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Abstract 

Background: Unmanned aerial vehicles (UAVs) equipped with lightweight sensors are making a significant impact 
in field-based crop phenotyping. UAV platforms have been successfully deployed to acquire phenotypic data in a pre-
cise and efficient manner that would otherwise be time-consuming and costly to acquire when undertaken through 
manual assessment. One example is the estimation of plant density (or counts) in field experiments. Challenges posed 
to digital plant counting models are heterogenous germination and mixed growth stages that are present in field 
experiments with diverse genotypes. Here we describe, using safflower as an example, a method based on template 
matching for seedling count estimation at early mixed growth stages using UAV imagery.

Results: An object-based image analysis algorithm based on template matching was developed for safflower seed-
ling detection at early mixed growth stages in field experiments conducted in 2017 and 2018. Seedling detection 
was successful when tested using a grouped template type with 10 subgroups representing safflower at 2–4 leaves 
growth stage in 100 selected plots from the 2017 field experiment. The algorithm was validated for 300 plots each 
from the 2017 and 2018 field experiments, where estimated seedling counts correlated closely with manual counting; 
 R2 = 0.87, MAE = 8.18, RSME = 9.38 for 2017 field experiment and  R2 = 0.86, MAE = 9.16, RSME = 10.51 for 2018.

Conclusion: A method for safflower seedling count at early mixed growth stages using UAV imagery was developed 
and validated. The model performed well across heterogenous growth stages and has the potential to be used for 
plant density estimation across various crop species.

Keywords: Object-based image analysis, Plant phenotyping, Safflower, Seedling count, Unmanned aerial vehicle

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Technological advances in the development of 
unmanned aerial vehicles (UAVs) equipped with sen-
sors are rapidly transforming the discipline of field-
based crop phenotyping [1, 2]. UAVs can acquire images 
with high spatial and temporal resolution for crop vari-
ation detection and quantification. In addition, they are 
flexible in the acquisition time without being limited by 
ground conditions which may otherwise impede access 
by human operators and ground-based systems. UAVs 
equipped with a range of sensors such as optical digi-
tal RGB (red, green, blue), multispectral, hyperspectral, 

thermal and light detection and ranging (LiDAR) have 
been deployed successfully to estimate biomass, height, 
nitrogen usage and canopy temperatures in crop plants 
[3–6]. More recently, UAV-acquired high resolution 
RGB imagery was used to estimate wheat plant density 
[7] and rapeseed stand count [8]. Thus, UAV platforms 
offer novel opportunities to estimate plant density in a 
high-throughput manner. However, the performance 
of plant counting models is significantly impacted by 
crop growth stages, with different estimates observed at 
early growth stages [7, 8]. For example, seedling count 
estimation in rapeseed at the two-leaf growth stage 
based on a multi-regression model differed significantly 
for two sampling time points [8]. This becomes an 
issue when heterogenous germination results in mixed 
growth stages in a field experiment; something often 
seen in crops with a relatively minor or short breeding 
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history due to varied germination rates between geno-
types, and in experiments with diverse genotypes or 
different treatments, such as varying watering or nutri-
ent regimes.

Using safflower (Carthamus tinctorius L.) as an exam-
ple, this study aimed to develop a method to estimate 
plant count/density under mixed growth stages post 
emergence using UAV-acquired high resolution RGB 
imagery. Safflower is a minor oilseed crop with global 
seed production of 948,516 tonnes in 2016, equating to 
0.28% of world soybean production [9]. However, the 
development of a genetically engineered safflower culti-
var with seed oil that contains approximately 92% oleic 
acid—named Super High Oleic (SHO) safflower—by 
the Commonwealth Scientific and Industrial Research 
Organisation in collaboration with the Grains Research 
and Development Corporation [10] and subsequent 
licensing of the SHO technologies and materials to an 
Australian clean technology company, GO Resources, 
has paved the way for the establishment of a new oil-
seeds industry [11]. Breeding efforts for elite SHO saf-
flower cultivars will be accelerated via genome-assisted 
breeding propelled by high-throughput field phenotyp-
ing [12].

We present in detail the image processing and analysis 
pipeline for the estimation of safflower seedling count 
at mixed early growth stages based on an object-based 
image analysis (OBIA) algorithm.

Methods
Field experiments
Two field experiments were conducted at the Plant 
Breeding Centre, Agriculture Victoria, Horsham, Victo-
ria, Australia during the winter–spring cropping seasons 
of 2017 (Lat: 36°44′14.88″S Long: 142°6′51.73″E) (Fig. 1a) 
and 2018 (Lat: 36°44′14.98″S Long: 142°6′48.80″E). Saf-
flower genotypes were planted in individual plots meas-
uring 5  m long and 1  m wide (5  m2). Seeds were sown 
to achieve a planting density of 40  plants/m2 according 
to the recommended density of 20–40  plants/m2 for 
safflower in Australia [13]. The development and opti-
mization of the OBIA algorithm for safflower seedling 
detection was conducted on a subset of 100 plots from 
the 2017 experiment, while for the validation of the algo-
rithm, additional 300 plots each from the 2017 and 2018 
field experiments were used. These plots were represent-
ative of the overall genotypic diversity and germination 
heterogeneity observed in the field experiments. Plant 
count for plots were obtained by manual counting in the 
field by experts (agriculture scientists), these were further 
verified digitally by visual counting of seedlings in aerial 
plot images  (R2 = 0.94).

UAV image acquisition
A 3DR Solo (3D Robotics Inc., USA) UAV was used with 
a custom fixed gimbal to attach a Sony ILCE-QX1 RGB 
camera with an APS-C type sensor (23.2 × 15.4  mm) 
and 20.1 megapixels resolution (Fig. 1b). Flight planning 
and automatic mission control was performed using the 
android application ‘Tower’. The camera was equipped 
with a 30  mm focal length lens and set to continuous 
shooting mode in JPEG format with shutter priority using 
the Sony PlayMemories android application, resulting in 
approximately two images captured per second (~ 0.5 Hz 
frequency). Images were acquired at a flight altitude of 
20 m at constant speed of 3.0 ms−1 and with an overlap of 
more than 75% under overcast conditions.

Flights were conducted over the safflower emergence 
period and data presented in this study corresponded to 
the period when the majority of safflower plants were at 
the 2–4 leaves growth stage. Seven black plastic panels of 
38  cm diameter and painted with white cross were dis-
tributed in the field experiment to serve as ground con-
trol points (GCPs) for accurate geo-positioning of images 
(Fig.  1c). A real-time kinematic global positioning system 
(RTK-GPS) receiver EMLID Reach RS (https ://emlid .com) 
was used to record the centre of each panel with < 1 centi-
metre accuracy. An image of a colour target (X-rite Colour-
Checker Passport, www.xrite .com, Fig.  1d) was captured 
before and after each flight for white balance correction.

Fig. 1 Safflower field experiment. a 2017 field experiment design 
and layout with ground control point (GCP) distribution; the 2018 
field experiment had a similar layout, b 3DR Solo UAV with a Sony 
QX1 digital RGB camera attached, c GCP, and d colour target

https://emlid.com
http://www.xrite.com
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Image pre‑processing and orthomosaic
White balance correction for acquired images was per-
formed in Adobe Lightroom CC and the images were 
geo-tagged using the 3DR Solo flight log in the free-
ware, GeoSetter version 3.4. Images were then imported 
into Pix4D Mapper version 4.2 to generate orthomosaic 
image, with the coordinates of the GCPs used for geo-
rectification. Orthomosaic RGB images generated for the 
safflower experiments had a ground sampling distance 
(GSD) of approximately 0.19 cm/pixel.

OBIA algorithm for safflower detection
The orthomosaic image was imported into eCognition 
Developer software version 9.3 (http://www.ecogn ition 
.com/) for further processing. A fully automated OBIA 
algorithm for safflower plant classification and seedling 
detection at early growth stages was developed using 
eCognition (Fig. 2). The procedure presents an innovative 
application of the template matching algorithm where 
areas of an image are matched to a template image, in 
this case a safflower seedling. To enhance safflower seed-
ling detection accuracy, a grouped template consisting of 
multiple template subgroups was applied. The grouped 
template was generated in eCognition’s template editor 
using 1000 image patches (20 × 20 pixels each) repre-
senting safflower seedlings at early growth stages of 2–4 
leaves selected from 100 plots in the 2017 field experi-
ment. In addition, the grouped template was applied 
to a classified image layer consisting purely of safflower 
plants to increase safflower seedling detection accuracy 
(Fig. 2). The OBIA algorithm consisted of two main parts 
as described below:

Part I, safflower plant classification
The RGB orthomosaic image was segmented using the 
chessboard segmentation process to create single pixel 
objects which were classified as safflower plant objects if 
their green ratio was > 0.36. The green ratio is the propor-
tion of the green waveband over the total of red, green 
and blue wavebands:

Remaining objects were classified as background/soil. 
Plant objects were then merged and resulting objects 
with sizes < 30 pixels were excluded as background/soil.

Part II, template matching
The resulting safflower plant objects were segmented 
again using the chessboard segmentation process to 
create single pixel objects. The visible green channel 
layer containing the segmented plant objects was used 
to create an image layer named “safflower image layer”. 

Green ratio =
[Green]

[Red]+ [Green]+ [Blue]

The grouped template for safflower seedling was then 
applied to this safflower image layer and matches with 
a correlation coefficient of > 0.36 were classified as saf-
flower seedling. The remaining matches were excluded 
as background i.e. soil, weeds or non-safflower plants. 
Further fine-tuning of the template matching accu-
racy was achieved by optimising the template matching 
stringency/threshold. Finally, safflower seedlings were 
exported as a point shapefile. Primary outputs from the 
OBIA algorithm are shown in Fig. 3.

Data analysis
A field plot map was generated in ArcGIS Pro version 2.1 
(https ://www.arcgi s.com/) and the polygons/rectangular 
borders were sized to the experimental plot dimension 
of 5 m × 1 m. The safflower seedlings point shapefile was 
imported into ArcGIS Pro and the plot map was used to 
summarise the total safflower seedlings count per plot 
and plant density (plants/m2) for each plot (Fig.  3). The 
accuracy of the OBIA algorithm was evaluated by com-
paring plant counts obtained by manual counting in 
the field (manual) to those estimated by the algorithm 
(digital) for 300 plots each from 2017 and 2018 field 
experiments. Accuracy metrics such as coefficient of 
determination  (R2), mean absolute error (MAE) and root-
squared mean error (RSME) were computed in Microsoft 
Excel. A higher accuracy is represented by a higher  R2 
score and lower values for both MAE and RSME.

Results
Template matching algorithm optimisation
Due to the diverse safflower genotypes and heterogenous 
germination present in the field experiments, a large 
number of sample patches (1000) representing safflower 
seedlings at growth stages of 2–4 leaves were used to 
generate the safflower seedling template. Initial testing 
showed that a template generated using images in the 
green channel had better quality (correlation coefficient, 
R = 0.294) compared to those generated using either 
the red (R = 0.283) or blue (R = 0.223) channels. How-
ever, as evidenced by the low R scores, template quality 
was low, most likely due to the large number of sample 
patches with contrasting morphological characteristics. 
As such, a two-step optimization strategy was employed 
to improve the template quality. The first step involved 
generating the safflower seedling template from a classi-
fied image layer in the green channel consisting purely of 
safflower plants (Fig. 3). This resulted in a 55% improve-
ment in the template quality (R = 0.458), possibly due 
to an absence of background noise or foreign objects 
with similar properties to the target (e.g. weeds) in the 
sample patches. The second step involved generating 
grouped template types, as opposed to a single template 

http://www.ecognition.com/
http://www.ecognition.com/
https://www.arcgis.com/
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for safflower seedlings. Results indicated that appreci-
able gains in template quality were observed when tran-
sitioning from single to grouped template types with 5 

(R = 0.584), 10 (R = 0.628) and 15 (R = 0.631) subgroups. 
The grouped template with 10 subgroups was selected for 
further optimisation as improvement in template quality 

Fig. 2 Flowchart of the OBIA algorithm for safflower plant classification and seedling detection. The OBIA algorithm consists of two main parts: 
safflower plant classification and seedling template matching. The final product is a point shapefile corresponding to safflower seedlings which is 
imported into the ArcGIS Pro software
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was negligible (< 0.05%) with 15 subgroups which entails 
a higher computational cost and longer processing time 
in template matching.

The performance of the template matching algo-
rithm was evaluated initially on 100 plots from the 
2017 field experiment (Fig. 4). The effect of three tem-
plate matching stringencies (thresholds = 0.4, 0.5 and 

0.6; threshold of 1.0 being a perfect match) on perfor-
mance was tested. Safflower seedling count estimated 
with a template matching threshold of 0.5 had the 
best accuracy  (R2 = 0.8668, MAE = 6.94, RSME = 9.23) 
compared to a threshold of 0.4  (R2 = 0.8441, 
MAE = 11.44, RSME = 14.11) or a threshold of 0.6 
 (R2 = 0.8149, MAE = 21.88, RSME = 24.06) (Fig.  4). 

Fig. 3 Graphical overview of the image analysis pipeline for safflower seedling count estimation. Examples of the primary outputs in the pipeline 
are presented at the plot level. Classified safflower plants (indicated in teal) are subjected to a grouped seedling template matching and detected 
seedlings (indicated in red) are exported as a point shapefile into ArcGIS Pro software for plot-level summary (plots outlined in blue) of seedling 
counts
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These results suggest that low template matching 
stringencies will likely result in an overestimation of 
plant count, whereas underestimation is expected 
under high stringencies. A template matching strin-
gency of 0.5 was selected as the optimum value for fur-
ther testing.

Plant count estimation accuracy
The performance of the optimised OBIA algorithm for 
plant count estimation was tested and validated on an 
additional 300 plots each from the 2017 and 2018 field 
experiments (Fig.  5). For the 2017 field experiment, 
estimated safflower seedling counts correlated closely 
with counts obtained by manual counting  (R2 = 0.8786, 
MAE = 8.18, RSME = 9.38). Similar results were 
obtained from the 2018 experiment  (R2 = 0.8615, 
MAE = 9.16, RSME = 10.51), thus validating the high 
accuracy of the plant count estimation. In both experi-
ments, a wide range of plant counts were observed, 
highlighting the diverse safflower genotypes and het-
erogenous germination present in each experiment. 
The results also suggest that the OBIA algorithm was 
effective even when contrasting growth stages of 2 to 4 
leaves were present within and across safflower geno-
types. Closer inspection showed that the performance 
of the algorithm degrades slightly (over- or under-esti-
mation) for areas with tight clusters of safflower seed-
lings (Fig.  6), probably due to the complex situation 
caused by high overlaps between plants.

Discussion
Recent studies have demonstrated the capability of UAV 
platforms for plant count estimation using RGB imagery 
in maize [14], cotton [15], potato [16], wheat [7] and 
rapeseed [8]. For larger plants with uniform distribution 
and wider spacing such as maize, cotton and potato, the 
image analysis process is relatively simpler as plants are 
typically represented as individual objects after image 
segmentation [14–16]. However, for overlapping crops 
such as wheat and rapeseed, spectral information alone 
is insufficient and additional features are required to 
estimate plant count using regression or machine learn-
ing models [7, 8]. This makes data analysis not only com-
putationally challenging, but also technically difficult, 
often requiring expert guidance in feature extraction. For 
example, in rapeseed up to 15 morphological features 
were evaluated and only three features were selected 
for use in a multi-regression model for seedling count 
estimation [8]. Furthermore, features selected for a pre-
diction model are likely specific to the crop species 
and growth stage [7, 8], thus extensive optimisation is 
required to apply the same model to other crop species.

In contrast, the OBIA algorithm based on template 
matching for safflower seedlings presented in this study 
is relatively simple to implement due to a more visual 
approach requiring the operator to select sample patches 
from RGB imagery representing the targets of inter-
est. In addition, results generated by template matching 
are easy to interpret, as positive hits can be overlayed 
on top of existing RGB images, thus offering a quick 

Fig. 4 Performance of plant count estimation under different template matching stringencies. Template matching thresholds of 0.4, 0.5 and 0.6 
were evaluated on 100 plots from the 2017 field experiment. Estimated (digital) plant counts were compared to manual plant count
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visual verification of outputs. Perhaps the most attrac-
tive feature of the OBIA algorithm is its potential to be 
deployed onto crops with heterogenous germination and 
contrasting growth stages, something often seen in field 
experiments with diverse genotypes or different treat-
ments such as varying watering or nutrient regimes. In 
both wheat and rapeseed studies, the growth stage had 

a significant impact on the performance of the seed-
ling count models [8, 17]. In comparison, results in 
this study indicate that the OBIA algorithm was able to 
detect safflower seedlings at various growth stages from 
2 to 4 leaves, largely due to the grouped template (10 
subgroups) approach which accounts for different seed-
ling growth types. Combined with the strategy of using 

Fig. 5 Performance of plant count estimation for field experiments. Plant count was estimated (digital) for 300 plots each for 2017 and 2018 
experiments and compared to those obtained by manual counting. Red line indicates the 1:1 line



Page 8 of 9Koh et al. Plant Methods           (2019) 15:64 

classified image layers containing only safflower plant 
objects as input for template matching, seedling count 
estimation correlated closely with manual counts for 
both 2017  (R2 = 0.8786) and 2018  (R2 = 0.8615) experi-
ments. These results are comparable to the performance 
of seedling count models published for other crop species 
[7, 8, 14–17].

A common challenge in seedling count models is the 
separation of plant from background, especially when 
green weeds are present. Methods employing classifica-
tion based on colour [18] and shape [19] were success-
ful in weed identification and separation from plants. 
The ability to generate an image layer consisting purely 
of safflower plant objects was crucial to the success of the 
OBIA algorithm in this study. Although weeds were well-
controlled in our field experiments, the first part of the 
OBIA algorithm (plant classification) can be extended to 
incorporate a myriad of segmentation and classification 
algorithms to achieve satisfactory plant separation from 
the background in the event of a weed infestation using 
spectral and spatial information, for example combining 
data from multiple sensors such as RGB, multispectral 
and LiDAR.

Although germination rates varied significantly 
between safflower genotypes and across experiments, the 
OBIA algorithm performed well across a wide range of 
seedling densities. Results from our study indicate that 
the performance of seedling count estimation reduces 
slightly over areas with high plant overlaps, such as in 
tight clusters. As such, further studies are required to 

determine the performance of seedling count estima-
tion under high plant densities, particularly for differ-
ent safflower cultivation practises or when adopting this 
method for other densely sown crop species. For crops 
with small seedling and high overlaps, assuming a fairly 
uniform germination and growth stage, machine learn-
ing approaches using spectral, texture and morphological 
features may be better suited for seedling count estima-
tion [7, 8, 17]. However, even for seedling count models 
based on machine learning approaches, complex situa-
tions arising from high plant overlaps remain a challenge 
[17]. Nevertheless, the OBIA algorithm developed for 
safflower seedling count estimation will facilitate high-
throughput and reliable data collection for field experi-
ments using UAV-acquired RGB imagery. Furthermore, 
this method could find wider application in other crop 
species, particularly dicot plants with seedlings similar 
to safflower. This will result in significant time and cost 
savings for large-scale agronomic and breeding field 
experiments with diverse genotypes or treatments where 
seedling count is a required phenotypic observation.

Conclusions
A method for safflower seedling count estimation at early 
stages based on UAV-acquired RGB imagery was devel-
oped and validated in this study. The method employs 
an OBIA algorithm based on template matching for saf-
flower seedling detection. Results indicate that the OBIA 
algorithm performed well even when seedlings with con-
trasting growth stages were present and has the potential 

Fig. 6 Safflower seedling detection over areas with high plant overlap. Magnified views (× 1.5) of an area with safflower seedling clusters before 
(a) and after (b) safflower seedling detection. Hits following template matching are indicated by red diamonds (13 plants). In contrast, manual 
counting based on image is 17 plants
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to be adopted for use in other crop species. This method 
will facilitate high-throughput data collection for field 
experiments using UAV platforms.
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