feature of any real field images, 
most of the publicly available datasets are images of 
leaves in a controlled environment and simple back-
ground. For this reason, we tried to create many varia-
tions while collecting data from the field. The more the 

variation in the dataset, the better is the generalization 
of the trained model. The images were captured with 
different camera devices (Additional file  2: Table  S1) 
with diverse background. Furthermore, the challenging 
part of our image dataset is the background variations 
caused by the surroundings of the field, dried leaves on 
the floor, overlapping leaves from neighboring plants 
etc. This made our model more robust to adapt any 
changes in the real-time background.

We annotated the images to train our CNN by set-
ting the images of different classes in distinct folders. 
We randomly picked 75% of images of each class and 
put them into a training set. Likewise, another 25% 
of images of each class were put into a test set. The 
training and the test set both contained 700 real field 
images per class (700 × 18 classes = 12,600) which has 
made the data set well balanced. The categories and the 
number of annotated samples used in our system can 
be seen in Table  1. We carried out a strong labeling 
approach whereby the banana experts confirmed the 
typical symptoms on each and every image of the data 
set, as a result we ended up with a total of 30,952 anno-
tations (Table  1). Even though this strategy is time-
consuming, we worked with three human experts to 
annotate the whole banana dataset which took almost 
4 weeks. The tediousness of data collection and labeling 
had forced earlier studies [29, 30] to use small datasets 
to train and test classifiers. The use of small labeled 
datasets is also a limiting factor in machine learning, 
and it can lead to over or underfitting [31]. Most of 
the publicly available data sets are weakly labeled and 
resulted in poor performance.

Loss function
We summarized the total loss function (Additional 
file  1: Fig. S1a–f ) only for the winner models (Addi-
tional file 2: Table S3). In general, we could observe that 
the accuracy increased while loss decreased gradually 
with epoch. For Corm damage images, the reported 
error was high until the 1500th iteration, then started 
to go down and after the 4000th step remained con-
stant (Additional file  1: Fig. S1f ), the same behavior 
was noticed in Pseudostem and Cut Fruits (Additional 
file 1: Fig. S1c, e), where after 2000 iterations the error 
remained constant until the end. For the entire plant 
and leaves (Additional file 1: Fig. S1a, b), although a loss 
was found to be below 0.3 in the last iteration, it suf-
fered due to lot of variations, which was evident since 
these two models (entire plant and leaf ) were found 
to be low accurate compared to other models studied 
(Table  3). The probable reason was clearly explained 
further by other performance metrics below.

Table 2  Lists of hardware and software used in this study

Hardware and software Specifications

Memory 128 GB

Processor Intel Xeon E5-2667 v4 @ 3.20 GHz ×16

GPU NVIDIA Tesla M60

Operating system Windows Server 2016 ×64

Labeling software LabelImg

Deep learning library Tensor flow

Programming language Python
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Performance metrics and validation of developed models
In recent years, deep learning techniques, and in par-
ticular convolutional neural networks (CNNs), recur-
rent neural networks and long-short term memories 
(LSTMs), have shown great success in visual data rec-
ognition, classification, and sequence learning tasks. In 
the field of computer vision specifically, a set of CNN 
architectures have been emerging and they have proved 
to achieve tasks like object classification, detection 
and segmentation. In this paper, we retrained Mobile-
NetV1, InceptionV2 and RestNet50 architectures using 
transfer learning to detect the banana pest and dis-
eases. In order to improve the accuracy, the diseases 
were grouped by plant parts, and a different model was 
trained for each plant part (Table 1). Transfer learning 
is a progress that has the huge potential of being exten-
sively used in crop phenomics and pest and disease 
detection. Transfer learning is particularly interesting, 
as its improved performance of deep neural networks 
by evading intricate data mining and labeling efforts 
[32].

There are different metrics to measure the accuracy and 
effectiveness in object detection models. In this study, we 
used mAP which is one of the widely used metrics in the 
literature [33, 34], especially for detection. Additionally, 
for each best model, a confusion matrix was generated. 
Earlier studies on detection revealed that the mAP score 
had become the accepted and standard way in competi-
tions such as PASCAL VOC [35], ImageNet, and COCO 
datasets. More detail results are described below.

mAP score
The accuracy of the models based on mAP score is 
presented in Table  3. For the entire plant, leaves, pseu-
dostem and fruit bunch models performed better in 
Faster R-CNN (faster regions with convolutional neural 
network) ResNet50 than others tested, which achieved 
an mAP score of 73%, 70%, 99%, and 97%, respectively. 
For cut fruits and corm, Faster R-CNN InceptionV2 
worked better with the mAP accuracy of 95% and 98%, 
respectively. Fuentes et  al. 2017 [33], used three CNN-
based systems (Faster R-CNN, R-FCN and SSD) which 
performed object localization and disease diagnosis pro-
cesses simultaneously and their system achieved more 
than 86.0% mean average precision on annotated tomato 
leaf images. In this present study, ResNet50 and Incep-
tionV2 models have almost similar performance in all the 
cases compared to MobileNetV1 (Table 3). In generalized 
recognition, Faster R-CNN [36], models have been widely 
used and have achieved good results.

In this research, to achieve greater accuracy, we consid-
ered the complexity of the model as an important factor 

to select the best architectures for the training set. This 
characteristic could be measured by counting the total 
amount of learnable parameters or the number of opera-
tions. As a result, we selected three architectures (Incep-
tion, ResNet, MobileNet). Since complexity is associated 
with the capacity of the model to extract more features 
from the images, it is expected inceptionV2 to be the 
most accurate among three architectures. However, it is 
always a trade-off between complex and simple architec-
ture especially when you specifically think about mobile 
application.

We also noticed higher accuracy (more than 95%) for 
pseudostem, fruit bunch and corm compared to entire 
plant (73%) and leaf models (70%). This was expected 
in the entire plant model due to background noise in 
field environment, multiple classes (Fig.  5b) in the sin-
gle image and wide angle. Wide-angle images are often 
more complex due to the substantial overlap of multiple 
leaves and symptoms are scattered in different leaves. 
In the case of banana it is much more complex because 
of the specific plant morphology and large leaf size. We 
also observed that during the labeling process, a single 
class per image was working as a ground-truth for the 
model (Fig.  5a, b). But in real life scenario, one image 
could have multiple classes as seen in Fig. 3. Developed 
entire plant and leaf model from this study is finding 
multiple classes in single image (Fig. 5b) which is more 
practical and useful in the real-time field application, 

Table 3  mAP metric score for  different models developed 
from this study

Architecture Model Training 
time (h)

Accuracy

Faster R-CNN InceptionV2 Entire plant 30 0.728579

Faster R-CNN InceptionV2 Leaves 30 0.701833

Faster R-CNN InceptionV2 Pseudostem 30 0.999447

Faster R-CNN InceptionV2 Fruit bunch 30 0.973025

Faster R-CNN InceptionV2 Cut fruit 30 0.953296

Faster R-CNN InceptionV2 Corm 30 0.979151

Faster R-CNN ResNet50 Entire plant 20 0.734611

Faster R-CNN ResNet50 Leaves 20 0.703871

Faster R-CNN ResNet50 Pseudostem 20 0.999905

Faster R-CNN ResNet50 Fruit bunch 20 0.973634

Faster R-CNN ResNet50 Cut fruit 20 0.941152

Faster R-CNN ResNet50 Corm 20 0.976888

SSD MobileNetV1 Entire plant 50 0.446880

SSD MobileNetV1 Leaves 50 0.619923

SSD MobileNetV1 Pseudostem 50 0.98239

SSD MobileNetV1 Fruit bunch 50 0.936463

SSD MobileNetV1 Cut fruit 50 0.923548

SSD MobileNetV1 Corm 50 0.997296
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since our ground-truth data is solely grouped on single 
class (Fig. 5a) which brought the mAP score lower than 
expected and it was the main cause. It was a little sur-
prise for leaf model where we expect more than 90% 
accuracy since it is not very wide angle like the entire 
plant class. But these wide-angle images from field envi-
ronment expected to have more background noises. 
To confirm these results in leaf model, we did an addi-
tional test to select images containing only one class per 

image, which reflected on higher accuracy more than 
70% (Additional file  2: Table  S4). Moreover, this accu-
racy was further increased (more than 90%) when the 
new image dataset contain only one focused leaf per 
image (Additional file  2: Table  S4). From these results, 
it is clear the complexity of the banana leaf morphol-
ogy, disease symptoms, multiple classes in single image, 
field background noises etc. Unlike other crops such as 
rice, wheat, and cassava, banana leaves are very big, that 
makes the angle wider than other crops which increases 
the complexity in real-time field images (Fig.  5). In the 
case of pseudostem, fruit bunch, cut fruits and corm 
field images used in this study have more focused images 
towards the object with less background variation and 
single class per image which reduced the complexity and 
improved mAP score (Table 3).

Confusion matrix
In the field of deep learning, specifically the problem 
of statistical classification, the confusion matrix, also 
known as an error matrix, is a specific table layout that 
allows visualization of the performance of an algorithm. 
It considers different metrics: the true positives (TP), 
true negatives (TN), false positives (FP) and false nega-
tives (FN) etc. Based on the results obtained on the test 
dataset, we generated a confusion matrix for each of the 
best architectures (Fig.  6a–f). Each confusion matrix 

Fig. 5  Comparison between ground-truth labeled image and the 
predicted classes by model. a Ground-truth labeled image of FWB, b 
image after predicted by a model

Fig. 6  Confusion matrix for the best models identified in this study. a Entire plant—ResNet, b leaves—ResNet, c pseudostem—ResNet, d fruit 
bunch—ResNet, e cut fruits—inception, f corm—inception
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gave us a accuracy per disease (classes) and quantitative 
representation of the classes in which the model is mis-
classified or confused (Fig. 6a–f). Due to the complexity 
of the patterns shown in each class from different plant 
parts, the system tends to be confused on several classes 
that results in lower performance. Based on the results, 
we can visually evaluate the performance of the classifier 
and determine which classes and features are more prone 
to confusion. If the number of misclassifications between 
two particular classes becomes high, it indicates that we 
need to collect more data on those classes to properly 
train the convolutional architecture so that it can differ-
entiate between those two classes. For this purpose, we 
also generated confusion matrix on our validation set for 
each best CNN architecture. Furthermore, it helps us to 
identify a future solution in order to avoid those inter-
class confusions.

On comparing among the models, leaves produced a 
lot of confusion and low accuracy (57%) especially yel-
low sigatoka leaf spot classes (Fig. 6b), this was expected 
since YS and BS commonly produce similar symptoms 
in advanced stages, but early stage symptoms are unique 
(Additional file  1: Fig. S2). It is worth mentioning that 
yellow leaf spot disease appearing more frequently in 
Asia and Latin America and black leaf spot in Africa, 
and their treatment and disease controlling measures are 
almost similar. To handle these issues, we are currently 
collecting and labeling images of early stage symptoms 
for improving the accuracy of the model, and the abil-
ity to generalize. Because the dataset is not big enough, 
it was not considered in this study. We also observed 
medium prediction accuracy in the dried/old age leaf 
classes (Fig. 6b), it was obvious that, advanced stages of 
all leaf diseases will turn to be like dried/old age leaves 
and we expected this results. So early and mid-stage leaf 
symptoms are very important to detect the diseases with 
more accuracy. As we expected, the entire plant, corm, 
pseudostem, fruit bunch and cut fruits models, we had 
not found any accuracy or misclassification problems 
(Fig.  6a, c–f ), which was ranged between 90 and 100% 
accuracy.

Conclusions and future directions
Many computer visioned approaches for automated 
crop disease detection and classification have been 
reported, but still, a detailed exploration of real-time 
pest and diseases recognition is lagging. In this paper, 
a novel method of using deep transfer learning method 
was explored in order to automatically detect banana 
pest and disease symptoms on different parts of the 
banana plants using real-time field images. This sys-
tem introduces a practical and applicable solution for 
detecting the class and location of diseases in banana 

plants, which represents a main comparable difference 
with other methods for plant diseases classification. 
The developed model was able to detect the difference 
between healthy and infected plant parts for differ-
ent banana diseases. All images used in this study are 
available upon formal request through PestDisPlace 
(https​://pestd​ispla​ce.org/) [37]. It consists of more than 
18,000 original expertly pre-screened banana images 
collected on real farmer’s field in Africa, Latin America 
and South India and was extended to more than 30,952 
annotations. The experimental results achieved accu-
racy between 70 and 99%, of the different models tested. 
The robust models developed from this research will be 
more useful to develop the decision-support system to 
help early identification of pest and diseases and their 
management. Models developed in this study are cur-
rently utilized to develop a banana mobile app which 
is currently being tested by collaborative partners in 
Benin, DR Congo, Uganda, Colombia, and India (Addi-
tional file 1: Fig. S3). The developed model system from 
this study is easily transferable to other CGIAR manda-
tory crops.

Future work will comprise the development of a 
broad structure consisting of server side machin-
ery containing a trained model and an application for 
smartphone devices with features such as displaying 
recognized diseases in other CGIAR mandatory crop 
such as Brachiaria, common bean, cassava, potato and 
sweet potato. Additionally, future work will involve 
disseminating the usage of the model by training it 
for banana disease recognition on wider applications, 
merging aerial images of banana growing regions cap-
tured by drones and convolution neural networks for 
instant segmentation of multiple diseases. By extend-
ing this research, we are hoping to achieve a valuable 
impact on sustainable development and strengthen 
banana value chains.

Additional files

Additional file 1: Figure S1. Loss function curve for the winner models. 
a Entire plant—ResNet, b Leaves—ResNet, c Pseudostem—ResNet, d Fuit 
bunch—ResNet, e Cut fruits—Inception, f Corm—Inception. Fig. S2. Early 
and late stage symptoms of banana leafspots. a Black sigatoka (BS) late 
stage, b Yellow sigatoka (YS) late stage, c Black sigatoka (BS) early stage, 
d Yellow sigatoka (YS) early stage. Fig. S3. Developed mobile application 
for Banana disease and pest detection. a Initial screen, b Image taking and 
Scan, c Diagnostic screen, d Recommendations and management. 

Additional file 2: Table S1. Overview of banana data set collections, 
locations and image acquisition. Table S2. Description of major banana 
diseases and pest symptoms with their control measures. Table S3. Win-
ner architecture for the models developed in this study. Table S4. mAP 
score metrics of leaf classes before and after segmentation.

https://pestdisplace.org/
https://doi.org/10.1186/s13007-019-0475-z
https://doi.org/10.1186/s13007-019-0475-z
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