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METHODOLOGY

Automatic estimation of heading date 
of paddy rice using deep learning
Sai Vikas Desai1, Vineeth N. Balasubramanian1†, Tokihiro Fukatsu3,4, Seishi Ninomiya2 and Wei Guo2*† 

Abstract 

Background:  Accurate estimation of heading date of paddy rice greatly helps the breeders to understand the 
adaptability of different crop varieties in a given location. The heading date also plays a vital role in determining grain 
yield for research experiments. Visual examination of the crop is laborious and time consuming. Therefore, quick and 
precise estimation of heading date of paddy rice is highly essential.

Results:  In this work, we propose a simple pipeline to detect regions containing flowering panicles from ground 
level RGB images of paddy rice. Given a fixed region size for an image, the number of regions containing flowering 
panicles is directly proportional to the number of flowering panicles present. Consequently, we use the flowering 
panicle region counts to estimate the heading date of the crop. The method is based on image classification using 
Convolutional Neural Networks. We evaluated the performance of our algorithm on five time series image sequences 
of three different varieties of rice crops. When compared to the previous work on this dataset, the accuracy and gen‑
eral versatility of the method has been improved and heading date has been estimated with a mean absolute error of 
less than 1 day.

Conclusion:  An efficient heading date estimation method has been described for rice crops using time series RGB 
images of crop under natural field conditions. This study demonstrated that our method can reliably be used as a 
replacement of manual observation to detect the heading date of rice crops.

Keywords:  Heading date, Panicle detection, Convolutional neural networks, Sliding window

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
It is an established fact that rice is one of the most impor-
tant crops in the world. It feeds more than half of the 
world’s population. Thus, a good understanding of the 
growth stages in rice crops would enable one to use the 
right amount of water, fertilizers and pesticides to ensure 
maximum yield. This has great economical consequences 
since timely and high yield of rice can potentially address 
the food shortage problem prevailing in many parts of 
the world.

When rice paddies grow from their seeds to mature 
plants, they go through a variety of transformations. 
They develop tillers, begin to grow leaves and gradu-
ally increase in height. Then their leaf stems start bulg-
ing, which conceals the developing panicle. The panicle 
then starts to grow and fully emerges outside. Flowering 
is characterized by the exsertion of the first rice panicle 
in the crop [1]. Heading date is characterized together 
by the vegetative growth phase i.e., the time period from 
germination to panicle initiation and the reproductive 
phase, meaning the time period from panicle initiation 
to heading [2]. Heading date is primarily used to measure 
the response of the rice plant to various environmental 
and genetic conditions. This makes it an indispensable 
parameter useful to breeders and researchers. By esti-
mating the heading date and thereby observing the head-
ing stage, a farmer can make informed crop management 
decisions such as: (1) deciding the optimum amount of 
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fertilizers and pesticides for application in the field and 
(2) deciding the variety of crop to be grown in the field 
in subsequent seasons. Meanwhile, researchers can effec-
tively leverage the knowledge of heading stage in their 
experiments to understand the response of the rice plant 
to various genetic and environmental alterations so that 
they can pick the best crop variety for a particular set 
of environmental conditions. For instance, growth stage 
information has been used to determine the genetic locus 
which affects the regional adaptation in rice [3]. Genetic 
modifications have been proposed to artificially control 
the heading date in rice crops [4]. Flowering time has 
been controlled experimentally to enable production of 
crops suitable for different climates [5, 6]. The effect of 
gene interactions on traits like flowering time and panicle 
number has been studied [7].

For the past decade, computer vision and machine 
learning together have witnessed a spike in multiple 
research domains producing state-of-the-art results in 
various tasks which were previously assumed to be dif-
ficult for computers to solve. Tasks such as image classi-
fication, scene understanding and image captioning have 
been addressed using deep neural networks with excep-
tional results [8]. Deep learning is an area of machine 
learning which uses high-capacity function approxima-
tors (neural networks) to recognize patterns in high 
dimensional data such as images. Deep learning has been 
successfully applied in the area of plant phenotyping in 
extracting traits such as plant density [9] and plant stress 
[10]. It has also been applied in species classification [11] 
and detecting objects of interest such as fruits [12], flow-
ering panicles [13], rice spikes [14] and wheat spikes [15, 
16]. For a detailed treatment of the uses of deep learning 
in agriculture, we encourage the readers to refer to the 
survey by Kamilaris and Prenafeta-Boldú [17].

Related to our task, Zhu et  al. [18] have proposed a 
method to observe heading stage of wheat using a two-
step coarse to fine wheat ear detection method based on 
support vector machines (SVM). Hasan et al. [15] more 
recently used an R-CNN based object detection network 
to accurately detect and count wheat spikes from high 
definition crop images; however, this approach typically 
requires large image datasets with object level annota-
tions, which is very laborious. Xiong et al. [13] proposed 
Panicle-SEG, which uses a combination of CNN and 
entropy rate superpixel (ERS) optimization to segment 
rice panicles from crop images. Since our task requires us 
to get an estimate of the number of flowering panicles, 
pixel-wise segmentation of crop images such as in [13] 
is not necessary. In the context of sliding window meth-
ods, Bai et al. [14] used a three-stage cascade method to 
detect rice spikes in crop images and thereby observe the 
heading stage. For each patch extracted from the sliding 

window method, an SVM classifier is applied pixelwise to 
detect if the patch is a spike patch. Later, a gradient his-
togram method and a CNN are used to refine the clas-
sification. On the other hand, our method just requires a 
single pass through a CNN to detect a flowering region. 
This saves the computation time required to train an 
SVM and to apply it around each pixel in a given patch. 
Guo et al. [19] proposed a robust approach to detect rice 
flowering panicles from high definition RGB images of 
field taken under natural conditions. They use a sliding 
window method in conjunction with an SVM classifier 
trained on SIFT [20] features. When compared to the 
above studies, our approach uses a much simpler algo-
rithm to detect flowering regions in images. Instead of 
using multi-step classification methods, a sliding window 
based mechanism is used in conjunction with a CNN to 
detect flowering regions in a high definition image. The 
number of flowering regions in an image gives a statisti-
cal estimate of the number of flowering panicles exserted. 
The heading date is determined by observing the date at 
which 50% of the flowering panicles have been exserted. 
One important advantage of using a CNN is that, instead 
of using hand-crafted image features like SIFT, the fea-
tures are automatically learnt from the data. In order to 
demonstrate the reliability and trustworthiness of the 
proposed system, GradCAM [21], an existing method 
in the literature is used to provide visual explanations 
for the decisions made by the CNN model used in the 
panicle detection algorithm. For a real-world deployable 
intelligent system, we believe that the explainability and 
transparency of the system is vital.

Our aim is to estimate the heading date in a rice crop 
using a fast automatic system based on computer vision 
and deep learning. This should eliminate the need for 
manual visual inspection of crops which is both tedi-
ous and time-consuming. The contributions of our work 
are: (1) using a deep neural network to detect flowering 
regions from ground-level images of paddy rice, and (2) 
counting the detected flowering regions to estimate the 
heading date of the crop. An overview of the proposed 
method can be seen in Fig.  1. We evaluate the perfor-
mance of our method on our dataset of five time-series 
RGB image sequences of three different crop varieties of 
paddy  rice namely, Kinmaze, Kamenoo and Koshihikari. 
We compare our method with the manual approach to 
heading date measurement and observe that our auto-
matic method estimates the heading stage with an mean 
absolute error of 1 day. From the results, it can be con-
cluded that our method has the potential to be used for 
estimating the yield of the crop as well as an aid in mak-
ing informative crop management decisions. 
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Methods
An overview of the proposed method can be seen in 
Fig. 1. The input to our system is a time-series sequence 
of images (across different days and times) of a given crop 
variety taken at a particular location. For each image in 
the sequence, we use a sliding window mechanism to 
detect flowering regions. At each position of the sliding 
window, a CNN classifier predicts if the current window 
consists of a flowering panicles. In this way, we detect 
and count the number of flowering regions in each image. 
For a sequence of images taken with a single camera at a 
specific aspect ratio, it is easy to see that the number of 
flowering regions (windows) in an image is directly pro-
portional to the number of flowering panicles present 
in the image. Therefore, we use the number of detected 
flowering regions in an image as a proxy for number of 
flowering panicles present. We use these region counts to 
draw flowering graphs and observe the heading stage.

Image acquisition
The field server system was set up in our fields at the 
Institute for Sustainable Agro-ecosystem Services, Uni-
versity of Tokyo. The setup used for image acquisition 
is as follows. Canon EOS Kiss X5, a digital single-lens 
reflex (DSLR) camera was used as part of a field server 
system to acquire the experimental images. The captured 
images were then automatically uploaded to Flickr, a free 
cloud service via a 3G internet connection. The uploaded 
images were automatically obtained by an agent system 
[22] and saved into a database of National Agricultural 
and Food Research Organization. For the acquisition of 
Kinmaze and Kamenoo datasets, the cameras were set up 
at a height around 1.5  m from the ground. The field of 
view of the cameras was approximately 138 cm× 96 cm 

(focus length 24 mm) corresponding to an image resolu-
tion of 5184 × 3456 pixels. Using this setup, time-series 
images were acquired every 5  min from 08:00 to 16:00 
between and including days 84 and 91.

For the three Koshihikari datasets, the field of view 
of the cameras was approximately 180 cm × 120 cm 
(focus length 18 mm). Using this setup, the images were 
acquired between and including days 66 and 74. The cap-
tured images have a resolution of 5184 × 3456 pixels. 
Table 1 shows further details regarding image acquisition.

Training dataset
The CNN model needs to differentiate between a flow-
ering and a non-flowering patch. To gather the training 
data required to train our CNN model, we chose to anno-
tate 500 images from the Koshihikari-3 dataset. Specifi-
cally, we manually drew tight bounding boxes around the 
flowering regions in those images. From the annotated 
images, we extracted 3000 patches which correspond 
to the annotated flowering regions. These patches are 
labeled with class flower which is a positive class. Simi-
larly, we extracted background patches randomly from 
the non-annotated parts of the said 500 images to obtain 
3000 patches which are labeled with class non-flower 
which we consider a negative class. In summary, we have 
a training dataset of 3000 images of positive class and 
3000 images of negative class. Before training, we resize 
the patches to a fixed size of 224 × 224 pixels. Using 
these images, our CNN model is trained to classify a 
patch into one of the two classes. Figure 2 shows exam-
ples of the patches present in the training dataset.

Generalization is an important characteristic of a 
machine learning model. Simply put, a model trained 
on one dataset should be able to perform well on similar 

Fig. 1  Figure showing various stages of our proposed method. Given a (1) time-series sequence of crop images, our sliding window + CNN 
method is applied on each image to perform (2) flowering region detection. Then, (3) the number of detected flowering regions are counted after 
which the (4) heading stage graphs are plotted
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datasets on which it wasn’t trained. To assess the gen-
eralization capability of our model, we gathered train-
ing patches only from one dataset i.e., Koshihikari-3 and 
tested our model on all the five datasets.

Validation and test datasets
We evaluate the: (1) detection performance and (2) accu-
racy in heading date estimation of our model separately. 
To evaluate the detection performance of our method, 
we create a validation set of images as follows. We choose 
15 images from each of the five datasets mentioned in 
Table  1. We pick three different time slots for choosing 
images: 8 a.m.–9 a.m., 11 a.m.–12 p.m. and 3 p.m.–4 p.m. 
We ensure that the timestamps of the chosen 15 images 
in any given dataset are equally distributed among these 
three time slots. We do this to test the robustness of our 
model in detecting images at various lighting conditions. 
From each of the 15 images, we randomly crop out a 
1000× 1000 portion of the image and draw tight bound-
ing boxes around the flowering panicles present in the 
image. In summary, the validation set contains 75 anno-
tated images of size 1000× 1000 . Note that the validation 
set is not used to evaluate the heading stage estimation 
performance, which requires counting the flowering 
regions. Thus, randomly cropping out a portion of the 

full image does not affect the evaluation method because 
the validation set is solely used to evaluate the detection 
performance of the model.

To assess the heading stage estimation accuracy of our 
method, we apply our method to all the five sequences of 
images given in Table 1 and report the predicted heading 
date. In other words, we consider those five sequences as 
our test set.

Training a CNN end to end
We train a Convolutional Neural Network (CNN) to 
learn the mapping between our the image patches and 
their labels in the training dataset. A CNN is a specially 
designed Artificial Neural Network (ANN) generally 
used to learn patterns and solve computer vision tasks 
from large amounts of image data. It allows for automatic 
feature extraction and pattern classification within its 
architecture. Basically, ANNs are function approxima-
tors which are generally used to learn the relationship 
between high dimensional input and output data. ANNs 
consist of several computational points called nodes con-
nected together in the form of a directed acyclic graph. 
The nodes in the ANN are grouped into layers. Gener-
ally, the input data passes through one or more hidden 
layers sequentially before passing through the final layer 

Fig. 2  Training data. Examples of patches from the training dataset

Table 1  Details of image acquisition

Dataset Field of view Days from transplanting Planting density ( plants/m2) Number 
of images 
acquired

Kinmaze 138 cm × 96 cm 84–91 28 645

Kamenoo 138 cm × 96 cm 84–91 28 768

Koshihikari-1 180 cm × 120 cm 66–74 16 680

Koshihikari-2 180 cm × 120 cm 66–74 12 654

Koshihikari-3 180 cm × 120 cm 66–74 28 721
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to obtain the output. The choice of the number of nodes, 
type of nodes and number of layers constitute the archi-
tecture of the ANN. Stacking multiple hidden layers 
together to form a ‘deep’ network is commonly done in 
order to get better representations of data.

In the current study, we use the ResNet-50 [23] archi-
tecture which is a CNN model having state-of-the-art 
results in image classification. For a 50-layer deep net-
work, it is evident that we need massive amounts of 
data to train the network. But it is generally difficult 
and time-consuming to obtain massive annotated data-
sets especially in the agricultural domain. Therefore, we 
apply the widely used technique of transfer learning. We 
use a pretrained ResNet-50 model trained on the Ima-
geNet [24] dataset which is the source domain. Now, 
we remove the last layer in ResNet-50 i.e., the 1000-way 
softmax layer and replace it with a single node sigmoid 
layer which gives the probability of the class being posi-
tive (flower). The weights in the model are now finetuned 
with data from our target domain i.e., the training data-
set of patches. The process of feature extraction and clas-
sification is not separated in this case. The model is just 
trained end-to-end with our training data. The convo-
lutional layers are responsible for generating the feature 
descriptors for the images. The sigmoid layer at the end 
takes these features as input and outputs the probabil-
ity of the input image belonging to a positive class. The 
model is trained for 3 epochs using Stochastic Gradient 
Descent with a learning rate of 0.001 and momentum of 
0.9.

To test our model on the full images, we run a sliding 
window over each image. At every position of the slid-
ing window, the model classifies the patch of the image 
beneath the sliding window into one of the two classes. If 
the model classifies the patch as a flower, then a bound-
ing box is drawn over that sliding window as shown in 
Fig. 1.

Sliding window parameter selection
In a sliding window mechanism, there are two important 
parameters to decide: (1) the dimensions of the window 
and (2) stride (step length) of the window. We have man-
ually performed experiments on the validation dataset 
and empirically decided the sliding window dimensions 
and stride length for each dataset as shown in Table  2. 
The reason for having different parameters for different 
datasets is the fact that, despite having the camera at a 
fixed location above the ground, the plant height may 
vary for different crops. Due to the variation in plant 
height, the average size of flowering panicles as observed 
by the camera might not be consistent across different 
datasets. Therefore, we empirically choose the sliding 
window parameters separately for each dataset.

Flowering region detection
Since the images in each of the five datasets are in chron-
ological order, the first step to determine the heading 
date is to detect the flowering regions in the images and 
get an estimate of the flowering panicle count. We use a 
sliding window mechanism to detect flowering regions 
in each image. The procedure of flowering region detec-
tion is described in Fig.  1. At each position of the slid-
ing window, the patch of the image under the window 
is extracted and passed through a Convolutional Neural 
Network (CNN). We define a flowering patch to be an 
image patch containing a flowering panicle. If the patch is 
classified by the CNN as a flowering patch, then a bound-
ing box is automatically drawn on the boundaries of the 
sliding window. Once the model is trained, the model 
is evaluated on the test images. We use the previously 
mentioned five datasets as the test datasets. The proce-
dure of testing the model on a dataset is as follows. For 
each image in the dataset, a sliding window is applied on 
the image. For each position of the sliding window, the 
CNN classifier detects if there is a flowering panicle in 
that patch. Using this process, we count the number of 
patches classified as flowering regions in each image.

Heading date estimation
Once we have the flowering panicle counts for each 
image, we can estimate the day when 50% flowering is 
reached which is a highly useful metric to determine the 
heading date of the crop. The heading stages are generally 
identified by percentages. Since heading stage is charac-
terized by the exsertion of the rice panicle, the heading 
date can be marked as the date when 50% of the panicles 
have exserted [1]. For each dataset, we plot the cumula-
tive distribution of detected flowering panicles against 
the time at which each image is captured. This allows 
us to find the day where 50% of the flowering has taken 
place.

Design decisions
Feature extraction versus feature learning
The Scale Invariant Feature Transform (SIFT) algorithm, 
as used in [19], is a feature extraction algorithm. It tries 
to create a scale invariant representation of an image. As 
mentioned in the seminal paper [20] by Lowe, the SIFT 
algorithm extracts image features that can be used for 
matching different images of an object. But the features 
extracted using the SIFT algorithm are human-engi-
neered, in the sense that the algorithm looks for specific 
things like corners and edges in the image to decide its 
features.

On the other hand, a deep CNN performs a series of 
non-linear transformations on each image to extract 
denser and more abstract features. The parameters of 
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these non-linear transformations are learned by train-
ing the network with labeled data. This allows the CNN 
to learn distinctive features by looking at the data instead 
of applying some fixed mathematical transformations. 
Training a deep neural network end-to-end is more effi-
cient because the learned features adapt to the task at 
hand i.e., classification in this case. Also, the feature 
extraction and classification steps are fused together in a 
single network.

SVM versus sigmoid classification
In the SIFT based method [19], an SVM classifier is used 
to classify the patches based on the SIFT features. The 
ResNet-50 network used in this work instead uses a one 
node sigmoid layer to perform binary classification i.e., it 
gives the probability of the input image belonging to the 
positive class. This layer can be seen as a logistic regres-
sion classifier. The SVM and logistic regression classifier 
are known to show similar performance in classification. 
The characteristic that makes them different is the objec-
tive function that is optimized. SVMs use a hinge loss 
function which tries to find the maximum margin separa-
tion between two classes of data. Logistic regression gen-
erally uses a cross-entropy loss as the cost function. The 
outputs of the logistic regression classifier can be directly 
interpreted as the positive class probability.

Generating visual explanations
After training and testing the CNN model, we gener-
ate visual explanations to observe the part of the image 
that the model looks at before detecting the presence of 
a flowering panicle in an image patch. For this, we take a 
random image from the Kinmaze dataset and run our 

panicle detection algorithm which draw bounding boxes 
around flowering panicles in the image. Now, we randomly 
select a few bounding boxes and extract the patches of the 
image inside the bounding boxes. GradCAM [21] is used 
to generate visual explanations for each image patch. In the 
GradCAM algorithm, we first pass the image through the 
CNN to get class probabilities. Since the model detected 
a flowering panicle in this patch, the probability of the 
‘flower’ class would be the highest. Now, the gradient of 
the ‘flower’ class logit is taken with respect to each of the 
output feature maps of the final convolutional layer in the 
model. Then, global average pooling is used to calculate 
the weight of each feature map i.e., the importance of each 
feature map in causing the model to detect the presence of 
a flowering panicle. Finally, a heatmap is generated by tak-
ing a weighted combination of each feature map in the final 
convolutional layer and applying the ReLU activation func-
tion at the end.

Results
Flowering region detection
We evaluate the flowering region detection performance of 
our method on the validation set described in the Methods 
section. Using the proposed method, we get the predicted 
flowering regions for each of the 75 images in the dataset. 
Note that, as shown in Fig. 3, the ground truth annotations 
for the images are tight bounding boxes around the flow-
ering panicles whereas the predicted bounding boxes are 
fixed size boxes detecting the flowering regions. Therefore, 
the standard detection evaluation metric of Intersection 
over Union (IoU) cannot be used to evaluate the perfor-
mance of this model. Instead, we propose the following 

Fig. 3  Detection evaluation on validation set. Examples of flowering region detection on the validation set. The ground truth boxes are shown in 
red and the predicted flowering regions are shown in blue
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metric to evaluate the correctness of a predicted bounding 
box.

Simply put, intersection ratio (IR) is the portion of the 
predicted bounding box which overlaps the ground truth 
bounding box. A predicted bounding box is considered 
positive if its IR ≥ 0.5 , else it is considered negative. 
Using this metric, we calculate the standard binary clas-
sification metrics such as Precision, Recall and F1-Score 
for each dataset. Table  2 shows the detection results of 
our model on the validation set. It can be seen that our 
current method outperforms our previous method which 
used SIFT to extract features and an SVM to classify 
patches. From the results, it can be concluded that our 
current method generalizes well and has a good detec-
tion performance on images from all the five sequences.

Heading stage estimation
We assess the heading stage estimation performance 
of our method on the five image sequences mentioned 
in Table  1. For each image sequence, we use our detec-
tion pipeline to detect and count the number of flower-
ing regions in each image. Given a fixed window size, 
it is easy to see that the number of detected flower-
ing regions are directly proportional to the number of 
flowering panicles present in an image. In other words, 
more the number of flowering panicles, more will be the 

(1)Intersection Ratio =
Area of Overlap

Area of Predicted Box

number of flowering regions and vice versa. To evaluate 
this hypothesis, we have manually counted the number 
of flowering panicles present in each image in Kinmaze 
and Kamenoo sequences. Figure  4 shows the compari-
son between the actual flowering panicle counts and the 
number of detected flowering regions. The Pearson Cor-
relation Coefficient (PCC) between the ground truth 
panicle counts and the number of detected flowering 
regions was found to be 0.844 for Kinmaze and 0.711 
for Kamenoo. These results support our hypothesis that 
the number of detected flowering regions are indeed a 
good estimate of the number of flowering panicles pre-
sent. To further strengthen this hypothesis, we have plot-
ted in Fig. 5 the change in number of flowering regions 
detected and the change in number of flowering panicles 
present. It can be seen that, in general, if the number of 
flowering panicles decreases at a given point, the number 
of detected flowering regions also decreases. Examples 
of images in Kinmaze and Kamenoo datasets and their 
flowering region detection outputs are shown in Fig.  6. 
A similar set of images for the three Koshihikari datasets 
can be found in an additional file (see Additional file 1). 
To evaluate this method of estimating the heading stage, 
we need to manually find the heading date of the crop by 
visual inspection. Since the recording of the date of 50% 
flowering stage is subjective and strongly depends on the 
experience and intuition of the observers, we also add the 
dates of 1st panicle appearance in the corresponding crop 
as reference since normally more than 70% of the ears 

Fig. 4  Daily flowering counts. Predicted flowering regions vs actual daily flowering panicle counts in Kinmaze (left) and Kamenoo (right) datasets
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will come out within the first 3 days after the 1st panicle 
appearance has been observed [2]. Note that for paddy 
rice, flowering begins with panicle exsertion [1]. Figure 7 
shows the flowering plots of Kinmaze and Kamenoo data-
sets. An additional file shows the flowering plots for the 
Koshihikari-1, Koshihikari-2 and Koshihikari-3 datasets 
(see Additional file 2). Table 3 shows the comparison of 
50% flowering stage between field check and our pro-
posed method.

Discussion
It can be concluded from the results in Table 3 that our 
proposed method is fairly accurate in identifying the 
heading stage and estimating the heading date in paddy 
rices. With the definition of heading date [1] that we 
used, it has become quite simple to evaluate the perfor-
mance of the CNN model. We have proposed a simple 
automatic method to observe the heading stage of rice 
crops. Since the observation of heading date requires an 
estimate of the number of flowering panicles exserted, 
we are not interested in accurately localizing flowering 
panicles in the images. Accurate localization of objects 
is generally done using object detection networks such 

Fig. 5  Change in flowering counts. Change in number of predicted flowering regions versus change in number of actual daily flowering panicle 
counts in Kinmaze (left) and Kamenoo (right) datasets

Fig. 6  Flowering region detection. Examples of flowering region detection in datasets Kinmaze (left), Kamenoo (right)
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Fig. 7  Flowering stage graphs for Kinmaze and Kamenoo crops. The estimated 50% flowering day for Kinmaze is day 88. Similarly, the estimated 
50% flowering day for Kamenoo is day 86

Fig. 8  Grad CAM. Grad CAM outputs of flowering panicle patches with respect to the final convolutional layer of the ResNet-50 CNN are shown 
here. The red regions are on the part of the patch depicting the anthesis of flowering panicle, thus supporting our claim that the model has actually 
learnt specific features of the flowering panicle

Table 2  Comparison of detection performance of our model (CNN) with our previous model [19] on the validation set

Validation dataset No. of images Sliding window Precision Recall F1-score

Dimensions Stride [19] CNN [19] CNN [19] CNN

Kinmaze 15 140 × 140 140 0.81 0.96 0.73 0.68 0.77 0.80

Kamenoo 15 160 × 160 140 0.67 0.84 0.61 0.71 0.64 0.77

Koshihikari-1 15 160 × 160 150 0.72 0.80 0.65 0.70 0.68 0.70

Koshihikari-2 15 160 × 160 150 0.72 0.84 0.73 0.75 0.72 0.79

Koshihikari-3 15 160 × 160 150 0.74 0.89 0.69 0.71 0.71 0.79
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as Faster R-CNN [25] which requires bounding box 
level annotated data for training. In other words, the 
images in the training data need to be annotated by 
drawing tight bounding boxes around the objects of 
interest which are flowering panicles in our case. Get-
ting a large number of bounding box level annotated 
images is both time-consuming and expensive when 
compared to labeling an image for classification. In our 
work, we completely avoid this expense by using a slid-
ing window mechanism in conjunction with a CNN 
classifier. The boxes predicted by our method may not 
always tightly localize the flowering panicles but these 
errors can be tolerated in our application because our 
end goal is not to accurately localize flowering panicles, 
but to observe the heading stage for which an estimate 
of the flowering panicle count is sufficient.

GradCAM, a visual explanation method has been 
used to visualize what part of the image patch the CNN 
model “looks at” before detecting a flowering pani-
cle in a given patch. This visualisation would enable 
the model to reason its detections. Ideally, the detec-
tion of a flowering panicle in a patch should be based 
on the presence of flower-specific parts in the patch. 
The GradCAM outputs in Fig.  8 support our proposi-
tion that this is indeed the case with the proposed CNN 
model. The red regions in the output heatmaps repre-
sent the pixels in the patch which influenced the detec-
tion the most. It can be seen that the red regions are on 
the part of the patch depicting the anthesis of flowering 
panicle, thus supporting our claim that the model has 
actually learnt specific features of the flowering panicle.

The proposed method, however, has some limita-
tions. The current method requires high-resolution 
static and ground-level images of rice crop to be able 

to efficiently detect flowering panicles and estimate 
the heading date. A possible next step in this research 
could be to study the performance of CNNs on images 
taken from fully automatic Unmanned Air Vehicles 
(UAVs). This is because image acquisition is much sim-
pler and faster when UAVs are used. Assessing various 
phenotypic traits from UAV-based images would be 
immensely helpful to the agricultural community owing 
to the simplicity of deploying drones and the ability to 
collect and analyze data in real time.

Additional files

Additional file 1. Flowering Region Detection in Koshihikari. It is a figure 
depicting flowering region detection in crop images of Koshihikari-1, 
Koshihikari-2 and Koshihikari-3. 

Additional file 2. Flowering Stage Graphs for Koshihikari. It contains 
graphs depicting observed 50% flowering stage using crop images in 
Koshihikari-1, Koshihikari-2 and Koshihikari-3.
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Table 3  Comparison of proposed method and manual observation for estimation of heading stage

Formula for estimation error: (estimated) − ( field observed) 50% flowering date

Dataset Transplanting dates 1st panicle appearance 
(field observed)

50%flowering dates 
(field observed)

50%flowering dates 
(estimated)

Estimation 
error (days)

Kinmaze 05/31/2013 08/21/2013 08/24/2013 08/26/2013 +2

day 0 day 83 day 86 day 88

Kamenoo 05/31/2013 08/20/2013 08/23/2013, 08/24/2013, +1

day 0 day 82 day 85 day 86

Koshihikari-1 05/29/2014 08/02/2014 08/05/2014, 08/06/2014, +1

day 0 day 67 day 70 day 71

Koshihikari-2 05/29/2014 08/03/2014 08/06/2014 08/06/2014 0

day 0 day 68 day 71 day 71

Koshihikari-3 05/29/2014 08/04/2014 08/07/2014, 08/07/2014, 0

day 0 day 69 day 72 day 72

Mean absolute error (days) 0.8
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