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Abstract 

Background:  With environmental deterioration, natural resource scarcity, and rapid population growth, mankind is 
facing severe global food security problems. To meet future needs, it is necessary to accelerate progress in breeding 
for new varieties with high yield and strong resistance. However, the traditional phenotypic screening methods have 
some disadvantages, such as destructive, inefficient, low-dimensional, labor-intensive and cumbersome, which seri-
ously hinder the development of field breeding. Breeders urgently need a high-throughput technique for acquiring 
and evaluating phenotypic data that can efficiently screen out excellent phenotypic traits from large-scale genotype 
populations.

Results:  In the present study, we used an unmanned aerial vehicle (UAV) high-throughput phenotyping (HTP) 
platform to collect RGB and multispectral images for a breeding program and acquired multiple phenotypic compo-
nents (or traits), such as plant height, normalized difference vegetation index, biomass accumulation, plant-height 
growth rate, lodging, and leaf color. By implementing self-organizing maps and principal components analysis biplots 
to establish phenotypic map and similarity, we proposed an UAV-assisted HTP framework for preselecting maize (Zee 
mays L.) phenotypic components (or traits).

Conclusions:  This framework gives breeders additional information to allow them to quickly identify and preselect 
plants that have genotypes conferring desirable phenotypic components out of thousands of field plots. The present 
study also demonstrates that remote sensing is a powerful tool with which to acquire abundant phenotypic compo-
nents. By using these rich phenotypic components, breeders should be able to more effectively identify and select 
superior genotypes.
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Background
With the imminent threat of environmental deteriora-
tion, natural resource scarcity, and rapid population 
growth, mankind is facing an unprecedented challenge of 
producing sufficient food to ensure global food security 
in the coming decades [1, 2]. It is estimated that farmers 
must produce 70% more food by 2050 to feed a popula-
tion expected to reach about 9.6 billion [3]. Improving 
genetic gains and maintaining a stable food supply are 
effective measures for plant breeders and geneticist to 
alleviate the current situation. In the last two decades, 
crop sequencing technology has developed rapidly, 
allowing the whole genome to be sequenced rapidly at 
low cost. However, because of the lack of assistant phe-
notypic knowledge, methods for rapid identification of 
desirable traits have advanced little [4, 5]. With increas-
ing demand for rapid phenotyping of large numbers of 
lines and to accelerate progress in breeding for novel 
traits, phenotyping is often considered the bottleneck of 
crop breeding [6].

Recent advance in high-throughput phenotyping (HTP) 
technologies has provided a positive response to narrow 
the gap between the wealth of genomic data with pheno-
typic data [7]. HTP technologies allow large numbers of 
plants to be measured in a non-destructive manner with 
accuracy and precision. Initially, high-throughput phe-
notyping was applied in controlled environments, such 
as greenhouses and growth chambers, to collect phe-
notypic data from model organisms [8]. This is indoor 
shoot-based phenotyping that have an advantage in char-
acterizing individual plants grown in pots, and not lim-
ited by overlapping canopies and variable environmental 
conditions due to soil, temperature, water etc. However, 
the main concern for many breeders is that the complex 
traits obtained by using HTP technologies in controlled 
environments may not be fully replicated in the field, so 
phenotyping in field conditions remains a bottleneck that 
hinders advances in breeding [5, 6, 9].

With continuous advances in proximal sensing, field-
based HTP has become widespread in the breeding 
programs. Recently, several field-based HTP platforms 
were developed to measure phenotypic traits, including 
ground-based HTP platforms [10–12] and aerial-based 
HTP platforms [13–15]. Ground-based HTP platforms 
consisting of modified vehicles have the advantages of 
high resolution, flexible design, and large payload, but 
have limitations in the portability and scale at which they 
can be used [16]. Compared to ground-based HTP plat-
forms, aerial-based HTP platforms enable the rapid eval-
uation of the populations consisting of thousands to tens 
of thousands of plots and the synchronized measure-
ments of multiple traits in an efficient manner, overcom-
ing some limitations associated  with the ground-based 

HTP platforms. As one of emerging technologies in 
aerial-based platforms, unmanned aerial vehicles (UAV) 
for HTP have undergone a remarkable development in 
recent years and been capable of gaining advantages of 
their portability, operability, low cost, and high spati-
otemporal  resolution [13, 17, 18]. UAV-HTP based on 
proximal remote sensing has been envisaged to bridge 
the gap between ground-based measurements and satel-
lite observations [19]. Traditional ground-based pheno-
typing techniques are time-consuming, labor intensive 
and impractical  for  large-scale operations [20]. Despite 
the advantages of satellite remote sensing in large-scale 
observation, it remains some limitations, such as low 
resolution, long revisit period and high susceptibility to 
water vapor [21]. In conclusion, compared with other 
technologies, UAV-HTP offers excellent opportunities 
for rapid and non-destructive extraction of crop pheno-
typic information in the field.

Currently, several structural and physiological agro-
nomic traits suitable for HTP have been proposed for use 
in breeding programs, including but not limited to the 
normalized difference vegetation index (NDVI) [11, 22, 
23], biomass accumulation [21, 24], plant height [25, 26], 
plant-height growth rate [15, 27, 28], lodging [29, 30], leaf 
color [24, 31], and yield [32–34]. Previous research has 
demonstrated that measurements provided by HTP plat-
forms are highly correlated with manual reference meas-
urements [26, 34, 35]. By using HTP technologies capable 
of collecting phenotypic data at multiple time points or 
throughout the season, researchers can better under-
stand how traits develop, allowing better optimization of 
genotypes through selection in breeding programs [36].

A preliminary approach with easily measurable phe-
notypic traits provides a chance to select genotypes [37]. 
Cluster and correlation analyses seem to be a promising 
approach for identifying potential associations between 
phenotype and genotype [38, 39], which clarifies gene 
co-expression and phenotypic similarity. Self-organiz-
ing maps (SOMs) are a type of artificial neural network 
invented by Kohonen [40] that are trained by using unsu-
pervised learning to project high-dimensional, complex 
data onto a two-dimensional grid. This reduces dimen-
sionality and enhances the visualization of clustering [41, 
42]. A principal components analysis (PCA) biplot high-
lights the extent to which the objects in rows (samples) 
differ from the objects in columns (features) [43]. In this 
context, a PCA biplot shows the largest patterns in the 
data in terms of how the phenotypic components differ in 
different genotypes.

In the present study, we used a UAV HTP platform to 
collect RGB and multispectral (spectral bands: green, 
red, red-edge and near-infrared) images for a breeding 
program and acquired multiple phenotypic components 
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(or traits). The specific objectives for this study were (i) 
to propose an UAV-assisted HTP framework to establish 
phenotypic maps and similarities, (ii) to identify selection 
strategies for different breeding targets or multiple phe-
notypic components, and (iii) to assess the potential for 
using UAV field-based HTP platforms for selection deci-
sions in a large breeding program.

Methods
Field trials
Field breeding trials included a natural population and a 
doubled-haploid population (i.e., 800 maize plots). The 
natural population assessed in this study consisted of 
482 maize plots divided into three subpopulations based 
on differences in genetic background: Mixed, temper-
ate (TEM), and tropical or subtropical (TST). Of the 482 
plots, 106 were from the mixed subpopulation, 162 were 
from the TEM subpopulation, and 214 were from the 
TST subpopulation.

The field trials were conducted at the research sta-
tion of Xiao Tangshan National Precision Agriculture 
Research Center of China, Changping District of Beijing 
City (115°50′17″–116°29′49″E, 40°20′18″–40°23′13″N). 
The study area is in a warm temperate zone with a semi-
humid continental monsoon climate. The annual average 
temperature is 11.8  °C, and the annual average precipi-
tation is 550.3  mm. Eight hundred plots were arranged 
across a field measuring approximately 30  m by 196  m, 
with a spacing of 0.8  m between plots. Each plot con-
sisted of three 2.4-m-long rows, each containing approxi-
mately 27 plants spaced 25  cm apart. All plots were 
planted by using a seeder on May 15, 2017.

HTP platform and data acquisition
The two cameras used in this study were mounted on an 
UAV HTP platform (DJI Spreading Wings S1000, SZ DJI 
Technology Co., Shenzhen, China). The first camera was 
a Sony digital RGB high-resolution camera (DSC-QX100, 
5472 × 3648 pixels, Sony Electronics, Inc., Tokyo, Japan) 
with the ISO and shutter speed set at 160 and 1/2000, 
respectively. The second camera was a Parrot Sequoia 
multispectral camera (1280 × 960 pixels, MicaSense Inc., 
Seattle, USA) that combines four monochrome sensors 
(green: 550  nm, red: 660  nm, red-edge: 735  nm, near-
infrared: 790  nm) and can simultaneously capture four 
different band images with a 10  nm bandwidth (half 
maximum bandwidth) for the red-edge band and a 40 nm 
bandwidth for the green, red, and near-infrared bands. 
A sunshine sensor was used with the Sequoia sensors 
to minimize errors caused by variations in ambient light 
during acquisition (Fig. 1a).

Flight paths were designed by using the DJI ground sta-
tion (SZ DJI Technology Co., Shenzhen, China) to ensure 

80% forward overlap and 75% side overlap, yielding six 
strips. To build the digital elevation model (DEM), the 
above-ground-level (AGL) parameter for the first flight 
was set to 40 m, yielding a ground-sampling distance of 
0.72 cm. The AGL parameter for four other flights was set 
to 60 m, yielding a ground-sampling distance of approxi-
mately 1.33 cm. The radiometric calibration images were 
captured on the ground before and after each flight by 
using a calibrated reflectance panel (MicaSense Inc., 
Seattle, USA). Prior to the first flight, 16 ground con-
trol point (GCP) markers were arranged evenly over the 
experimental site and were measured by using a differen-
tial global positioning system (DGPS, South Surveying & 
Mapping Instrument Co., Ltd., Guangzhou, China) with 
millimeter accuracy.

Images were acquired five times over the period span-
ning vegetative to reproductive growth (Fig. 1b). Table 1 
details the flight conditions. The leaf collar method of 
Ritchie [44] was used for staging maize plant growth. 
Due to differences in genotype, heterogeneity appears in 
the growth and development at the plot scale. Therefore, 
the growth stage in Table 1 was determined by using the 
50% majority rule.

Plant sampling and measurements
A total of 72 plots served as sampling plots for destruc-
tive biomass measurements and plant-height measure-
ments. Because of the consumption caused by destructive 
sampling, another 72 plots were selected for the meas-
urement on August 3, 2017 (Fig.  1c). Three plants were 
selected at random from the middle of the sampling plots 
to measure plant height and fresh biomass. Plant height 
was manually measured by using a telescopic leveling rod. 
The mean height of three plants was used as plant height 
at the plot scale for the ground truth. The three selected 
plants were then used for destructive biomass sampling. 
The fresh biomass was sealed in plastic bags and weighed 
on the same day. By calculating the actual number of 
plants per sampling plot, the mass was rescaled to kg/m2. 
We visually determined the color of the positive leaves 
at the plot scale and recorded the results. From July 1 to 
10, 2017, lodging occurred in some plots due to frequent 
strong winds and rainfall. A field investigation was done 
for 800 plots and the results for were recorded for root 
lodging, stem breaking, and stem lodging. Table 2 gives 
the dates for sampling and measurements.

Image processing and data extraction
Following UAV image acquisition, RGB images and mul-
tispectral images were processed by using two different 
software applications. For RGB images, we used Agisoft 
PhotoScan (version 1.3, Agisoft LLC, St. Petersburg, Rus-
sia) to generate orthomosaic and digital surface models 
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(DSMs) of each flight with the GCPs to optimize the 
camera position and ensure precise alignment [45]. A 
workflow (Han et al. 2018) was applied to create an area 
of interest for each plot by using the orthomosaics and to 

build the DEM by using the DSMs. Multispectral images 
were processed with Pix4D Mapper Pro software (version 
4.0, PIX4D, Lausanne, Switzerland). Pix4D  Mapper Pro 
has advantages in radiometric calibration and vegetation 
index calculation and offers some important process-
ing steps similar to Agisoft Photoscan, such as align-
ing photos, importing GCPs and geographic references, 
building dense point clouds, and generating DSM and 
orthomosaics. Radiometric calibration was done by using 
the Pix4D  Mapper Pro software with radiometric cali-
bration images with known reflectance values provided 
by MicaSense. NDVI (or other vegetation indices) maps 
were then produced by using the index calculator.

Crop surface models (CSMs), which are widely used 
to extract crop height, were obtained by subtracting 

Fig. 1  Schematic diagram of trial design and field layout

Table 1  Flight conditions for acquiring images over period 
spanning vegetative to reproductive growth

a  Days after sowing

Flight Date DASa AGL Growth stage

1 2017-06-08 24 40 V4

2 2017-06-29 45 60 V10

3 2017-07-11 57 60 V14

4 2017-07-28 78 60 VT

5 2017-08-04 85 60 R1
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the DEM from the DSMs. By using the areas of inter-
est, a workflow [21] was applied to extract phenotypic 
data such as plant height and NDVI for each plot in the 
field from CSM and NDVI maps. Figure 2 illustrates the 
complete preprocessing chain.

After transforming a RGB image into HSL (i.e., hue, 
saturation and lightness) color space by using ENVI soft-
ware (version 4.5, Esri Inc., Redlands, USA) and com-
bining with field-sampled data, we used the hue value 
in HSL color space to cluster the population and classi-
fied the population into three leaf colors. Flowering was 
defined as a dichotomous variable that distinguishes 
whether flowering occurs at the fourth time point, as 
judged by visual observation of an orthomosaic. Average 
growth rate of plant height (AGRPH) is the increment in 
plant height per day between two adjacent time points 
[15]. Fresh biomass and BIOVP (a volume metric to esti-
mate crop biomass within certain spatial ranges) were 
calculated following Han [21]. The identification of maize 
lodging was implemented following Han [29].

Self‑organizing map and hierarchical cluster analysis
Selective breeding requires analysis of the relationships 
between multiple phenotypic traits and focuses on geno-
types that are differentially expressed and co-expressed 
under the same environmental conditions. Differential 
expression can be accomplished using statistically sig-
nificant difference test, while co-expressed genotypes 
require cluster analysis to examine the relationship 
between individuals or groups at the multiple-traits level. 
To explore co-expressed genotypes and identify underly-
ing agronomic groups with similar phenotypic compo-
nents, we performed two-step clustering to isolate 482 
samples with nine dimensions that we standardized to 
values by using the mean and standard deviation. Two-
step clustering was done for a pre-clustering by using 
the self-organizing map (SOM) method, which generates 
a simplified representation of the original data set and 
converts nonlinear statistical relationships between high-
dimensional data into simple geometric relationships 
between points on a two-dimensional map [46]. The 
pre-clusters were then subjected to agglomerative hierar-
chical clustering (AHC), which projects similar samples 

onto the same neuron. Finally, AHC analysis revealed the 
neighboring neurons of the topological map belonging to 
the same final cluster. A tree diagram was used to illus-
trate the arrangement of the clusters produced by AHC 
and to understand and identify clusters.

As shown in Fig. 3, the basic structure of the SOM net-
work consists of an input layer and a competition layer. 
For mixed data in the input layer, an extra layer is cre-
ated for each categorical variable, so difference distance 
measures for each layer. We used the Euclidean distance 
for the numerical variables and the Tanimato distance 
for the categorical variables, and then computed these 
distances for all weight vectors. For training, each neu-
ron was associated with a weight vector (i.e., codebook) 
of the same dimensionality as the input vectors (i.e., phe-
notypic data), and the weight vector was updated at each 
iteration so that topological properties in the input layer 
were preserved [42].

We used the kohonen R package (version 3.0.8) [47] to 
perform the two-step clustering as follows [48]:

Step 0 Select the size (including size X and size Y, i.e., 
the number of neurons), topology type (rectangular 
or hexagonal), and neighborhood function (Bubble 
or Gaussian).
Step 1 Each neuron is assigned a random codebook 
vector ( �wi ) with the same dimensionality m as the 
input data ( �xn).
Step 2 Select a data point at random from the train-
ing data and feed it into the SOM.
Step 3 Find the neuron whose codebook vector is 
most similar to the input data. This neuron is called 
the best matching unit (BMU). Similarity is calcu-
lated by using the Euclidean distance as numerical 
variable or the Tanimato distance as categorical var-
iable.
Step 4 Move the BMU closer to the data point. The 
distance that the BMU moves is determined by the 
learning rate α, which decreases after each iteration.
Step 5 Adjust the codebook vector in the BMU’s 
neighbors towards the chosen data point, depending 
on the neighborhood radius r whose value decreases 
after each iteration.
Step 6 Update the learning rate α and neighborhood 
radius r, and repeat steps 2–5 for N iterations until 
the neuron positions stabilize.
Step 7 Cluster the stabilized codebook vectors by 
using AHC with Ward’s minimum variance method 
linkage. The input data are separated into groups of 
similar properties, which are presented in different 
colors. Estimate the optimal number of clusters by 
using the NbClust R package (version 3.0) [49] with 
majority rule [50]. This provided 30 indices that 

Table 2  Timing of plant sampling and measurement

The date and days after sowing (in parentheses) are given for each task

Plant height Fresh biomass Lodging Color

2017-06-29 (45) 2017-06-29 (45) – 2017-06-30 (46)

2017-07-11 (57) 2017-07-11 (57) 2017-07-12 (58) –

2017-07-29 (79) – – –

2017-08-03 (84) 2017-08-03 (84) – –
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Fig. 2  Flowchart illustrating data-acquisition and analysis methodology
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determine the number of clusters in a data set, but 
not all of the indices always work with all distance 
matrices, especially for a mix of numerical and cat-
egorical data. Therefore, only 20 applicable indices 
were used in the end (Additional file 1).

Finally, we ran SOM with the following parameters 
according to the guidelines for building a SOM reported 
by Das [51] and Wendel [52] : SOM size: 15 × 7; 5000 
iterations; learning rate: 0.05, hexagonal topology and 
Gaussian neighborhood function. We resolved the clus-
ters derived from the SOM map into a set of clustering 
rules by using the rpart [53] (version 4.1-15) and rpart.
plot [54] (version 3.0.7) R package and evaluated clus-
tering quality. To facilitate interpretation of the clus-
ters, we used the ComplexHeatmap R package (version 
1.99.5) [55] to enhance the visualization of the cluster-
ing results by making a heat map with a dendrogram. 
The UpSetR R package (version 1.3.3) [56] used to visu-
alize the set intersections was also used to identify clus-
ters with typical phenotypic-component patterns.

Wilcoxon rank-sum test was used to compare each 
cluster mean with the total population (without clus-
tering) mean, and observe whether a phenotypic com-
ponent was overexpressed (above the total population 
mean) or underexpressed (below the total popula-
tion mean) in different clusters.

Analysis of principle components analysis bioplot
Two-step clustering was followed by biplot analysis 
associated with principle components analysis (PCA). 
By using the FactoMineR [57] and factoextra [58] R 
packages, the biplot was analyzed with a new dataset 
based on two-step clustering to characterize the rela-
tionship between phenotypic components and to iden-
tify the leading components. Biplots based on simple 
bivariate scatter plots can show inter-unit distances 
and indicate clustering of units in addition to display-
ing variances in and correlations between the variables 
[59]. The new dataset was projected onto two dimen-
sions to approximately preserve the distances between 
the samples. The points in the biplot approximate the 
row (sample) information and the vector approximates 
the column (i.e., phenotypic component) information. 
The distance between points reflects the difference 
between the corresponding samples. A greater dis-
tance between two points reflects a greater difference 
between the corresponding samples, and vice versa. 
The length of the arrows represents how well the phe-
notypic component explains the distribution of the 
data, whereas the angles between the arrows approxi-
mate their correlations. Therefore, when two vec-
tors are approximately perpendicular, the correlation 
between the two variables is very weak, and they are 
essentially independent of each other. But if they are 
nearly parallel (antiparallel), the variables have a high 
positive (negative) correlation.

Results
Phenotypic components from high‑throughput 
phenotyping images
The phenotypic components evaluated in this study 
included plant height, fresh biomass, flowering, lodg-
ing, leaf color, genetic background, NDVI, AGRPH 
and BIOVP. Except for genetic background, these phe-
notypic components were acquired by processing and 
analyzing digital or multispectral images from HTP. 
Manual grading based on field investigations led to 
extreme imbalance of the lodging samples, i.e., more 
than 80% was root lodging [29]. Therefore, we simply 
divided the population into two categories (i.e., lodg-
ing and non-lodging). Note that NDVI, BIOVP, and 
AGRPH were all time series data. For convenience, we 
converted the time series data into a numerical value 
by calculating the area under the polyline (Fig. 4). Phe-
notypic components were classified into three catego-
ries based on data types: numerical, dichotomous, and 
polytomous. Table  3 summarizes the phenotypic data 
evaluated in this study.

Fig. 3  Structure of 15 × 7 two-dimensional SOM network. The 
schematic illustration shows how to train the SOM. The N input 
vectors in the input layer are mapped onto a two-dimensional 
competition layer represented by vectors containing the weights. 
Each neuron i  has a weight vector �wi of the same dimensionality m 
as the input vectors ( �xn ). By hierarchical clustering, the color of the 
map encodes the input vectors with similar properties
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Clustering genotypes based on phenotypic components
There were five input data layers. The numerics layer 
consisted of five continuous numerical variables (i.e., 
dyAGRPH, dyNDVI, dyBIOVP, finBiomass and finPH, 
see Table  3). Figure  5 shows that the relative dis-
tance to the closest unit approximately stabilizes after 
5000 iterations, which means that the algorithm has 
converged. A total of 105 neurons in the SOM were 
arranged in a grid of 15 rows by 7 columns, and 482 
samples were unevenly distributed among these neu-
rons (Fig.  6a). Samples with similar phenotypic-com-
ponent patterns tended to be at nearby grid locations. 
The 91st neuron contained 35 samples, which was the 
largest number of samples for a single neuron. Seven 
neurons, called “dead” neurons, never won the com-
petition for samples; these accounted for less than 7% 
(Fig.  6b). Figure  6c shows that, based on the majority 
rule, 11 of the 20 indices propose three as the optimal 
number of clusters. In other words, these phenotypic 
components contributed strongly to discrimination of 
genotypes into three clusters. Therefore, hierarchical 

agglomerative clustering of 105 codebooks resulted in 
the identification of three major clusters, with differ-
ent genotype samples assigned to these clusters (Fig. 7). 
After clustering, genotypes with similar phenotypic-
component characteristics were grouped in the same 
cluster. The next section discussed co-expressed geno-
types and how to identify plant phenotypic similarity.

Phenotypic map and similarity
A phenotypic map was constructed by using SOM clus-
tering visualization technology and dendrograms. This 
map provides important information regarding plant 
phenotypic similarity or dissimilarity and supports fur-
ther evaluation of the phenotypic components [28]. By 
visualizing the weight vector on the map, we explored 
the patterns in which the samples and phenotypic com-
ponents distributed across the three clusters. The weight 
vector was visualized as a “fan diagram” to indicate the 
weight of each phenotypic component in a neuron (see 
Figs.  8a–e). Closer inspection of these diagrams shows 
that (i) the weights of the numerical phenotypic compo-
nents are relatively small in cluster 1 (Fig. 8a); (ii) the TST 
subpopulation dominates cluster 3, accounting for more 
than 85% (Fig.  8b); (iii) cluster 2 has almost no green-
yellow samples (less than 5% of the samples), although 

Fig. 4  Converting time series data (BIOVP) into a numerical value 
by calculating the area under the polyline. The first five plots were 
selected as examples. The number in the right column indicated the 
corresponding area after conversion

Table 3  Phenotypic components evaluated in this study

Number Variable Sensor Data type Explanations

1 finPH RGB Numerical Plant height at fifth observation time point

2 finBiomass Both Numerical Fresh biomass at fifth observation time point

3 IS_flowering RGB Dichotomous Y means that the tassel has flowered, whereas N means that there is no tasseling 
or tassel has not flowered

4 IS_lodging Both Dichotomous Y means lodging; N means no lodging

5 tColor RGB Polytomous Three colors: green, green-yellow, and dark green

6 tGBK – Polytomous Three genetic backgrounds: Mixed, temperate (TEM) and tropical-subtropical (TST)

7 dyNDVI Multispectral Numerical Converted from NDVI data across four time points

8 dyBIOVP RGB Numerical Converted from BIOVP data across five time points

9 dyAGRPH RGB Numerical Converted from AGRPH data across five time points

Fig. 5  Progress of SOM training iterations for 482 samples
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they accounted for over 75% of the samples in cluster 3 
(Fig.  8c); (iv) all samples containing lodging phenotypic 
components are in cluster 1 (Fig. 8d); and (v) none of the 
samples in cluster 3 are tasseling and flowering (Fig. 8e).

As shown in Fig.  9, the overall analysis of variance 
(ANOVA) gives a p value less than 0.05, so we further 
compared the differences in the mean phenotypic com-
ponents between each cluster and that of all genotypes 
without clustering. When the Wilcoxon rank-sum test 
was significant, the numerical phenotypic components 
in cluster 1 were significantly low compared with all 
components (i.e., without clustering), and other numeri-
cal phenotypic components except dyNDVI in Cluster 3 
were significantly higher compared to all components. 
However, no significant difference appeared in the 
parameters finPH and dyNDVI between cluster 2 and all 
components. Phenotypic components with similar char-
acteristics were considered to be co-expressed by differ-
ent genotypes. Together, the visualization of the results of 
the analysis provided important insights into the clusters 

and their co-expressed patterns based on two-step clus-
tering (Table 4).

Turning now to  phenotypic similarity, Fig.  7 provides 
an overview, via a dendrogram, of the measurement of 
the similarity between phenotypic components by using 
HAC with the spearman correlation distance. The top 
five principal components (PCs) explained 86.2% of the 
variation. A high Cos2 (square cosine, squared coordi-
nates) indicates that the phenotypic component is well 
represented in the principal component [58]. Therefore, 
ZfinBiomass (i.e., standardized fresh biomass) was more 
important to interpret PC 1, and IS_lodging was more 
important to interpret PC 3 (Fig.  10a). Figure  10b pre-
sents a biplot that simultaneously plots information on 
genotype samples and phenotypic components, further 
revealing the phenotypic similarity and the relationship 
between genotypes and phenotypic components. PC 
1 explained 34.8% of the variation and PC 2 explained 
19.0% of the variation. A high positive correlation existed 
between the numerical phenotypic components, which 
were negatively correlated with IS_lodging.Y. Lodging had 
a negative impact on crop biomass, plant height, NDVI, 
and so on. A significant positive correlation occurred 
between TST and IS_flowering.N and between TEM and 
IS_flowering.N, which we attributed to the fact that the 
experimental site was located in a temperate zone, so the 
TEM subpopulation was tasseling and flowering in the 
V1 stage, whereas the TST subpopulation required more 
accumulated temperature from vegetative overgrowth to 
reproductive growth. The correlation between greenyel-
low and IS_lodging.Y was interesting because it seemed 
to indicate that the green-yellow leaf samples were more 
prone to lodging. Similarly, a significant positive cor-
relation occurred between darkgreen and ZdyNDVI. 
Interestingly, this correlation was related to the canopy 
pigment content, which was remotely estimated based on 
the NDVI.

Discussion
Phenotypic temporal profile
Prior studies noted the importance of phenotypic tem-
poral profiles, providing fresh insights into the dynamic 
changes in phenotypic traits [15, 60] and genetic differ-
ences at various stages of plant development [27, 61]. 
Although UAV-HTP allows researchers to efficiently and 
conveniently acquire multi-temporal phenotypic data by 
remote sensing, integrating time-series data with other 
types of phenotypic data, such as leaf color, to facili-
tate subsequent quantitative genetic analysis remains 
a difficult problem. In this study, the area under the 
polyline is highly correlated with other phenotypic com-
ponents after conversion to a single value (Figs. 3 and 10). 
Although this conversion preserves the multi-temporal 

Fig. 6  Frequency distribution of samples in SOM grid and optical 
number of clusters. a SOM grid. The numbers on the left and right 
were the sequence numbers of 105 neurons. b Number of samples 
in each neuron. Seven neurons were dead neurons (i.e., neurons that 
never won the competition for samples). c Determining the optical 
number of clusters using the majority rule and 20 indices
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information of phenotypic components to some extent, 
obvious deficiencies remain because, given equal areas, 
the shape of the polylines may differ. This leaves the way 
open for further improvements: one option would be 
to add some descriptive parameters such as inflection 
points and trends. The challenges of collecting pheno-
typic temporal profiles are further compounded by their 
observed values, which partially depend on environ-
mental conditions and may change dramatically within a 
given day or between days of a given year [36].

Phenotypic preselection
The results of this study show that two-step clustering 
allows genotypes to be segregated according to different 
phenotypic component patterns. For example, cluster 3 
exhibits a pattern that is a higher numerical phenotypic 
components, so when we preliminarily screen genotypes 
for higher biomass or higher plant height, which are both 
key breeding targets for crop improvement, we can nar-
row the range of candidate populations and select geno-
types only in this cluster. Grain yield is also one of the 
most important breeding targets for breeders. Unfortu-
nately, the grain-yield data for this trial were largely miss-
ing and unreliable due to waterlogging caused by heavy 
rainfall during the harvest period. These data were there-
fore replaced by the historical grain-yield data. In this 
way, we try to further explain the rationality of clustering 
results produced by our pre-selection framework.

Figure 11 shows the differences in grain weight per ear 
between the three genotype clusters. The most striking 
finding to emerge from this analysis is that cluster 3 has 
a lower grain weight per ear, despite previous analysis 
showing that it has higher phenotypic components. This 
finding seems to indicate that lower grain yields occur in 
genotype samples with higher plant height and higher 
biomass. Is this true? This result may be explained by the 
fact that the vast majority of genotypic samples (85.2%) 
in cluster 3 are TST subpopulations planted in the tem-
perate zone, where the grain yield of such TST popula-
tions was low due to the lack of sufficient accumulated 
temperature during the reproductive-growth stage. Grain 
yield is a polygenic trait controlled by several genes [62]; 
phenotypic components do not directly affect the yield 
but assist in the identification of the genotypes.

Phenotypes of a plant are the expression in observable 
traits of potential genes comprising the genotype and are 
determined by its genetic composition, the environment 
in which it grows, and the interactions between genotype 
and environment [63, 64]. It is thus possible to measure 
phenotypic relationships between different genotypes 
based on available traits [28]. Some phenotypic data 
extracted from remote sensing images, such as BIOVP 
and NDVI, clearly differ from the agronomic definition, 
or “trait.” To distinguish between them, we refer herein 
to these phenotypic data as phenotypic components. The 
analysis of phenotypic similarity provides a new inspira-
tion that removes some highly relevant phenotypic com-
ponents and thereby reduces data redundancy. In other 
words, the workload can be reduced by making a prelimi-
narily selection of representative phenotypic components 
as the research objects in the trial design.

Limitations and Implications of Study
According to the literature, SOM does not really clus-
ter but instead produces a reduced representation of the 
original data set [46]. Because SOM lacks hierarchical 
structure, it is impossible to detect higher-order relation-
ships between clusters. In this study, we demonstrate a 
two-step clustering method that combines hierarchical 
clustering and self-organizing maps to cluster, analyze, 
and visualize the mixed continuous and categorical data, 
providing a very efficient tool for exploratory analysis of 
genotype co-expression and phenotypic similarity. One 
problem with self-organizing maps is the occurrence of 
dead neurons, whose randomly initialized weight vec-
tors farther from any data point prevent them from ever 
being chosen as BMU, which degrades the learning effi-
ciency. Therefore, if the percentage of dead neurons is 
large, caution must be applied and the grid size of SOM 
should be readjusted. After resolving the clusters derived 
from the SOM map reasonably to a set of clustering rules, 

Fig. 7  Hierarchical agglomerative clustering for codebook. Clustering 
the codebooks resulted in the identification of three major clusters 
marked in three colors, to which different genotype samples had 
been assigned (left: clustering samples by rows). The dendrogram on 
the top showed the measure of phenotypic components similarity 
(clustering phenotypic components by columns). Converting 
categorical variables into dummy variables expanded to 15 the 
number of phenotypic components used for clustering. The initial 
letter “Z” indicated that this variable was standardized
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approximately 95.2% of the samples can be accurately 
predicted by using a decision tree. However, the cluster-
ing boundaries are not 100% sharp, and some ambiguity 
remains regarding where on the map a specific neuron 
(sample) migrates (Fig. 12).

The challenge for plant breeders is to identify and 
select the plants with the target phenotype controlled 

by the corresponding genotypes, rather than plants 
with the target phenotype controlled by environmental 
impact [65]. For field breeding trials, an effective use of 
phenotypic data remains challenging, because the envi-
ronment changes daily throughout the data-collection 
period [66]. To minimize the impact of the environ-
ment on this study, comparatively ideal environmental 

Fig. 8  Exploring the distribution patterns of sample and phenotypic components in clusters. a–e The weight vector was visualized as a fan diagram 
to indicate the weight of each phenotypic component in a neuron. f Taking IS_flowering as an example, the phenotypic component patterns within 
clusters were identified to reveal the effect of co-expressed genotypes. The intersection of cluster 3 and the IS_flowering.N set gave 116 samples, 
which indicated that none of the samples in Cluster 3 were tasseling and flowering, accounting for 100% of the samples. This was shown with a 
striking color to distinguish between unrecognized patterns. The initial letter “Z” indicated that this variable was standardized
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conditions were attained by doing single-factor experi-
ments and using uniform field-management practices. 
Even so, the explanation for these results may be the 
lack of adequate verification, because these phenotypic 
components were acquired and analyzed only across 
a single growing season. Further research should be 
undertaken to investigate the population and provide 
new multi-year insights into identifying genotypes and 

their co-expressed patterns and selecting phenotypic 
similarity.

The capacity of UAV-based HTP to collect and ana-
lyze from a few to thousands of breeding plots allows 
breeders to effortlessly obtain a large number of phe-
notypic data, and then to efficiently quantify genotypic 
differences in crop-yield potential, stress resistance, 
and quality. In this study, the lack of phenotypic data 

Fig. 9  Phenotypic components differences in the three genotype clusters. a–e Five numerical phenotypic components. f Categorical phenotypic 
components. The dashed black line indicates the mean of a phenotypic component from all samples without clustering. The black plus sign 
indicated the mean of a given phenotypic component from each cluster. An ANOVA was used to determine whether differences exist between 
three-cluster means. The Wilcoxon rank-sum test was used to compare each cluster against all genotypes without clustering. The following 
convention for symbols indicated statistical significance: p > 0.05 (ns), p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****)
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at the late ripening stage prevented the formation of a 
phenotypic data chain throughout growing season. A 
hyperspectral sensor is a powerful tool for detecting 
biological and abiotic stresses, and more crop resist-
ance information can be obtained when it is loaded on 
the UAV platform. The platform will also be improved 
to increase payload capacity so that it may be equipped 
with UAV laser scanning for easy access to plant type 
and ear-high traits. The phenotypic map and simi-
larity will also more comprehensive when more data 
from UAV laser scanning and hyperspectral sensor are 
available. Rich phenotypic data definitely assist breed-
ers with identifying and selecting the best candidate 
genotypes.

Table 4  Summary of clusters and their co-expressed patterns based on two-step clustering

Cluster Neuron size Sample size Description

1 33 201 Lower numerical phenotypic components, e.g., less fresh biomass and lower average 
growth rate of plant height

2 44 165 Green or dark green leaves, almost no green-yellow leaves

Larger NDVI

3 28 116 Higher numerical phenotypic components, e.g., more fresh biomass and plant height

Longer vegetative growth stage

Fig. 10  PCA biplot showing phenotypic similarity and relationship 
between genotypes and phenotypic components. a Visualization 
of quality of representation of variables in top five dimensions. 
Cos2 is the quality of representation of the variables in the principal 
component maps. b Biplot analysis for phenotypic similarity. 
Correlated phenotypic components and genotype samples were 
located in the same quadrant. The cosine of the angle between 
vectors indicated correlation between phenotypic components. 
Highly correlated phenotypic components pointed in roughly the 
same direction. Nearby points in the biplot represented samples with 
similar patterns; these were colored according to clustering. The initial 
letter “Z” indicated that this variable is standardized

Fig. 11  Differences in grain weight per ear between the three 
genotype clusters. The dashed black line indicated the mean of 
a phenotypic component from all samples without clustering. 
The black plus sign indicated the mean of a given phenotypic 
component from each cluster. An ANOVA was used to determine 
whether differences exist between three-cluster means. The 
Wilcoxon rank-sum test was used to compare each cluster against all 
genotypes without clustering. The following convention for symbols 
indicated statistical significance: p > 0.05 (ns); p ≤ 0.01 (**); p ≤ 0.001 
(***). The total sample size remains 453, excluding missing values
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Conclusions
In this study, we collected for a maize breeding program 
a short time series of remote-sensing images, including 
digital and multispectral images, by using an UAV-based 
HTP platform. The images were used to acquire nine 
phenotypic components. Here, we propose a framework 
for pre-screening genotypes and phenotypes based on 
HTP phenotypic components. The core procedure of 
this framework can be summarized as follows: we use 
two-step clustering to identify co-expressed patterns, 
and then pre-select genotypes. We then use correlation 
analysis to analyze phenotypic similarity, and then pre-
select phenotypic components. This framework gives 
breeders additional information to quickly identify and 
select plants that have genotypes that confer desirable 
phenotypic components from thousands of field plots. 
The present study also demonstrates that remote sensing 
is a powerful tool that provides an opportunity to acquire 
abundant phenotypic components. By using these rich 
phenotypic components, breeders should be able to more 
effectively identify and select superior genotypes.

Additional file

Additional file 1. Twenty indices for determining the best number of 
clusters.
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