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Flowers, leaves or both? How to obtain 
suitable images for automated plant 
identification
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Abstract 

Background:  Deep learning algorithms for automated plant identification need large quantities of precisely labelled 
images in order to produce reliable classification results. Here, we explore what kind of perspectives and their combi-
nations contain more characteristic information and therefore allow for higher identification accuracy.

Results:  We developed an image-capturing scheme to create observations of flowering plants. Each observation 
comprises five in-situ images of the same individual from predefined perspectives (entire plant, flower frontal- and lat-
eral view, leaf top- and back side view). We collected a completely balanced dataset comprising 100 observations for 
each of 101 species with an emphasis on groups of conspecific and visually similar species including twelve Poaceae 
species. We used this dataset to train convolutional neural networks and determine the prediction accuracy for each 
single perspective and their combinations via score level fusion. Top-1 accuracies ranged between 77% (entire plant) 
and 97% (fusion of all perspectives) when averaged across species. Flower frontal view achieved the highest accuracy 
(88%). Fusing flower frontal, flower lateral and leaf top views yields the most reasonable compromise with respect to 
acquisition effort and accuracy (96%). The perspective achieving the highest accuracy was species dependent.

Conclusions:  We argue that image databases of herbaceous plants would benefit from multi organ observations, 
comprising at least the front and lateral perspective of flowers and the leaf top view.

Keywords:  Species identification, Object classification, Multi-organ plant classification, Convolutional networks, Deep 
learning, Plant images, Computer vision, Plant observation, Plant determination, Plant leaf, Flower, Poaceae
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Background
The continuing unprecedental loss of species from eco-
logical communities strongly affects properties, function-
ing and stability of entire ecosystems [1, 2]. Plants form 
the basis for many terrestrial food webs and changes in 
plant composition are known to cascade up through the 
entire community [3, 4], affecting multiple ecosystem 
functions [5]. Monitoring and managing the presence or 
abundance of plant species is therefore a key requirement 
of conservation biology and sustainable development, but 
depends on expert knowledge in terms of species identi-
fication. However, the number of experts can hardly keep 

pace with the multitude of determination tasks neces-
sary for various monitoring purposes. Automated plant 
identification is considered to be the key in mitigating 
the “taxonomic gap” [6, 7] for many professionals such 
as farmers, foresters or teachers in order to improve neo-
phyte management, weed control or knowledge transfer.

Serious proposals to automate this process have 
already been published 15 years ago [8] but have only 
now become an increasingly reliable alternative [9]. 
Recent boosts in data availability, accompanied by sub-
stantial progress in machine learning algorithms, nota-
bly convolutional neural networks (CNNs), pushed 
these approaches to a stage where they are better, faster, 
cheaper and have the potential to significantly contrib-
ute to biodiversity and conservation research [10]. Well 
trained automated plant identification systems are now 
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considered to be comparable to human experts in label-
ling plants on images, given the limited amount of infor-
mation present in the two dimensional images [11].

A considerable hurdle in this research direction has 
been the acquisition of qualified training images. Today, 
the ubiquity of smartphones allows people to capture, 
digitize, and share their observations, providing large 
quantities of images which may be utilized for the train-
ing of classification algorithms. Worldwide citizen sci-
ence platforms such as Pl@ntNet [7] and iNaturalist [12] 
show the great potential of crowd-sourcing vast amounts 
of image data. However, such images inhibit a wide range 
of quality. A widely known example is the PlantCLEF 
dataset [13], which is used as benchmark for various 
computer vision tasks [14–18]. In this collection, each 
image is assigned a posteriori to one of seven categories 
(entire, leaf, leaf scan, flower, fruit, stem and branch). Yet, 
it is not clear how the results achieved on such a dataset 
are affected by data imbalance towards image number per 
species and organs, poor image quality and misidentified 
species [19]. As there is no dedicated sampling protocol 
for generating these observations, in most cases observa-
tions consists of single images [18] of the whole plant or 
organs taken from undefined perspectives. Other pub-
licly available benchmark datasets such as Oxford flower 
102 [20], MK leaf [21] or LeafSnap [22] usually comprise 
either leaves or flowers but in no case multi organ obser-
vations. A recent approach named WTPlant uses stacked 
CNNs to identify plants in natural images [23]. This 
approach explicitly addresses multiple scales within a sin-
gle picture and aims at analyzing several regions within 
the image separately, incorporating a preprocessing step 
with interactive image segmentation.

Even for experienced botanists it is sometimes impos-
sible to provide a definite identification based on a single 
image [19], because important details might not be vis-
ible in sufficient resolution in order to be recognized and 
distinguished from similar species. Similar to humans, 
who increase the chance of correctly identifying plant 
specimen by observing several organs at the same time, 
considering more than one viewing angle and taking a 
closer look at specific organs, combining different per-
spectives and organs in an automated approach is sup-
posed to increase the accuracy of determination tasks 
[16, 17]. Especially, separate images of organs and dif-
ferent viewing angles might be beneficial to depict spe-
cific small-scaled structures. To our knowledge, the 
contribution of different perspectives and the fusion of 
several combinations have never been assessed using a 
controlled and completely balanced dataset. Therefore, 
we curated a partly crowd-sourced image dataset, com-
prising 50,500 images of 101 species. Each individual was 
photographed from five predefined perspectives, and 

each species is represented by 100 of those completely 
balanced observations. The entire dataset was created 
using the freely available Flora Capture smartphone app 
[24], which was intentionally developed to routinely col-
lect this type of multi organ observation. We reviewed 
each image to ensure the quality of species identification 
and allowing us to address our research questions largely 
independent of any data quality constraints. More spe-
cifically we ask:

•	 RQ1 Which are the most and the least important 
perspectives with respect to prediction accuracy?

•	 RQ2 What gain in accuracy can be achieved by com-
bining perspectives?

•	 RQ3 How do the accuracies differ among separate 
CNNs trained per image perspective in contrast to a 
single CNN trained on all images?

•	 RQ4 Is the specificity of a perspective or a combina-
tion of perspectives universal or species dependent?

•	 RQ5 How sensitive are identification results to the 
number of utilized training images?

To answer these questions we trained a convolutional 
neuronal network classifier (CNN) for each perspec-
tive and used it to explore the information contained in 
images from different organs and perspectives.

Methods
Image acquisition
All images were collected using the Flora Capture app 
[24], a freely available smartphone application intended 
to collect structured observations of plants in the field. 
Each observation is required to consist of at least five 
images (cp. Fig. 1). For forbs, the following five perspec-
tives are prescribed. First, entire plant—an image captur-
ing the general appearance of the entire plant (referring 
to the ramet; i.e viable individuals within a clonal colony) 
taken in front of its natural background. Second, flower 
frontal—an image of the flower from a frontal perspec-
tive with the image plane vertical to the flower axis. 
Third, flower lateral—an image of the flower from a lat-
eral perspective with the floral axis parallel to the image 
plane. Fourth, leaf top—an image showing an entire 
upper surface of a leaf. In the case of compound leafs, all 
leaflets shall be covered by the image. Fifth, leaf back—
the same as before but referring to the leaf lower surface. 
In the case of composite flowers and flower heads form-
ing a functional unity (i.e., Asteraceae, Dipsacaceae) the 
flower heads were treated as a single flower. In the case 
of grasses (Poaceae), this scheme is slightly modified. 
Instead of the flower frontal view, users are requested to 
take an image of at least one flower from the minimum 
focusing distance of their device. The flower lateral view 
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relates always to a side view of the whole inflorescence. 
Images of entire grass leaves would have too less detail 
and the image would be dominated by the background. 
Instead, we requested an image of the upper side of the 
leaftip (leaf top) and another one taken from the back-
side in the mid of the leaf (leaf back). These images are 
also taken at the minimum focusing distance. Despite the 
slightly different definitions in grass species we always 
used the names of the forb perspectives for all species. All 
images are obtained in situ and the users are instructed 
not to remove any part of the plant while creating the 
observation. Especially, photos of the leaf backsides 
required additional manual effort to arrange the objects 
appropriately and without damage [25]. In the last step, 
the observations were uploaded to the Flora Incognita 
server. The correct species for all observations were 
determined, validated or corrected by the authors of this 
paper. The citizen science community of the Flora Incog-
nita project [26] was encouraged to particularly contrib-
ute observations of species covered by this experiment. 

Yet, the majority of observations (especially grasses) were 
obtained by project members and a number of students 
with a variety of smartphone models, in different regions 
and with smartphones interchanged among persons. 
None of the images was preprocessed in any way. The 
only qualifying condition for an observation was that five 
images from the predefined perspectives were taken with 
a smartphone using the Flora Capture App.

Dataset curation
The 101 species in the dataset have been selected to mainly 
represent the large plant families and their widely distrib-
uted members across Germany (cp. Fig. 2). Nomenclature 
follows the GermanSL list [27]. Whenever possible we 
selected two or more species from the same genus in order 
to evaluate how well the classifiers are able to discriminate 
between visually very similar species (see Additional file 1: 
Table S1 for the complete species list). Each individual was 
flowering during the time of image acquisition.

Fig. 1  a Dataset overview: Each of the 101 species was photographed from five perspectives with 100 repetitions per species. b Examples for a 
complete observation of a grass species (Poa pratensis, left) and a forb species (Ranunculus acris, right). The perspectives are names entire plant, 
flower frontal, flower lateral, leaf tip and leaf back. Please note that content definition of the grass perspectives does not match exactly with the 
definition of the forb species as described in the text. Despite of the slightly different definitions, the perspective names are the same for grass and 
forb observations. This figure shows only 100 species for the ease of presentation
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Classifier and evaluation
We trained convolutional neural network (CNN) classifi-
ers on the described data set. CNNs are a network class 
applicable to deep learning of images that are comprised 
of one or more convolutional layers followed by one or 
more fully connected layers (see Fig. 3). CNNs consider-
ably improve visual classification of botanical data com-
pared to previous methods [28]. The main strength of 
this technology is its ability to learn discriminant visual 
features directly from the raw pixels of an image. In this 
study, we used the state-of-the-art Inception-ResNet-v2 
architecture [29]. This architecture achieved remarkable 
results on different image classification and object detec-
tion tasks [30]. We used a transfer learning approach, 

which is a common and beneficial procedure for training 
of classifiers with less than one million available train-
ing images [31]. That is, we used a network that was pre-
trained on the large-scale ImageNet [32] ILSVRC 2012 
dataset before our actual training began. Training used a 
batch size of 32, with a learning rate of 0.003 and was ter-
minated after 200,000 steps. Because an object should be 
equally recognizable as its mirror image, images were ran-
domly flipped horizontally. Furthermore, brightness was 
adjusted by a random factor up to 0.125 and also the satu-
ration of the RGB image was adjusted by a random fac-
tor up to 0.5. As optimizer for our training algorithms we 
used RMSProp [33] with a weight decay of 0.00004. Each 
image was cropped to a centered square containing 87.5% 
of the original image. Eventually, each image was resized 
to 299 pixels. We used 80 images per species for train-
ing and ten for each validation and testing. The splitting 
was done based on observations rather than on images, 
i.e., all images belonging to the same observation were 
used in the same subset (training, validation or testing). 
Consequently, the images in the three subsets across all 
five image types belong to the same plants. We explicitly 
forced the test set to reflect the same observations across 
all perspectives, combinations and training data reduc-
tions in order to enable comparability of results among 
these variations. Using images from differing observa-
tions in the test, validation and training set for different 
configurations might have obscured effects and impeded 
interpretation through the introduction of random fluctu-
ations. In order to investigate the effect of combining dif-
ferent organs and perspectives, we followed two different 

Fig. 2  Family membership of the species included in the dataset

Fig. 3  Overview of the approach illustrating the individually trained CNNs and the score fusion of predictions for two perspectives. Each CNN is 
trained on the subset of images for one perspective, its topology is comprised of 235 convolutional layers followed by two fully connected layers. 
For each test image the classifier contributes a confidence score for all species. The overall score per species is calculated as the arithmetic mean of 
the scores for this species across all considered perspectives
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approaches. On the one hand, we trained one classifier for 
each of the five perspectives (A) and on the other hand, 
we trained a classifier on all images irrespective of their 
designated perspective (B). All subsequent analyses were 
subjected to the first training strategy (A), while the sec-
ond one was conducted to compare the results against 
the baseline approach, as used in established plant iden-
tification systems (e.g. Pl@ntNet [7], iNaturalist [12] or 
Flora Incognita [26]), where a single network is trained 
on all images. Finally, we applied a sum-rule based score 
level fusion for the combination of the different perspec-
tives (cp. Fig. 3). We decided to apply a simple sum rule-
based fusion to combine the scores of perspectives, as this 
represents the most comprehensible method and allows 
a straightforward interpretation of the results. The over-
all fused score S is calculated as the sum of the individual 
scores for the particular combination as

where n is the number of perspectives to be fused.
As our dataset is completely balanced we can simply 

calculate Top-1 and Top-5 accuracy for each species as 
the average across all images of the test set. Top-1 accu-
racy is the fraction of test images where the species which 
achieved the highest score from the classifier is consist-
ent with the ground truth, i.e the predicted species equals 
the actual species. The Top-5 accuracy refers to the frac-
tion of test images where the actual species is one of the 
five species achieving the highest score.

Reducing the number of training images
As the achieved accuracy will be dependent on the num-
ber of available training images, we reduced the original 
number of 80 training images per species to 60, 40 and 
20 images. We than repeated the training of CNNs for 
each of the reduced sets and used each of the new classi-
fiers to identify the identical set of test images. i.e. images 
belonging to the same ten observations. The difference in 
accuracy achieved with less training images would indi-
cate whether adding more training images can improve 
the accuracy of the classifier. On the contrary, if accuracy 
is unchanged or only slightly lower with the number of 
training images reduced, this would indicate that adding 
more training images is unlikely to further improve the 
results.

Results
Performance of perspectives and combinations
Classification accuracy for the single perspectives ranges 
between 77.4% (entire plant) and 88.2% (flower lateral). 
Both flower perspectives achieve a higher value than any 

(1)S =

n∑

1

s

n

of the leaf perspectives (cp. Table  1, Fig.  4). Accuracy 
increases with the number of perspectives fused, while 
variability within the same level of fused perspectives 
decreases. The increase in accuracy decreases with every 
added perspective (Fig. 4) and fusing all five perspectives 
yields the highest overall accuracy of all combinations 
(97.1%). The figure also shows that certain combinations 
with more fused perspectives actually perform worse 
than combination with less fused perspectives. For exam-
ple, the accuracy of the best two-perspectives-combina-
tion, flower lateral combined with with leaf top (FL + LT: 
93.7%), is higher than the accuracy for the worst 

Table 1  Top-1 and  Top-5 accuracies achieved for  each 
single perspective and for all combinations of perspectives

“All” refers to the complete dataset comprising 101 species, “Forbs” refers to 
the 89 forb species and “Grasses” refers to the twelve Poaceae species. Top-5 
accuracy is not shown for “Grasses” due to the low number of species. The 
highest accuracy per combination level is marked in bold face

Analysed All Forbs Grasses

Perspective(s) Top-1 Top-5 Top-1 Top-5 Top-1

Entire plant (EP) 77.4 92.7 80.8 94.5 63.3

Flower frontal (FF) 87.1 96.5 92.6 98.7 85.0
Flower lateral (FL) 88.2 97.6 89.1 97.9 85.0
Leaf top side (LT) 81.1 94.8 84.9 95.6 55.8

Leaf back side (LB) 81.8 95.4 83.8 96.1 68.3

EP + FF 91.6 98.5 94.6 99.1 84.2

EP + FL 92.4 98.4 85.1 96.2 90.8
EP + LT 88.3 97.6 91.2 98.1 71.7

EP + LB 90.3 98.2 92.5 98.4 78.3

FF + FL 93.3 98.5 94.0 98.9 87.5

FF + LT 92.5 98.6 96.4 99.4 84.2

FF + LB 93.3 98.7 96.1 99.3 88.3

FL + LT 93.7 98.7 87.2 96.1 84.2

FL + LB 93.5 99.0 86.7 96.7 85.8

LT + LB 88.4 97.4 91.0 97.8 70.0

EP + FF + FL 95.3 98.9 94.5 98.9 92.5

EP + FF + LT 94.0 99.0 96.5 99.3 82.5

EP + FF + LB 95.1 99.3 96.9 99.6 90.0

EP + FL + LT 94.4 98.9 92.4 98.3 84.2

EP + FL + LB 95.5 99.3 93.3 98.7 84.2

EP + LT + LB 92.1 98.7 94.8 98.8 89.2

FF + FL + LT 95.8 99.0 96.8 99.3 87.5

FF + FL + LB 95.8 99.1 96.5 99.3 91.7
FF + LT + LB 95.3 98.9 97.4 99.6 91.7
FL + LT + LB 94.8 99.0 92.3 98.0 84.2

EP + FF + FL + LT 96.0 98.9 97.0 99.2 90.0

EP + FF + FL + LB 96.7 99.4 97.4 99.6 92.5
EP + FF + LT + LB 95.8 99.3 97.6 99.4 86.7

EP + FL + LT + LB 96.2 99.1 95.6 98.9 88.3

FF + FL + LT + LB 96.8 99.3 97.6 99.6 90.8

All 97.1 99.3 98.2 99.4 90.0
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three-perspective-combination entire plant in combina-
tion with leaf top and leaf back (EP + LT + LB: 92.1%).

The combination of the two flower perspectives yields 
similarly high accuracies as the combination of a leaf 
and a flower perspective, while the combination of 
both leaf perspectives achieve the second lowest over-
all accuracy across all two-perspective-combinations 
with only the combination of entire plant and leaf top 
slightly worse. The best performing three-perspective 
combinations are both flower perspectives combined 
with any of the leaf perspectives. The four-perspectives-
combinations generally show low variability and equally 
or slightly higher accuracies when compared to the 

three-perspectives-combinations (cp. Table  1, Fig.  4). 
Fusing all five perspectives achieves the highest accuracy 
and the complete set of ten images for 83 out of the 101 
studied species is correctly classified, while this is  the 
case for only 38 species if considering only the the best 
performing single perspective flower lateral (cp. Fig. 5).

Differences among the training approaches
The accuracies gained from the single CNN (approach 
B) are in the vast majority markedly lower than the 
accuracies resulted from the perspective-specific CNNs 
(approach A) (Fig.  4). On average, accuracies achieved 

70

80

90

100

1 2 3 4 5

Number of perspectives

A
cc

ur
ac

y

alpha

70

80

90

100

EP FF FL LT LB EP+FF
EP+FL
EP+LT
EP+LB
FF+FL
FF+LT
FF+LB
FL+LT
FL+LB
LT+LB
EP+FF+FL
EP+FF+LT
EP+FF+LB
EP+FL+LT
EP+FL+LB
EP+LT+LB
FF+FL+LB
FF+FL+LT
FF+LT+LB
FL+LT+LB
EP+FF+FL+LT

EP+FF+FL+LB

EP+FF+LT+LB

EP+FL+LT+LB

FF+FL+LT+LB

All

Perspective combination

A
cc

ur
ac

y

Number of 
perspectives

1-A
1-B
2-A
2-B
3-A
3-B
4-A
4-B
5-A
5-B

a

b
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Trifolium dubium agg.
Trifolium campestre

Medicago lupulina
Hippocrepis comosa

Lotus corniculatus agg.
Primula elatior agg.

Primula veris
Hypericum hirsutum

Hypericum perforatum
Geum urbanum

Chelidonium majus
Ficaria verna

Ranunculus auricomus agg.
Ranunculus lanuginosus

Ranunculus acris agg.
Ranunculus repens

Ranunculus bulbosus agg.
Potentilla verna agg.

Potentilla reptans
Anemone ranunculoides

Oxalis acetosella
Anemone nemorosa

Potentilla sterilis
Fragaria viridis
Fragaria vesca

Fragaria moschata
Bellis perennis

Tanacetum corymbosum agg.
Tripleurospermum maritimum agg.

Leucanthemum vulgare agg.
Leontodon hispidus

Mycelis muralis
Lapsana communis

Veronica serpyllifolia
Veronica arvensis

Veronica chamaedrys agg.
Veronica persica

Veronica hederifolia agg.
Hepatica nobilis

Campanula trachelium
Campanula rotundifolia agg.

Campanula rapunculoides
Vicia sepium
Viola odorata

Polygala comosa
Polygala amara agg.
Lamium maculatum
Lamium purpureum

Stachys sylvatica
Prunella vulgaris

Prunella grandiflora
Glechoma hederacea agg.

Geranium pusillum
Geranium columbinum
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Geranium pyrenaicum

Geranium robertianum agg.
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Geranium sylvaticum
Trifolium repens

Trifolium pratense
Trifolium medium

Scabiosa columbaria agg.
Knautia arvensis agg.

Centaurea scabiosa
Centaurea jacea agg.

Arctium nemorosum
Arctium tomentosum

Arctium lappa
Cerastium fontanum agg.
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Aegopodium podagraria

Mercurialis perennis agg.
Euphorbia platyphyllos
Euphorbia helioscopia
Euphorbia cyparissias

Plantago major agg.
Plantago media agg.
Plantago lanceolata
Sesleria varia agg.

Dactylis glomerata agg.
Poa trivialis

Poa pratensis agg.
Poa annua agg.

Arrhenatherum elatius
Bromus racemosus agg.

Bromus hordeaceus agg.
Bromus sterilis

Brachypodium sylvaticum
Bromus erectus agg.

Bromus ramosus agg.
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Fig. 5  Species wise accuracy for each single perspective and for all combinations of perspectives. Accuracy of a particular perspective combination 
is color coded for each species
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with training approach B are reduced by more than two 
percent compared to training approach A.

Differences between forbs and grasses
Generally, the accuracies for the twelve grass species are 
lower for all perspectives than for the 89 forb species (cp. 
Table 1, Fig. 6). Additionally, all accuracies achieved for 
the forbs are higher than the average across the entire 
dataset. Grasses achieve distinctly lower accuracies for 
the entire plant perspective and for both leaf perspec-
tives. The best single perspective for forbs is flower 
frontal, achieving 92.6% accuracy alone while the same 
perspective for grasses achieves only 85.0% (Table 1).

Species‑specific accuracy differences
While for some species all test images across all per-
spectives are correctly identified (e.g., Oxalis acetosella, 
Tripleurospermum maritimum), for other species none 
of the perspectives or combinations thereof allows the 
accurate identification of all test observations (e.g., Poa 
pratensis, Poa trivialis, Fragaria vesca). For the major-
ity of species, however, a single or only a few fused 
perspectives allows a reliable identification. Yet, which 
kind of perspective achieves the highest accuracy, 
depends on the species (cp. Fig. 5). For 28 species, none 
of the single perspective alone allows to identify all test 
images correctly, while fusing perspectives allows to 
identify the correct species across all test observations 
(e.g., Ranunculus bulbosus, Bromus ramosus, Scabiosa 
columbaria).

Reduction of training images
Reducing the number of training images to 60 or even 
to 40 images causes no consistent effect on any per-
spective. Yet, accuracy drops strongly when reducing 
to 20 training images for the entire plant and leaf back 
perspectives, while the accuracies for both flower per-
spectives and the combination of all perspectives are 
still only slightly affected (Fig. 6).

Discussion
We found that combining multiple image perspectives 
depicting the same plant increases the reliability of iden-
tifying its species. In general, from all single perspectives 
entire plant achieved the lowest mean accuracy while 
the flower lateral perspective achieved the highest accu-
racies. However, in the specific case the best perspec-
tive depends on the particular species. There are several 
examples where another perspective achieves better 
results. As a universal best perspective for all species is 
lacking, generally collecting different views and organs 

of a plant increases the chance to definitely cover the 
most important perspective. Especially, images depict-
ing the entire plant inevitably contain lots of background 
information, which is unrelated to the species itself. In 
the majority of cases, images of the category entire plant 
also contain other individuals or parts of other spe-
cies (Fig. 1a) and it may even be difficult to recognize an 
individual as a perceivable unit within its habitat. Such 
background information can be beneficial in some cases, 
such as tree trunks in the background of typical forest 
species or bare limestone in the back of limestone grass-
land species. In other cases, such as pastures, it is hard 
to recognize a certain focus grass species among others 
on the image. This similarity in background represents—
to a certain degree—a hidden class, which is only partly 
related to species identity. This could be the reason for 
the lower accuracies achieved, when a single classifier 
was trained on all images where much more confound-
ing background information enters the visual space of 
the network. Visual inspection of test images for species 
with comparably low accuracy (e.g. Trifolium campestre 
and Trifolium pratense) revealed that these contained a 
relatively higher number of images taken at large distance 
and were not properly focused. This was possibly due 
to their small size and low height making it hard for the 
photographer to acquire proper images.

Combining perspectives
Flower side view and flower top view provide quite dif-
ferent sources of information which, when used in 
combination, considerably improve the classification 
result (Fig.  4). We found that combining perspectives, 
e.g. flower lateral and leaf top, yields a mean accuracy 
of about 93.7% and adding flower top adds another two 
percent, summing to an accuracy of about 95.8% for 
this dataset. Given that the species in this dataset were 
chosen with an emphasis on containing congeneric and 
visually similar species, the accuracies achieved here with 
a standard CNN setting are considerably higher than 
comparable previous studies that we are aware of. For 
example, [18] used comparable methods and achieved an 
accuracy of 74% for the combination of flower and leaf 
images using species from the PlantCLEF 2014 dataset. 
[34] report an accuracy of 82% on the perspectives of leaf 
and flower (fused via sum rule) for the 50 most frequent 
species of the PlantCLEF 2015 dataset with at least 50 
images per organ per plant. It remains to be investigated 
whether the balancing of image categories, the balanc-
ing of the species itself, species misidentifications or the 
rather vaguely defined perspectives in image collections 
such the PlantCLEF datasets are responsible for these 
substantially lower accuracies. Yet, our results underline 
that collecting images following a simple but predefined 
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protocol, i.e. structured observations, allows to achieve 
substantially better results than previous work for a 
larger dataset and with presumingly more challenging 
species evaluated with as few as 20 training observations 
per species.

Identifying grasses
We are not aware of any study that explicitly addresses 
the automated identification of grasses (Poaceae). The 
members of this large family strongly resemble each 
other and it requires a lot of training and experience for 
humans to be able to reliably identify these species, espe-
cially in the absence of flowers.

While our study demonstrates substantial classification 
results for most species, the utilized perspectives are not 
sufficient to reliably identify all species. Poa trivialis and 
Poa pratensis are recognized with an accuracy of 60% and 
70% respectively, when all perspectives are fused. In vivo, 
these two species may be distinguished by the shape of 
the leaf tips and the shape of their ligules. But many of 
the collected images depict partly desiccated and coiled 
leaves, which do not reveal those important features. 
The shape of the ligule, another important character for 
grass species is not depicted in any of the perspectives 
used in this experiment. Therefore, we conclude that the 
chosen perspectives for grasses are still not sufficient 
to distinguish all species, especially if the identification 
would only be based on leafs. More research is neces-
sary to identify suitable perspectives allowing to reliably 
recognize grass species. We assume that the same applies 

for the related and equally less studied families, such as 
Cyperaceae and Juncaceae.

A plea for structured observations
An important obstacle in verifying crowd sourced image 
data is that in many cases the exact species cannot unam-
biguously be determined, as particular discriminating 
characters are not depicted on the image. According to 
[19], 77.5% of all observations from the first period after 
launching Pl@ntNet were single image observations and 
another 15.6% were two image observations leaving less 
than 7% of all observations to consist of more than two 
images. Generating multi-image-observations of plants 
can improve automated plant identification in two ways: 
(1) facilitating a more confident labelling of the training 
data, and (2) gaining higher accuracies for the identified 
species. The more difficult the plant is to identify, i.e. 
the more help humans need for identification, the more 
imperative structured observations become. It is impor-
tant to provide suitable and broadly applicable instruc-
tions for users regarding which kind of images are useful 
to capture in order to gain reliable identification results 
from automated approach also for challenging species. 
Applications aiming at automated species identification 
would benefit from the use of multiple and structured 
image sets to increase accuracy. Our results suggest that 
a further increase in accuracy would not necessarily be 
achieved by acquiring more training data, but rather by 
increasing the quality of the training data. Generating 
structured observations are an important step in this 
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direction. However, in contrary to the dataset analyzed 
in this paper, real world automatic plant identification 
systems usually suffer from a variety of shortcomings 
such as them imbalanced distributions, bias between test 
and training images and unreliable species labels. These 
shortcomings can be reduced by a huge variety of techni-
cal and structural improvements. Nevertheless, encour-
aging users to provide structured species observations 
for both training and identification will enhance future 
improvement of automatic plant identification systems.

Conclusions
We propose that the recognition rates, especially for 
inconspicious species and species which are also difficult 
to differentiate for humans, would greatly benefit from 
multi organ identification. Moreover, it is even essential 
to allow for a proper review of such challenging species 
by human experts, as we found it often impossible to ver-
ify the record of a certain species based on a single image. 
Furthermore, we suggest to improve the observation 
scheme for grasses and modify our previously utilized 
perspectives to add further crucial characters such as the 
ligule. In fact we show that with some constraints on per-
spective and a thorough review of the images, as few as 
40 training observations can be sufficient to achieve rec-
ognition rates beyond 95% for a dataset comprising 101 
species.
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