
Li et al. Plant Methods           (2019) 15:73  
https://doi.org/10.1186/s13007-019-0458-0

RESEARCH

Spectroscopic determination of leaf 
chlorophyll content and color for genetic 
selection on Sassafras tzumu
Yanjie Li, Yang Sun, Jingmin Jiang and Jun Liu*

Abstract 

Background:  Reflectance spectroscopy, like IR, VIS–NIR, combined with chemometric, has been widely used in plant 
leaf chemical analysis. But less studies have been made on the application of NIR reflectance spectroscopy to plant 
leaf color and pigments analysis and the possibility of using it for genetic breeding selection. Here, we examine the 
ability of NIR reflectance spectroscopy to determine the plant leaf color and chlorophyll content in Sassafras tzumu 
leaves and use the prediction results for genetic selection. Fresh and living tree leaves were used for NIR spectra col-
lection, leaf color parameters (a*, b* and L*) and chlorophyll content were measured with standard analytical meth-
ods, partial least squares regression (PLSR) were used for model construction, the coefficient of determination (R2) 
[cross-validation ( R2

CV
 ) and validation ( R2

V
 )] and root mean square error (RMSE) [cross-validation (RMSECV) and validation 

(RMSEV)] were used for model performance evaluation, significant Multivariate Correlation algorithm was applied 
for model improvement, to find out the most important region related to the leaf color parameters and chlorophyll 
model, which have been simulated 100 times for accuracy estimation.

Results:  Leaf color parameters (a*, b* and L*) and chlorophyll content were well predicted by NIR reflectance spec-
troscopy on fresh leaves in vivo. The mean R2

CV
 and RMSECV of a*, b*, L* and chlorophyll content were (0.82, 4.43), (0.63, 

3.72), (0.61, 2.35) and (0.86, 0.13%) respectively. Three most important NIR regions, including 1087, 1215 and 2219 nm, 
which were highly related to a*, b*, L* and chlorophyll content were found. NIR reflectance spectra technology can be 
successfully used for genetic breeding program. High heritability of a*, b*, L* and chlorophyll content (h2 = 0.77, 0.89, 
0.78, 0.81 respectively) were estimated. Several families with bright red color or bright yellow color were selected.

Conclusions:  NIR spectroscopy is promising for the rapid prediction of leaf color and chlorophyll content of living 
fresh leaves. It has the ability to simultaneously measure multiple plant leaf traits, potentially allowing for quick and 
economic prediction in situ.
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Background
Reflectance spectroscopy combined with advanced che-
mometric modelling methods has been successfully used 
as a rapid and effective method to estimate the chemical 
and pigment components in leaves [1–3]. However, the 
application of field-based spectroscopy to assess the pig-
ment of living leaves in situ has lagged.

Chlorophyll, carotenoid and anthocyanin are the three 
most important pigments in leaves [4]. Chlorophyll, com-
monly responsible for green color, is an essential pig-
ment for the conversion of light into chemical energy [5]. 
Carotenoid is mainly related to the yellow color during 
the chlorophyll degradation, and the increased synthesis 
of anthocyanins is the main reason leading to red. The 
proportion of these pigments in leaf changes in autumn, 
as a result of different degradation degrees of chloro-
phyll and carotenoids and the synthesis of anthocyanin, 
contributing to a high ornamental value [6]. Chlorophyll 
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mainly determines the photosynthetic rate and primary 
productivity in plant and is widely used as a response 
to the environment stress and nitrogen fertilizer appli-
cation. Chlorophyll content will be changed with the 
change of external environment, which could further 
lead to the photosynthetic capacity change [3]. Therefore, 
chlorophyll content could be used as an important diag-
nostic indicator for plant growth study [7].

Leaf color and chlorophyll content play a critical role in 
plant growth and contribute greatly to the appearance of 
plants [8]. However, less work has been done in improv-
ing leaf color properties. The variation of color and chlo-
rophyll is partly controlled by genes [9–11]. To ensure a 
quality and stable leaf color, it is necessary to reduce this 
variation, which can be achieved with genetic breeding 
selection program. However, genetic selection usually 
relies on a great sample size and a large scale of experi-
ment [12, 13]. The assessments of chlorophyll contents 
are based on the extraction of chlorophyll with solvents 
from the destructive leaf followed by spectrophotometric 
determination [14]. The conventional method to obtain 
leaf color is by determining the value of three variables: 
L* (Lightness), a* (redness) and b* (yellowness) from lab-
oratory CIELAB color system [15]. These methods are 
time and cost consuming and require labor in laboratory, 
not suitable for genetic selection. In contrast, field-based 
spectroscopy, offering rapid and non-destructive deter-
mination of these compounds in living leaves in  situ, 
could be an effective way to reduce the need of a large 
number of sample collection in field, save the time and 
cost spent in analysis and allow for the assessment of a 
large number of individuals in a timely manner [16–18].

Near infrared (NIR) spectroscopy is a common reflec-
tance spectroscopy frequently used in plant chemi-
cal estimation. It mainly relies on the vibrational 
excitation of three primarily molecular bonds from bio-
chemical components, including C–H, N–H and O–H 
bonds, which results in variable absorption in NIR wave-
length regions (700–2500 nm) [19]. To establish a reliable 
NIR prediction model, the individual chemical compo-
nent which is measured by wet chemistry needs to be 
combined with reflectance spectra for model calibration 

using chemometric methods such as partial least squares 
regression (PLSR). Independent samples will be used for 
model validation and then the model could be used to 
predict the unknown samples by their reflectance spec-
tra. NIR, with robust calibration and ability to screen 
large samples, has shown a reliable and promising ability 
in breeding selection programs [20].

Sassafras tzumu, wildly planted in the south of China, 
is a deciduous tree species with various and variable 
bright red or yellow leaf color changed in autumn. It is 
one of the most important colourful plants that could 
benefit the development of urban landscape [21]. How-
ever, the leaf color is unpredictable and has a large vari-
ation between red and yellow [22]. Little is known about 
the genetic variation of leaf color and chlorophyll con-
tents in this species.

To uncover the crucial role that genetic variation plays 
in leaf color and chlorophyll content, it is important to 
develop a simple, nondestructive, real-time and intuitive 
approach for the measurement of leaf color and chloro-
phyll content. Here, we use field-based NIR spectros-
copy to calibrate the leaf color and chlorophyll content 
prediction models in fresh leaves, which could provide a 
real-time and non-destructive estimation of the chemi-
cal components and allow for quick analysis of larger 
samples [13]. Specifically, we use NIR (1) to examine the 
quality of leaf color and chlorophyll content in fresh leaf, 
and (2) to estimate genetic parameters and correlations 
of leaf color and chlorophyll content.

Results
Color and chlorophyll content traits of Sassafras tzumu 
leaves
The a* and b* for the calibration data range from − 3.7 to 
42.87 and 5.51 to 47.67 with CV of 0.55 and 0.39 respec-
tively and 1 to 43.92 and 6.4 to 36.95 with CV of 0.52 
and 0.41 for validation data respectively. L* has a small 
variation from 29.04 to 55.91 with an average of 35.82. 
Chlorophyll content has the highest coefficient of varia-
tion (0.56) compared to other traits, ranging from 0.16 to 
3.87% with an average of 0.72% (Table 1).

Table 1  Summary statistics for  the  a*, b*, L* and  chlorophyll content of  Sassafras tzumu leaves in  the  calibration 
and validation data used for multivariate calibration of NIR spectra

CV coefficient of variation, CC chlorophyll content

Calibration Validation

Max Mean Min CV Max Mean Min CV

a* 42.87 19.07 − 3.70 0.55 43.92 21.25 1.00 0.52

b* 47.67 15.95 5.51 0.39 36.95 17.17 6.40 0.41

L* 55.91 35.82 29.04 0.11 49.17 36.46 26.91 0.12

CC 3.87% 0.72% 0.16% 0.58 1.44% 0.60% 0.17% 0.56
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Model prediction
The leaf chlorophyll content and three different param-
eters of leaf color, i.e. a*, b* and L*, were considered as 
single prediction model separately. The best prediction 
model was found in chlorophyll content prediction with a 
mean R2

CV of 0.86 and RMSECV of 0.13%, followed by the 
a* prediction model ( R2

CV of 0.82, RMSECV of 4.43). The 
R2
V and RMSEV of these two models have also shown reli-

able performance. The performance of b* and L* predic-
tion models have shown less accuracy than chlorophyll 
content and a* model with a large variation of R2

V and 
RMSEV. The mean R2

CV and RMSECV of these two models 
are 0.63, 0.61, 3.72 and 2.35 respectively (Figs. 1 and 2).

Variable selection and model optimization
The important variation that is highly linked to the 
observed trait could significantly influence the model 
prediction accuracy. In our study, we used sMC algo-
rithm to find out the most useful information in the NIR 
spectra that highly contributed to the model prediction. 
Three most important regions in the NIR spectra, i.e. 
1087, 1215 and 2219 nm, were similarly found in all four 
models. a*, b* and chlorophyll content shared the similar 

important regions in 1087 and 1215 nm while a*, b*, L* 
and chlorophyll content had the same selected region in 
2219 nm (Fig. 3). The mean number of PLSR component 
for a*, b*, L* and chlorophyll content model were reduced 
from 11, 10, 8, 14 to 9, 7, 6 and 10 respectively (Fig. 4). 
Models with the application of sMC algorithm selection 
did not provide significant improvement on the model 
prediction accuracy, only slightly better than that of the 
full spectra models (Figs. 5, 6). However, compared to the 
full spectra models, sMC models use lesser components 
(Fig. 4) and highly reduce the number of spectra variables 
(reduce from full spectra numbers (242) to 68, 76, 29, 93 
for a*, b*, L* and chlorophyll content model respectively) 
for model calibration (Figs. 5, 6).

Heritability and phenotypic and genetic correlations 
among traits
High individual heritability was found in leaf color traits 
and leaf chlorophyll content (Table  1). The highest her-
itability was found in leaf b* value (h2 = 0.89), followed 
by chlorophyll content, L*, a* with h2 of 0.81, 0.78 and 
0.77 respectively. Highest positive genetic and pheno-
typic correlations were found between L* and b* value 

Fig. 1  Measured versus predicted leaf color parameters and chlorophyll content in calibration data by full spectra model. Error bars for predicted 
values represent the standard deviations obtained from the 100 simulated models. R2

M
 and RMSEM: the mean value of coefficient of determination 

(R2) and root-mean-square error (RMSE) from 100 simulated models. CC chlorophyll content
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Fig. 2  Measured versus predicted leaf color parameters and chlorophyll content in validation data by full spectra model. Error bars for predicted 
values represent the standard deviations obtained from the 100 simulated models. R2

M
 and RMSEM: the mean value of coefficient of determination 

(R2) and root-mean-square error (RMSE) from 100 simulated models. CC chlorophyll content

Fig. 3  Influence of a*, b*, L* and chlorophyll content on NIR spectra in leaf of Sassafras tzumu model and the variable selected by the sMC 
algorithm
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(rg = 0.93 and rp = 0.90). The genetic and phenotypic 
correlations among b*, L*, a* were moderated rang-
ing from 0.58 to 0.93. Chlorophyll content had a strong 
negative genetic and phenotypic correlation with a* 
(rg = − 0.90, rp = − 0.77), b* (rg = − 0.75, rp = − 0.57) and 
L*(rg = − 0.72, rp = − 0.52) (Table 2). 

Family selection
Figure  7 displays the family ranking of breeding values 
for a*, b*, L* and chlorophyll content traits. The rankings 
between families were consistent across these four-leaf 
traits. It is possible to select traits according to certain 
purpose by families. The mean of a*, b*, L* and chloro-
phyll content relationship were plotted in Fig. 8. It is clear 
that some families could be used for various color selec-
tion. To lessen the green color influenced by chlorophyll 
content, less chlorophyll content and high color trait (a*, 
b*, L*) should be selected. Family 12, 23, 24, 30, 31, 32, 35, 
38, 42, 46 and other 7 more could be selected for bright 
(high L*) red (high a* value) color breeding, while family 
30, 31, 32, 35, 38, 44, 46 and other 10 more could be used 
for bright (high L*) yellow (high b* value) color selection.

Discussion
The leaf chlorophyll content and color related traits in 
fresh leaves can be accurately predicted using field-base 
reflectance spectroscopy. The study, supported by Steidle 
Neto et al. [23, 24] and Xie et al. [24], presents a reliable 
and robust methodology on NIR reflectance spectra for 
all leaf traits to estimate the prediction model accuracy. 
This methodology was firstly reported by Couture et  al. 

[13]. Compared with other sample selection methods, for 
instance, random selection [25] or Kennard-stone sample 
strategy [26], it could estimate the model uncertainty by 
providing the prediction error for each sample. The error 
bar could show the performance of model calibration and 
prediction (e.g. error bars in Figs. 1, 2, 5, 6). Compared 
with the standard color and chlorophyll content analyses, 
NIR reflectance spectroscopy is found to be a promising 
method for the leaf color and other pigments prediction.

It was reported that a small number of PLSR compo-
nents could limit the outlier range and make the outside 
of calibration range still predictable without being classi-
fied as outliers [27]. Therefore, models with small num-
ber of components may yield better prediction results. 
The number of the PLSR components were significantly 
reduced after the sMC variable selection applied on the 
PLSR model. The sMC-PLSR models with a smaller num-
ber of components have shown a slightly higher predic-
tion accuracy than that of the full spectra PLSR model.

Variation selection applied on the NIR spectra data 
could efficiently find the most important variables that 
highly related to the observation values. In our study, 
the important spectral features, including 1087, 1215 
and 2219  nm, for the prediction of leaf a*, b*, L* and 
chlorophyll content, were found by the sMC selec-
tion algorithm. Supported by Datt [28] who found that 
the correlation between chlorophyll a content and NIR 
reflectance spectra in Eucalyptus leaf is higher in the 
range of 700–1300, 1500–1800 and 2100–2300 nm. Less 
studies are related to applying NIR on leaf color predic-
tion, especially by using the wavelengths ranging from 

Fig. 4  Optimal components range from the 100 simulated models for a*, b*, L* and chlorophyll content prediction in leaf of Sassafras tzumu with 
and without sMC variable selection. CC Chlorophyll content. Red color: without sMC variable selection, blue color: with sMC variable selection, solid 
line: mean optimal components, dot: outlier from the mean
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1100 to 2500 nm. However, NIR has shown a promising 
performance on the prediction of wood color. The bands 
near 1112, 1784  nm are reported to be highly related 
to the color parameters (a*, and b*, L*) [29]. The band 
around 1087 nm and 1215 is mainly assigned to the sec-
ond overtone of CH stretching vibration, while the band 
around 2219 nm is assigned to the CH stretching vibra-
tion [30].

The reflectance NIR spectroscopy in our study was 
applied on the living fresh leaves. One of the most dis-
advantageous aspects for spectra analysis on fresh leaf 
is water absorbance. Water with O–H bond has two sig-
nificant absorbance regions (1414 and 1916–1980 nm) in 
the NIR spectra which may overlap other chemical infor-
mation in the NIR spectra and lead to prediction model 
inaccuracy [30]. However, the three most important 
regions in NIR spectra that highly related to the leaf color 
parameter (a*, b*, and L*) and chlorophyll content are not 
overlapped with the water regions. The estimation of leaf 
color and chlorophyll content could promisingly be used 
on fresh leaves.

This field-based NIR reflectance technology is capa-
ble of fast and repeated leaf color estimation and leaf 

chlorophyll content analysis in vivo which is an impor-
tant advancement to understand and develop knowl-
edge of leaf ecology. Supported studies were found 
in fresh Ginkgo biloba leaves [31] and four common 
green-leafy species [32], which have shown that NIR 
reflectance technology could also be a reliable method 
to predict parameters and chlorophyll content for 
other species. Furthermore, leaf color and leaf pigment 
will respond to the stress and environment change, leaf 
color consistence and genetic variation. This repeat-
able and real-time spectral measurement could be 
used to track leaf color changes during the ecological 
variation.

For the half-sibling families selection, the 1/4 coef-
ficient was usually used [33]. However, the coefficient 
of relationship in our study was used as 1/2.5, which is 
similar to the study reported by Li et al. [20], due to the 
unknown genetic structure of S. tzumu, the reproduc-
tive biology and population structure. Apiolaza [34] have 
used the coefficient between 1/3 and 1/2.5 to calculate 
deviations in the species which the family-level selling 
and spatially structured populations are not guarantee-
ing the deviations from 1/4. In addition, using different 

Fig. 5  Measured versus predicted leaf color parameters and chlorophyll content in leaf of Sassafras tzumu from sMC calibration model. Error bars 
for predicted values represent the standard deviations obtained from the 100 simulated models. VN: Selected variable numbers. R2

M
 and RMSEM: the 

mean value of coefficient of determination (R2) and root-mean-square error (RMSE) from 100 simulated models. CC chlorophyll content



Page 7 of 11Li et al. Plant Methods           (2019) 15:73 

coefficients of relationship among siblings will not influ-
ence the genetic correlations [35].

It was reported that the use of low relatedness coeffi-
cients will result in the high individual heritability, which 
may be due to the assembling of half-siblings, inbreeding 
effects presented, and the same environment influence 
[20]. High individual heritability estimates were found 
for the leaf color parameters and chlorophyll content. 
The leaf color heritability in our study is higher than the 

results reported by Vogel et  al. [36], who found a herit-
ability of 0.59 for the leaf color of Sorghastrum nutans 
(L.). Nash. Townsend and McIntosh [37] also found that 
the parents have a significant influence on the leaf color 
of red maple (Acer rubrum L.). And relatively lower 

Fig. 6  Measured versus predicted leaf color parameters and chlorophyll content in leaf of Sassafras tzumu validation data prediction by sMC model. 
Error bars for predicted values represent the standard deviations obtained from the 100 simulated models. VN: Selected variable numbers. R2

M
 and 

RMSEM: the mean value of coefficient of determination (R2) and root-mean-square error (RMSE) from 100 simulated models. CC chlorophyll content

Table 2  The heritability, genetic (above diagonal) and   
phenotypic correlations (below diagonal) among  traits 
with standard error between parentheses

CC chlorophyll content, h2 heritability

*P ≤ 0.05, **P ≤ 0.01, P ≤ 0.001

Traits a* b* L* CC h2

a* 0.63 (0.11)** 0.58 (0.12)** − 0.90 (0.03)*** 0.77

b* 0.63 (0.04)** 0.93 (0.01)*** − 0.75 (0.08)*** 0.89

L* 0.60 (0.04)* 0. 90 (0.01)*** − 0.72 (0.09)*** 0.78

CC − 0.77 (0.02)** − 0.57 (0.04)* − 0.52 (0.04)* 0.81

Fig. 7  Family rankings for a*, b*, L*, chlorophyll content in Sassafras 
tzumu at age 2. Family values are expressed as deviation from each 
trait mean. BV breeding values, CC chlorophyll content
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heritability were found for the Oryza sativa L (h2 ranges 
from 0.44 to 0.49) [38] and Hevea brasiliensis (h2= 0.22) 
[39] compared to the results in our study, suggesting the 
high potential for improving leaf color and chlorophyll 
content via selection for S. tzumu.

The leaf color parameters of a* and b* have a signifi-
cant positive correlation with L*. L* value is the main 
determination of leaf color brightness. For various leaf 
color selection, it is vital to combine L* with the red-
ness parameter a* or yellowness parameter b* for future 
selection. The family showed a consistent ranking for 
these four-leaf traits, suggesting that combining two 
more leaf traits for breeding selection are acceptable. 
Leaf color parameters have a significant negative corre-
lation with leaf chlorophyll content. Chlorophyll mainly 
result in the leaf color being green, other pigments like 
carotenoid content mainly result in the leaf color being 
yellow and the anthocyanin content mainly result in the 
leaf color being red [40, 41]. Therefore, to select red or 
yellow leaf color, low chlorophyll content should be con-
sidered. Some families have been successfully selected 
for different selection targets, suggesting that various leaf 
color selection could be achieved by breeding selection 
program.

Conclusion
Our results show that the field-based NIR reflectance 
spectroscopy can be a promising methodology for leaf 
color and chlorophyll content prediction and can be suc-
cessfully used in genetic selection. It provides a promis-
ing and reliable capacity for other leaf pigments analysis 
in future. In addition, breeding selection methodology 
could be an efficient way to improve the leaf color quality.

Methods and materials
Leaf collections
A robust and accurate prediction model needs a large 
range of chemical variation. Therefore, we collected 
leaf samples from families with a wide range of color 
and chlorophyll content variation. 50 half-sib families, 
which were collected from 6 main different regions 
with high environmental variability in China, of 2 years 
old S. tzumu trees were selected in this study.

The trees were planted in 2016, Changle Forest Farm 
Nursery, Hangzhou, Zhejiang, China. Each family rep-
licated 30 times. In October, when tree leaves changed 
color, 500 fresh leaves from 50 families were selected 
to calibrate NIR prediction model and other 1000 trees 
were used for genetic selection.

Fig. 8  Relationship between a*, b*, L*, chlorophyll content breeding values of Sassafras tzumu families at age 2. CC chlorophyll content
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NIR spectra collection
To reduce the color variation in tree level, for each 
tree, 5–6 leaves with similar color and on the same side 
were selected from the top to bottom and immediately 
collected the NIR reflectance spectra by using a wave-
length field-based spectrometer (LF-2500, Spectral 
evolution, USA) with a handheld fibre optics contact 
probe. The probe was placed close to the leaf surface 
to avoid external light noise. Spectra was collected in 
a range of 1100 to 2500 nm with a 6 nm resolution and 
thirty-two scans were averaged for each leaf spectra. 
500 tree leaves were immediately (within 1  day) col-
lected to lab and placed in the refrigerator for chloro-
phyll content and color measurement.

Leaf color measurement
Leaf color was measured using the CIELAB color sys-
tem from a Minolta CM-3600A spectrophotometer 
(Konica, Japan). Each leaf was measured three times in 
three different surface positions and the average of the 
three variables L* (black to white (+)), a* (green to red 
(+)) and b* (blue to yellow (+)) were estimated.

Leaf chlorophyll content measurement
A circular piece was cut from each leaf after NIR and 
color estimated for total chlorophyll content extrac-
tion, using a mortar to grand the leaf into powder and 
extracting with 100% acetone. The extracts were then 
centrifuged for 5  min in a glass tube and subsequently 
assayed by a UV–Visible spectrophotometer (UV-1280, 
Shimadzu, Japan). The equations and specific absorption 
in the wavelength reported by Wellburn [42] were used.

Model calibration and validation
NIR spectra in our study were pre-processed by 
SNV + 2nd derivatives using Savitzky–Golay smooth-
ing [43] with a window size of 17 data points. Partial 
least squares regression (PLSR) was used for model 
calibration using leave-one-out cross validation 
method. The coefficient of determination (R2) and root-
mean-square error (RMSE) for both calibration and 
validation were used to track the model performance. 
Models were randomly performed 100 times using 80% 
of the data set for calibration and the remaining 20% 
for validation. The benefit of these randomized analy-
ses was allowing for the assessment of the prediction 
model uncertainty and the overall model stability. R2 
and RMSE were collected for each selection to assess 
the error of 100 calibration and validation model. The 
most important variables in the NIR spectra that highly 
explain the variation between variables and response 
chemical components were selected by using the fil-
ter method significant Multivariate Correlation (sMC) 

algorithm with a significance level of α = 0.05 [44]. This 
method is firstly estimating the variation of features 
from the PLSR model and then using these features to 
find out the significant feature for the PLSR model. The 
details of equation for sMC algorithm were described 
in other studies [44, 45].

Statistical analysis
A multivariate restricted maximum likelihood (REML) 
linear mixed model was used for genetic parameter esti-
mation. Single-trait observation yi for a tree leaves was 
represented by the model:

m: fixed effect, xi: a vector linking the fixed effects m to 
the observation, fi, ei: the random family and residual 
effects.

Regarding the multivariate case, for each individual we 
have a vector of two observations yi (phenotypes for trait 
1, 2, 3…), and random vectors fi and ei for families and 
residuals. The model equation packed with those vectors 
for all tree leaves is as follow:

where y: a vector of phenotypic observations, m: the 
vector of fixed effects (overall mean), f and e: vectors of 
bivariate random effects for family and residual effects. 
X and Z1: incidence matrices linking observations to the 
appropriate effects.

The vector of expected values (E) and dispersion matri-
ces (Var) were defined as: E[y] = Xm , Var[f ] = Z1⊗F0 , 
Var[e] = Z⊕R0 , where ⊗ is the direct product operations 
and the ⊕ is the direct sum operations and

where σ 2
fi

 and σ 2
ei

 represent the family and residual vari-
ances for trait i , and σfifj and σeiej are the family and resid-
ual covariances between traits i and trait j . The narrow 
sense heritability (h2 ) of trait i and genetic correlations 
(

rgij

)

 and phenotypic correlation (rpij ) between trait i and 
trait j were calculated as:

(1)yi = xim + fi + ei

(2)y = Xm + Z1f + e

F0 =









σ 2
f 1 · · · σf 1f 4

...
. . .

...

σf 1f 4 · · · σ 2
f4









,R0 =







σ 2
e1 · · · σe1e4
...

. . .
...

σe1e4 · · · σ 2
e4






,

h2i =
2.5σ 2

fi

σ 2
fi
+ σ 2

ei

rgij=
σfifj

√

σ 2
fi
+ σ 2

fj
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where σ 2
fi

 is the estimated family variance for trait i , and 
σ 2
fj

 is the estimated family variance for trait j . The differ-
ence between the mean breeding values of selected top 
ratio leaf traits and the total mean of the leaf trait was 
calculated as realized genetic gain ( �GR).
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