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Abstract 

Background:  In-field measurement of yield and growth rate in pasture species is imprecise and costly, limiting 
scientific and commercial application. Our study proposed a LiDAR-based mobile platform for non-invasive vegeta‑
tive biomass and growth rate estimation in perennial ryegrass (Lolium perenne L.). This included design and build of 
the platform, development of an algorithm for volumetric estimation, and field validation of the system. The LiDAR-
based volumetric estimates were compared against fresh weight and dry weight data across different ages of plants, 
seasons, stages of regrowth, sites, and row configurations.

Results:  The project had three phases, the last one comprising four experiments. Phase 1: a LiDAR-based, field-ready 
prototype mobile platform for perennial ryegrassrecognition in single row plots was developed. Phase 2: real-time 
volumetric data capture, modelling and analysis software were developed and integrated and the resultant algorithm 
was validated in the field. Phase 3. LiDAR Volume data were collected via the LiDAR platform and field-validated in 
four experiments. Expt.1: single-row plots of cultivars and experimental diploid breeding populations were scanned 
in the southern hemisphere spring for biomass estimation. Significant (P < 0.001) correlations were observed between 
LiDAR Volume and both fresh and dry weight data from 360 individual plots (R2 = 0.89 and 0.86 respectively). Expt 
2: recurrent scanning of single row plots over long time intervals of a few weeks was conducted, and growth was 
estimated over an 83 day period. Expt 3: recurrent scanning of single-row plots over nine short time intervals of 2 to 
5 days was conducted, and growth rate was observed over a 26 day period. Expt 4: recurrent scanning of paired-row 
plots over an annual cycle of repeated growth and defoliation was conducted, showing an overall mean correlation 
of LiDAR Volume and fresh weight of R2 = 0.79 for 1008 observations made across seven different harvests between 
March and December 2018.

Conclusions:  Here we report development and validation of LiDAR-based volumetric estimation as an efficient and 
effective tool for measuring fresh weight, dry weight and growth rate in single and paired-row plots of perennial 
ryegrass for the first time, with a consistently high level of accuracy. This development offers precise, non-destructive 
and cost-effective estimation of these economic traits in the field for ryegrass and potentially other pasture grasses in 
the future, based on the platform and algorithm developed for ryegrass.
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Background
It is important to accurately measure vegetative mass 
in crop and pasture plants, given the significance of this 
characteristic in global agricultural productivity and food 
supply [1, 2]. Rapid collection of accurate information on 
large numbers of experimental units is needed to inform 
plant breeding and adaptation. Precise measurement of 
vegetative mass, and more specifically fresh weight (FW) 
and dry weight (DW), will improve understanding of foli-
age yield and more complex traits such as drought toler-
ance [3], water use efficiency [4] and salinity tolerance [5] 
and assists in detecting association between molecular 
markers and these traits [6].

Vegetative mass is associated with important traits such 
as grain yield in cereals, and herbage dry matter yield 
(DMY, kg/ha) accumulation over time in perennial pas-
ture grasses. Grasslands cover 40% of earth’s temperate 
and tropical terrestrial surface, an estimated 52.5 M km2 
[7]. In managed landscapes, improved varieties of peren-
nial grass provide amenity, anchor and enhance soil, and 
nutrition for ruminant animal production.

The dietary, environmental and economic value of for-
age in livestock farming performance and profitability 
have been reviewed by Wangchuk et  al. [8], Long and 
Ketterings [1] and Boone et al. [9]. Reliable and rapid pas-
ture plant growth is essential for optimal performance of 
livestock because it provides dry matter nutrition to the 
animal for conversion to milk, meat and fibre [10, 11].

For perennial ryegrass (PRG), estimated DMY gains of 
4% to 5% per decade in the recent decades [12] and 0.75% 
per annum since 1990 [13] have been achieved. These 
lag behind the rate of gain in livestock and crops such as 
wheat and maize, where breeding for harvest index and 
plant density have led to substantial yield gains [14, 15]. 
To accelerate the rate of genetic gain for DMY in per-
ennial grasses, there is a need to develop more efficient 
tools for breeding, including rapid, reliable non-invasive 
means to measure vegetative growth over time [16].

In pasture grasses, vegetative DMY is an inherently 
complex trait, making it challenging to accurately meas-
ure and apply selection pressure in breeding programmes 
[17]. Furthermore, the cyclical nature and morphologi-
cal diversity and plasticity of dry matter accumulation 
over time creates substantial complexity for scientists, 
bioinformaticians, and modelling experts, requiring any 
phenomics model to be able to optimise vegetative mass 
measurement for precision and accuracy to better esti-
mate DMY under a wide range of conditions.

At the individual plant level, DMY is the sum of edible 
leaf and pseudostem morphometric mass per unit area, 
and is influenced by tiller density, leaf shape, dry matter 
content, and leaf elongation rate as well as underpinning 
physiological factors such as light interception, water use 

efficiency and tolerance to biotic and abiotic stresses [18, 
19]. As plants age, they may expand or contract their veg-
etative parts as a function of rates of tiller formation and 
death [20–22].

While it is possible to measure DMY in individual 
plants, there is a low correlation between individual plant 
FW or DW and sward DMY in perennial grasses [23, 24]. 
Given that grass used for amenity and economic pur-
poses is generally grown in solid swards of one or more 
herbaceous species, the most informative measures of 
DMY in forage grasses rely on environments with high 
levels of competition among plants, with plants grown in 
rows or small swards for evaluation by plant breeders and 
agronomists. The gross morphological similarity coupled 
with extreme proximity and intermingling of individual 
plants makes it impossible to collect data from individ-
ual plants in a row or sward [25, 26]. Thus plant breeders 
often rely on the use of maternal families or bulked popu-
lations for evaluation and selection, giving rise to breed-
ing strategies where large scale field trials of single row or 
small sward plots are used to monitor patterns of FW or 
DW accumulation.

Standard methods to estimate DMY in plots of forage 
grasses involve destructive mechanical harvest followed 
by drying and weighing to record DW; or an indirect esti-
mate based on a non-destructive visual preference score 
assessed by an experienced plant breeder. However, reli-
ance on visual preference or destructive harvests limits 
breeder’s ability to cost effectively and precisely assess 
DMY in large scale or multi-site trials. Furthermore, the 
ability to measure growth rate, especially at high tempo-
ral resolution, is seriously constrained by current tech-
nology and is not used in pasture plant breeding, despite 
the obvious economic implications of the trait. The use of 
destructive mechanical harvests also precludes grazing, 
which is important when selecting or evaluating pasture 
plants [27, 28].

For these reasons, accurate, non-destructive and effi-
cient estimation of accumulated DMY and growth rate 
in single rows and small plots are substantial bottlenecks 
that hamper plant breeder’s efforts to enhance the rate of 
gain for DMY [29], despite it being the highest priority 
trait for the pastoral sector [10].

Phenomics, use of sensors and computing techniques, 
enable complete phenotyping of traits and response to 
genetic and environmental influence over time. Mobile, 
field-based phenomics platforms using sensors and 
computers may assist breeders, agronomists and other 
researchers to implement this high-throughput trait phe-
notyping in scenarios relevant for evaluating, selecting 
and managing improved populations. Existing imaging 
and sensor technologies for estimating vegetative mass 
use a broad range of electro-optic wavelengths [30–33]. 
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Due to its low-cost as well as similarity with color detec-
tion range by humans (~ 400–700  nm), visual imaging 
or Red–Green–Blue (RGB) imaging using commercial 
or industrial smart cameras is used for analyzing plant 
forms, from individual leaf phenotyping [34] to shoot 
architecture [35] and yield measurement [36]. However, 
RGB imaging for yield measurement has its downsides 
such as its dependence on external light source, and the 
need to at least one camera to go beyond surface meas-
urement and be able to estimate depth and therefore the 
complexity of the integration of data between at least two 
cameras [36]. This will limit the high quality RGB-based 
yield measurement to contained environments if used 
alone and without other sensors. Hyperspectral imaging 
for forage yield estimation in legume and grass swards 
has been reported by [37]. Whilst correlations have been 
observed between spectral measurements converted to 
indices and vegetative biomass [38], they tend to only 
reflect partial information, partly influenced by rea-
sons such as capturing information solely from surface 
reflectance data. Most studies involving spectroscopic 
measurement of biomass use various vegetation indices 
inferred from properties of chlorophyll, but these indi-
ces become uninformative as biomass increases [39]. Jin 
et al. [40], however, showed in a cereal crop that the “nor-
malized difference matter index” to be the spectral index 
with highest correlation with biomass (R2 = 0.77).

Light detection and ranging (LiDAR) is a well-estab-
lished sensor technology, and promising tool for esti-
mation of plant biophysical traits [41, 42] and detailed 
physical characterization of plants in the field [43, 44]. 
It is also capable of precisely mapping below canopy soil 
[45, 46]. It has been shown to contribute to multi-sensor 
systems for evaluation of pasture grasses [47, 48] but has 
not been tested as a stand-alone system in forage veg-
etative DMY assessment. LiDAR is a dynamic sensing 
system that both emits and captures frequent impulsive 
laser signals. Unlike traditional cameras, LiDAR scanners 
directly acquire distance and distribution data [49].

Ground-based LiDAR has been shown to be a good 
estimator of crop density in small grain crops (with R2 
of 0.80–0.96) [50], biomass in grapevine (average Pear-
son’s product moment correlation coefficient of 0.93) 
[51], crop dry weight (RMSE ≤ 0.68) [52] and biomass in 
wheat [53]; among other promising results for airborne 
LiDAR across a range of applications. Early evidence of 
the potential in PRG, based on a single experiment in 
autumn, has been presented with R2 = 0.79 and 0.76 for 
FW and DW, respectively [54].

Our hypothesis is that stand alone LiDAR is a suit-
able technology for measurement of vegetative biomass 
in PRG. This study aimed to develop a LiDAR sensor-
based system, and evaluate its potential in a range of PRG 

phenotyping experiments targeting FW, DW and growth 
rate as traits related to vegetative biomass and DMY 
accumulation over time. Validation included data collec-
tion in the field, real-time data processing, and correla-
tion with traits of interest.

Methods
For this sensor platform development and validation 
project we assembled a multidisciplinary team combin-
ing mechanical and software engineers and field techni-
cians and PRG breeders to develop a system targeting 
FW, DW and growth rate as traits associated with DMY 
in PRG. The team first examined spatial features, soil 
surface variation, and practical barriers for sensor-based 
field screening of PRG single-row and paired-row plots. 
We developed a prototype device for field-based, high 
throughput estimation of DMY-related traits, and auto-
mated data processing and analysis to continuously 
estimate DMY in real-time [54]. The system measures 
distances, gaps and profiles as well as introducing accu-
racy and precision to estimating a volumetric model of 
vegetative biomass in PRG. These data are difficult and 
costly to acquire manually or with hyper-spectral imag-
ing techniques.

LiDAR scanning hardware development
The original design of the in-field scanning hardware 
focused on adapting the LMS400 Pro (SICK Vertriebs-
GmbH, Germany) LiDAR unit to enable evaluation in the 
field under varying plant size, ambient sunlight, moisture 
and wind conditions. Despite potential limitations in out-
door conditions, this LiDAR unit was selected because 
it provided a short operation range, scanning rate of up 
to 300 Hz, and relatively low beam divergence. The unit 
provides a typical point density of 700,000 points per 
square meter in the configurations of this study.

The LMS400 Pro is negatively affected by intense or 
variable light conditions. To mitigate this issue, most of 
the ambient outdoor light was blocked. A metal hood 
that reaches to within 15 cm of ground level was designed 
to isolate the LiDAR scanner. A black fabric curtain was 
added to extend to ground level and further block exter-
nal light while allowing the unit to move over ryegrass 
plants and/or uneven field terrain (Fig.  1). The curtain 
was weighted to prevent it entering the canopy scan 
area during windy conditions. A video file of this proto-
type unit (named the Multi-Purpose Harvesting Imaging 
Vehicle or M5) in the field while scanning ryegrass plots 
is available at this file repository on Open Science Forum: 
https​://osf.io/sezad​/?view_only=84262​a4241​d048d​3aad5​
3e107​677d7​18.

The LiDAR was powered using a 12 V sealed lead-acid 
automotive battery and connected to a laptop computer. 

https://osf.io/sezad/%3fview_only%3d84262a4241d048d3aad53e107677d718
https://osf.io/sezad/%3fview_only%3d84262a4241d048d3aad53e107677d718
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Custom software was developed to capture raw data from 
the LiDAR unit. These data were processed in real-time 
and displayed on screen to the user as a dynamic point 
cloud during scanning. This data visualisation allowed 
the user to monitor data acquisition in real time.

Data collection and processing
Algorithms were developed to automatically segment 
the scanned LiDAR datastream from a sequence of raw 
distance measures into volumetric estimates for each 

single row plot of fixed dimension in a particular scan-
ning phase (Fig. 2). For the current prototype setup, the 
system is capable of sequentially scanning and analyzing 
multiple single row plots of ryegrass. The segmentation 
and biomass estimation are described as follows: The 
LiDAR data is first pre-processed to filter noise using a 
moving average in the direction of the scan, along with 
invalid data (no signal return). The ground height is cal-
culated for each single row plot independently, as the 
ground height can vary substantially between scans due 
to variation in ground level in field trials. The ryegrass 
component of the data is then segmented from the sur-
rounding soil background by height, with the operator 
supplying a standard virtual cutting height above ground 
to mimic grass segmentation resulting from mechanical 
defoliation. The LiDAR data in each ryegrass region was 
then further processed to derive the biomass estimate for 
each plot. This was done by converting the 2D LiDAR 
height measures into a 3D surface, then integrating the 
surface over the grass region at the virtual cutting height 
which was standardized across the trial.

The final software and data processing configuration 
allows the user to manually correct instances of sparsely 
populated and also poorly separated plots. These situ-
ations can arise as artifacts of planting errors, severe 
weed incursion, plant death, or lax management of 
plant growth and defoliation cycles over the course of a 
multi-year field trial. The user is able to capture, moni-
tor, and process LiDAR data in the field and acquire real-
time, non-destructive biomass estimates, which we term 

Fig. 1  The M5 Multi-Purpose Harvesting Imaging Vehicle developed 
and used to collect LiDAR data as described in this publication. 1: PC 
screens, 2: harvester, 3: control panel, 4: generator, 5: hood, 6: LIDAR 
scanner, 7: blackout curtain

Fig. 2  High-resolution LiDAR data of a single row of perennial ryegrass as imaged in the executable displayed in Matlab. Red color indicates the 
tallest grass and dark blue indicates the shortest grass as measured from the ground level in mm
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LiDAR Volume (LV) at a speed of 0.5 m/s. The LV value 
is a unitless volumetric index whose calculation has been 
optimized for computational efficiency and end-user 
preference over the course of these experiments, and is 
calculated as the integral of the LiDAR scans, multiplied 
by the distance travelled and then divided by the number 
of scans:

Field experiments
Four independent field experiments were conducted, 
with entries and locations as summarized in Table 1.

Experiment 1: foliage yield estimation in spring
The goal of this experiment was to initially evaluate the 
LiDAR platform’s ability to estimate vegetative FW and 
DW as expressed in single row plots of PRG after a single 
regrowth phase following defoliation.

LiDAR scans were completed on 26 September 2017 on 
a subset of 360 plots in a large, ongoing trial consisting 
of 1740 single row diploid PRG plots of half-sibling (HS) 
families. The experimental design was a row-column 
(58 columns × 30 rows) within which each HS family 
was replicated three times, and which included repeated 
checks. The 360 scanned plots were three replications of 
120 HS families, comprised of all 30 plots within each of 
12 columns evenly spaced across the trial of 58 columns, 
in order to capture a broad sample of spatial and pheno-
typic variation within the trial. Each plot was 1  m long 
and sown on 30  cm centres in May 2016 at Agriseeds 
Research Station (− 43.45, 172.19) near Darfield, New 
Zealand. The trial had been mechanically defoliated 12 
times prior to this experiment. The most recent defolia-
tion prior to the experiment was 20 August 2017. Prior 
to scanning the trial was weeded to ensure only PRG was 
present. Both FW and DW data were collected from har-
vested samples, with DW samples dried at 80  °C for at 
least 48 h prior to data collection. The LVs were analysed 
and compared to FW and DW by correlation.

LV =

[

∑

(
∫

LIDAR Scans

)

× distance

]

÷ Number of scans

Experiment 2: recurrent scanning for growth rate at lower 
temporal resolution
Experiment 2 was conducted in a field trial of 86 single 
row plots of 28 ryegrass cultivars each replicated three 
times except one with five replications. Each row was 2 m 
long and planted by seed on 50 cm centres in March 2015 
at Kimihia Research Centre (− 43.62, 172.46) near Lin-
coln, New Zealand. The trial had been defoliated by graz-
ing eight times prior to this experiment. The most recent 
defoliation prior to the experiment was 23 March 2016.

The LiDAR platform described above was used to 
scan 36 plots of the 12 target cultivars in autumn 2016 
at 41 days, 55 days and 83 days after the last defoliation 
to test the ability of the system to detect growth rate at a 
low temporal resolution. These 12 cultivars were selected 
to represent a broad set of ryegrass cultivars with a 
diverse moisture contents, ploidy level, flowering time, 
and habit with minimal redundancy. Immediately after 
scanning at day 83, each plot was mechanically harvested 
to a residual height of 3 cm above ground level. The FW 
and DW data were collected from harvested samples of 
36 single row plots consisting of 3 replicates of 12 culti-
vars by weighing at harvest time for FW, and oven dry-
ing and recording DW of the sample for each plot. The 
LVs were analysed and compared to the FW yield data to 
assess correlation. Using LV obtained from calibration 
against field harvests on day 83, growth estimates were 
made for days 41, 55 and 83; and growth rate was esti-
mated for each cultivar.

Experiment 3: recurrent scanning for growth rates at high 
temporal resolution
The purpose of this experiment was to evaluate the abil-
ity of our LiDAR system to recurrently scan and estimate 
growth in the same single row plots over time periods 
as short as 48  h within a typical spring regrowth phase 
for PRG. Mechanical defoliation was completed on 19 
October 2016 (southern hemisphere spring) for 96 of 
1551 PRG single-row plots sown in May 2013 (the Lin-
coln STD treatment in Faville, Ganesh [55]) and grow-
ing in a field trial similar to the experiment above. These 
plots were three replicates of 32 genotypes scanned 
starting October 19, 2016 every 2 to 5 days over a total 

Table 1  Summary of  the  four field experiments conducted to  develop and  evaluate a  LiDAR-based approach 
to estimating foliage yield traits in perennial ryegrass

FW fresh weight, DMY dry matter yield, LV LiDAR Volume, BL breeding lines

Exp. Location Entries Design # Plots Traits Sown Measured Material

1 − 43.45, 172.19 120 58C × 30R 360 FW, DMY, LV May 2016 Sept. 2017 HS families

2 − 43.62, 172.46 12 44C × 6R 36 Growth rate, LV March 2015 Autumn 2016 Cultivars

3 − 43.63, 172.47 32 47C × 33R 96 Growth rate, LV May 2013 Spring 2016 HS families

4 37.77, 175.31 190 18C × 35R 630 FW, LV Spring 2017 2018–2019 BL
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period of 26 days during the reproductive spring growth 
phase, while growing under non-irrigated conditions at 
the AgResearch Farm at Lincoln, New Zealand (− 43.63, 
172.47). A total of nine scans were made during this 
period at 0, 2, 6, 9, 14, 16, 19, 21 and 26 days regrowth to 
acquire 864 plot × scan combinations. The LV data were 
used to estimate growth rate as outlined below. There 
was no mechanical harvest during this experiment, so 
FW and DW data were not collected.

Experiment 4: recurrent scanning for seasonal growth 
estimation in paired‑row breeding trials
The purpose of this experiment was to evaluate the 
LiDAR system in a new region of New Zealandusing a 
modified field trial design with paired-row plots (Addi-
tional file  1: Fig. S2). In spring 2017, 190 PRG breed-
ing lines were sown in a breeding trial at Ruakura, New 
Zealand (− 37.77, 175.31). A row–column experimental 
design with three replicates was used. Each replicate also 
contained 20 repeated checks. Each plot was a paired-
row and consisted of two adjacent, 2-m-long rows sown 
with a cone seeder at 20 kg/ha. The space within double 
rows of each plot were spaced 15 cm apart, and spacings 
between outside rows of adjacent plots were 40 cm. The 
ends of plots within a column were spaced 30 cm apart. 
Each column consisted of 18 plots, and there were 35 
rows, comprising the 630 plots in total for the field trial.

The trial was managed as a monoculture and rota-
tionally grazed by a flock of 100–150 sheep when 
2400–3000  kg DM/ha were visually estimated to have 
accumulated. Herbicide was applied when required to 
control broad leaf weeds and C4 grass invasion. Nitrogen 
fertiliser was applied using Urea (46–0–0–0) at 200 kg N/
ha/year in small increments following grazing.

Pre-grazing, all plots were scanned using LiDAR 
between March 2018 and January 2019. After the LiDAR 
scan, 20% of plots (126 plots) were sampled by mechani-
cal defoliation using a rotary lawn mower, weighed and 
their FW recorded. The location of the 126 plots varied 
at each harvest so no single plot was mechanically har-
vested more than once in five consecutive harvests—this 
methodology was used to expose breeding lines to as 
much ruminant grazing pressure as possible and help 
mitigate bias in vegetative persistence between breeding 
lines. Post-grazing, nurseries were mown to a height of 
4 cm to homogenize the pasture cover and all cut herb-
age was removed from the trial sites.

At scanning, the LiDAR unit travelled down each column 
and back up the adjacent column in a serpentine pattern for 
the entire trial. Data was saved as Text file at the end of each 
column and processed in a similar manner. The process-
ing software parameters were set to; Scan length—36  m, 

Segments per scan—18, Row spacing—550 mm, and cut-
ting height—40 mm. Manual plot alignment was required 
from time-to-time to distinguish the start and end of plots.

Correlations were observed for only the plots where 
FW data were collected at each harvest. Mean FW per 
plot varied from harvest to harvest.

LV and yield data analysis
Initial analysis of FW and DW and LV data was carried 
out using Microsoft Excel to assemble and summarise 
the data. Correlations of FW and DW data with LVs were 
calculated using GraphPad Prism version 8.00 (GraphPad 
Software, La Jolla, California, USA). Percent dry matter 
(%DM) was calculated as (DMY/FW) × 100. For Experi-
ment 1, coefficient of variation ( CV = σ/µ ) were esti-
mated for FW, DW, and scanning measurements among 
cultivars where σ is standard deviation and µ is sample 
mean. Also, normalized covariance matrix (− 1 to 1) was 
calculated to observe any cultivar effect on the slope and 
intercept of this comparison.

Relative growth rate over the period of measurements 
was calculated as RGR = (ln Y 2− ln Y 1)/(t2− t1) 
[where RGR is relative growth rate, Y2 is yield at time 
point 2 and Y1 is yield at time point 1 and t2 − t1 is the 
time interval (days)] [56] was also calculated using LVs as 
yield for both experiments 2 and 3.

Results
A series of experiments validated a ground-based mobile 
scanning LiDAR platform, and the potential for high 
accuracy and precision measurement of FW and DW in 
single-row and paired-row plots of PRG in field trials. 
An initial assessment of the system’s ability to measure 
growth rate in PRG was also very informative as pre-
sented below.

Experiment 1: foliage yield estimation
In the field trial plots measured in spring, FW and DW 
estimates ranged from 57 to 335  g/row and 12 to 61  g/
row, respectively. The LVs ranged from 3.86 × 103 to 
19.94 × 104. Correlation of LV with FW and DW were 
R2 = 0.89 and R2 = 0.87, respectively (Fig. 3).

Experiments 2 and 3: recurrent scanning for growth rate 
estimation
Recurrent scanning over three dates in three replicates 
of 12 cultivars in a field trial were acquired and sum-
marized by entry. Correlations between FW and LV for 
each cultivar is listed in Table 2. After normalized covari-
ance matrix analysis, all slopes between cultivars and the 
regression parameters resulted in the same value close to 
− 1 (− 0.9926). The coefficient of variation data showed 
the similarity in the spread of the LV with DW data more 
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than with FW and   %DM (Table  3). No pattern for dif-
ference in FW, DW, %DM or LV between tetraploid and 
diploid cultivars was observed (Table 3). The data reveal 
accumulation of LV over time, and inspection of these 
plots suggest there may be differences in growth rate and 
pattern among cultivars (Additional file 1: Fig. S1).

To explore the potential for LV to measure growth 
rate at higher resolution, an experiment was conducted 
with LV data collected in 96 plots every 2 to 5 days over 
a span of 26 days (Fig. 4). The data generally reveal a pat-
tern of increasing LV over time, with some variation due 
to either changes in field conditions or technical factors 

influencing LV. While showing an increase in LV of up to 
4% per day and general trend of increasing growth, the 
measurements showed a period of contraction in LV, 
followed by a marked increase at the final measurement 
(Fig. 4). While this may be attributed to variation in tem-
perature or rainfall patterns, we cannot draw a firm con-
clusion as to the causal factors behind the contraction in 
LV at day 21.

Experiment 4: recurrent scanning of paired‑row plots 
across seasons
Across eight harvests of vegetative regrowth 126 paired-
row plots in autumn, winter, spring and summer seasons 
in 2018–2019, correlations between LV and FW ranged 
from R2 = 0.67 to 0.93 (Table  4). In aggregate, the cor-
relation of all 1008 LV and FW observations is R2 = 0.90 
(Fig. 5). Given the prior results, there are two instances 
of unexpectedly low correlation. The first, in July 2018 is 
attributable to use of the LiDAR unit without the light 
exclusion curtain. The second, in December 2018, was at 
a time of particularly high growth, indicating there may 
be upper limits to the amount of grass biomass that can 
be accurately measured in the current configuration. 
However, the amount of vegetative growth measured in 
the December 2018 dataset are above the maximum rec-
ommended for pasture management under rotational 
grazing.

Discussion
Vegetative biomass in crops and forages can be measured 
by measuring the FW and DW [35]. However, this will be 
a destructive method thus limiting measurements to the 
end of growth period only and are generally expensive 

Fig. 3  LiDAR Volume (LV) plotted against harvested dry weight (DW, 
open symbols) and fresh weight (FW, closed symbols) yields of 360 
rows of a diploid perennial ryegrass field experiment measured in 
spring regrowth near Darfield, New Zealand. Correlation of LV with 
these data are R2 = 0.89 and 0.86 for FW and DW, respectively

Table 2  Comparison and  regression analysis of  fresh weight yield and  LiDAR Volumetric Estimate in  12 cultivars 
of perennial ryegrass

Values for slope and Y-intercept represent mean ± SD

* Significant; ** highly significant

CV Slope Y-intercept X-intercept R2 Slope deviates 
from zero (P)

1 251,687 ± 18,797 − 24,786,555 ± 2,701,665 98.48 0.9945 0.0475*

2 367,976 ± 9248 − 36,712,222 ± 1,329,168 99.77 0.9994 0.016*

3 268,352 ± 31,270 − 27,599,719 ± 4,494,494 102.8 0.9866 0.0739

4 296,257 ± 50,781 − 29,848,658 ± 7,298,879 100.8 0.9715 0.1081

5 375,228 ± 14,687 − 39,844,763 ± 2,111,043 106.2 0.9985 0.0249*

6 254,370 ± 8264 − 25,279,526 ± 1,187,740 99.38 0.9989 0.0207*

7 213,756 ± 2424 − 21,271,669 ± 348,411 99.51 0.9999 0.0072**

8 287,494 ± 957.5 − 28,144,506 ± 137,617 97.9 1 0.0021**

9 288,594 ± 2449 − 26,977,390 ± 351,961 93.48 0.9999 0.0054**

10 318,106 ± 5578 − 33,444,196 ± 801,692 105.1 0.9997 0.0112*

11 333,438 ± 16,568 − 34,701,094 ± 2,381,281 104.1 0.9975 0.0316*

12 212,148 ± 7899 − 19,647,030 ± 1,135,327 92.61 0.9986 0.0237*
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and labour-intensive. Similarly plant growth rate is usu-
ally estimated by destructive measurements at the end 
of growth period [57] or computer modelling [58]. This 
suggests a potentially crucial role for the LiDAR scanner 
and software as key components to improve the quality, 
efficiency and resolution of future yield and growth rate 
measurements in the field. This is particularly the case in 
perennial pasture plants where DMY accumulation over 
many cycles of regrowth and defoliation is an economic 
trait of substantial interest.

While, in the past, LiDAR tools have been suggested 
to have the measurement capability of different forage 

species in combination with other sensors [59], there are 
limitations for each tool and as an example, devices, sys-
tems and methods provided in patent US20160084635A1 
[47, 60] need to acquire and weight data across a range of 
sensors to be able to estimate DMY. They also take spot 
or small area readings and therefore cannot be used for 
rows or spaced plants.

Results obtained from manual measurements in this 
study suggest that a broad range of FW and DW levels 
can be directly measured by LiDAR in PRG. However, 
there may be upper limits after which the accuracy of the 
current algorithm decays.

Both FW and DW in rows are correlated to DMY accu-
mulation over time in complex swards under a wide range 
of management and defoliation regimes. In experiment 1, 
we observed a higher correlation coefficient between FW 

Table 3  Mean coefficient of  variation for  four measured 
traits in 12 cultivars of perennial ryegrass

Cultivar FW (g/row) DW (g/row) %DM LV Ploidy

1 525.00 154.15 0.29 16,841,584 2x

2 655.00 190.14 0.29 24,446,478 4x

3 391.42 130.49 0.33 17,199,440 4x

4 579.75 188.97 0.33 18,919,565 2x

5 498.39 141.70 0.28 22,324,398 2x

6 403.11 131.24 0.33 17,012,703 4x

7 370.61 126.08 0.34 14,231,352 2x

8 499.67 147.76 0.30 19,571,709 2x

9 514.49 171.25 0.33 20,948,934 2x

10 522.54 158.45 0.30 19,316,282 4x

11 475.96 161.89 0.34 20,783,519 2x

12 317.75 108.53 0.34 15,633,334 2x

CV 19.72% 16.59% 7.13% 15.43% –

σ 94.57 25.04 0.03 2,923,314.65 –

µ 479.47 150.88 0.31 18,935,774.83 –

Fig. 4  Accumulation of LiDAR Volumet (LV) in single-row plots of 
perennial ryegrass in Lincoln, New Zealand recurrently measured at 
0, 2, 6, 9, 14, 16, 19, 21 and 26 days (corresponding to scans 1–9 on X 
axis) of a regrowth phase in spring

Table 4  Correlation between  LiDAR scan data 
and harvested vegetative biomass of paired-row ryegrass 
plots in  a  breeding trial in  Ruakura, New Zealand 
across nine monthly measurements with an annual cycle

LV and FW data are mean ± standard deviation

LV LiDAR Volume, FW fresh weight

Harvest R2 LV FW (g)

Mar-18 0.80 105 ± 14.3 750 ± 130

Jul-18 0.68 82 ± 10.0 640 ± 90

Aug-18 0.81 84 ± 11.4 520 ± 110

Sep-18 0.81 98 ± 15.5 680 ± 110

Oct-18 0.93 75 ± 17.6 510 ± 113

Nov-18 0.81 68 ± 13.6 450 ± 90

Dec-18 0.67 137 ± 14.7 1030 ± 170

Jan-19 0.81 73 ± 13.9 440 ± 100

Fig. 5  Correlation (R2 = 0.90) of LiDAR Volume and Fresh Weight data 
across 1008 observations in a paired-row perennial ryegrass field 
experiment in Ruakura, New Zealand, for recurrent harvests between 
April 2018 and January 2019
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and LV than between DW and LV. This is expected given 
the LV is a volumetric measure which will be a function 
of both DM and water content in the scanned biomass. 
The potential for LV to estimate %DM, even at a lower 
precision, would overcome a significant bottleneck in 
plant breeding, and warrants further investigation.

The equal value of normalized covariance matrix for 
all 12 cultivars indicates high dependence among param-
eters. This was an expected result given the strong rela-
tionship of LiDAR, FW and DW. Greater accuracy of the 
system to scan biomass alone will affect these parameters 
in the estimation of FW by regression if that is the cho-
sen application in the future.

The ability to generally attain correlations greater than 
R2 = 0.80 across sites, seasons, levels of regrowth and 
age of trials offers initial evidence of the system’s reli-
ability and utility. Even when used in a non-design con-
figuration without a light exclusion and on double rows, 
the correlation was R2 = 0.68 which compares favorably 
with the precision of other sensor systems and visual 
observations.

However, the need to further explore the relationship 
between LV and changes in environmental conditions, 
and the relationship between LV and vegetative biomass 
at the upper and lower bounds of growth remain an 
area for ongoing research. Based on results obtained in 
our experiments, we suggest that LiDAR is a consistent, 
repeatable measurement tool and produces valuable data 
for measuring DMY in PRG.

The advantage of information obtained from coef-
ficient of variation calculations is that despite the large 
standard deviation in LV compared with the other three 
datasets (FW, DW and %DM), the coefficient of varia-
tion data compares variability across different variables 
with the same relative scale. It is, therefore, an indicator 
of the same scale of data dispersion for LV and dry mat-
ter measurements. The study group’s growth rate was not 
obviously affected by the ploidy level, endophyte type, or 
the hybrid nature of cultivars. This confirms the poten-
tial of LV for directly measuring DMY via FW and DW, 
and the generic applicability of information obtained 
from this type of data across different types of ryegrass. 
However, further research into the effect of environment, 
management and genotype may reveal opportunities to 
specifically improve the LV algorithm for specific cases.

The results obtained from Experiments 1 and 4 com-
pare favourablly with the results obtained from studies 
in crop species such as wheat and maize, which show 
R2 range of 0.72–0.84 between vegetative biomass dry 
matter and LV [52, 61, 62]. These results also compare 
favourablly to other reports in pasture species where 
multi-sensor systems were used typically resulting 

in correlations of R2 less than 0.80 [48, 60]. Despite 
growth rate being a trait of inherent interest, to date 
there have been no tools available for breeders to pre-
cisely quantify it. The data presented here indicate the 
LiDAR system may provide a means for this trait to be 
measured at a temporal resolution meaningful for plant 
breeding and agronomy applications. A limitation of 
the data in Experiments 2 and 3 are that we were una-
ble to collect concurrent FW or DW data due to limi-
tations of plant material available. Also, the volumetric 
fluctuation observed at very short time frames (days) in 
relation to environmental variation and inherent tech-
nical variation require further exploration before draw-
ing conclusions as to any causal factor(s) affecting the 
results.

To further explore the potential for assessment of 
growth rate at high temporal resolution, it would be 
valuable to screen highly replicated trials with divergent 
populations of ryegrass over multiple fixed time points, 
while simultaneously conducting visual assessment and 
destructive harvest for FW and DW measurement on 
a small number of replicates at the end of each growth 
period. Further investigating the LiDAR’s capability to 
measure % water content would also be an interesting 
prospect although we cannot be certain of causes of con-
traction in LV during a regrowth phase. An experiment 
to measure FW and DW at well-watered and drought 
stressed sites to investigate the possibility of measur-
ing stress via wilting and reduction in LV would create 
opportunities for more efficient selection of populations 
with adaptive response to abiotic stress. The first sugges-
tion will provide data to explore the potential of LiDAR 
for increasing accuracy. The last suggestion would pro-
vide a means for potentially developing an inexpensive, 
reliable and high throughput tool for stress tolerance/
susceptibility estimation before chlorosis, which is simply 
not achievable using visual spectrum cameras only.

Data obtained in this study are based on ryegrass 
grown in single and paired-rows, and not in agronomic 
plots or mixed swards. There is evidence that the yield of 
ryegrass may change in response to the accompanying 
plant species [58], therefore the potential for LV scan-
ning also needs to be assessed in small monoculture and 
mixed-species plots and in mixed swards, using white 
clover and other species in field experiments. However, 
to observe the complete picture of DMY accumulation in 
ryegrass, the LiDAR must be ultimately used over a range 
of years, sites, and grazing management regimes to get a 
full picture of DMY accumulation and plant vegetative 
persistence over time, as it is a perennial species with a 
longer breeding and utilization cycle [58].
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The development of LV scanning for vegetative biomass 
and incorporating factors that may affect DMYin the field 
into the algorithm is a starting point for further investi-
gation that could be well extended to other grass species 
across a range of breeding and agronomic applications. It 
also provides an opportunity to more efficiently collect 
data of value in genomic selection and other advanced 
breeding strategies, and to facilitate discovery of genetic 
loci influencing this trait.

Dry matter yield can be divided into a few simpler 
traits or sub-traits. No significant FW, DW or LV differ-
ence between tetraploids and diploids in these experi-
ments was contradictory to differences in cell size and 
suggestions otherwise by [58]. Number of tillers, another 
candidate sub-trait of interest and which directly corre-
lates with total forage yield [63], may be possible to meas-
ure by counting if needed by modification of the current 
algorithm developed in this study, though it was not 
tested in this study and remains speculative. Both sub-
traits are considered a priority for more detailed studies 
in the future.

Further, measurements in our experiments indicate 
that we can use LV to estimate FW and DW with high 
accuracy within the target range of vegetative biomass 
suited to grazing of pasture, but may need refinement for 
forage conservation. This provides a means to address the 
suggestion [64] that the current tools need to be comple-
mented by a tool that can directly measure DMY. How-
ever, measuring vegetative biomass and morphology in 
spaced ryegrass plants still needs further software and 
probably hardware improvements such as Real Time Kin-
ematic Global Positioning System, although they share 
the same principles with yield measurement in rows such 
as the presence of bare soil between plants and so are 
likely amenable to LiDAR-based approaches.

Conclusions
A LiDAR-based system for real-time non-destructive 
measurement of vegetative biomass in relation to DMY 
accumulation in PRG single and paired-row plots was 
validated under different scenarios. We demonstrated 
the potential and identified some limitations of a single 
LiDAR sensor for generalized estimation of FW, DW and 
growth rate in field experiments across a range of sea-
sons, sites and ages. We suggest that some discoveries 
in this study, such as the potential for the LiDAR system 
to detect variation in LV at a high temporal resolution 
may improve breeding processes in the future by ena-
bling measurement of growth rate. Although our results 
support phenomics research findings reported in crops 
and other forage grasses, this is the first time a LiDAR-
based tool has been shown to quantify DMY or biomass 
data for PRG field experiments in real-time and at high 

accuracy, generally R2 > 0.8. The suggestions provided 
for future studies including a closer examination of the 
effects of environment, management and genotype on 
accuracy may further improve the quality and resolu-
tion of LiDAR data for agricultural purposes, and also 
increase our knowledge of this sensor/tool and will lead 
to high throughput and more effective breeding pro-
grams, agronomy and farm management technologies.
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cultivars of perennial ryegrass in a replicated field experiment, based on 
LiDAR scans at three timepoints measured in a spring regrowth phase.
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