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METHODOLOGY

Long short‑term memory for a model‑free 
estimation of macronutrient ion concentrations 
of root‑zone in closed‑loop soilless cultures
Taewon Moon†, Tae In Ahn† and Jung Eek Son*

Abstract 

Background:  Root-zone environment is considered difficult to analyze, particularly in interpreting interactions 
between environment and plant. Closed-loop soilless cultures have been introduced to prevent environmental pol-
lution, but difficulties in managing nutrients can cause nutrient imbalances with an adverse effect on crop growth. 
Recently, deep learning has been used to draw meaningful results from nonlinear data and long short-term memory 
(LSTM) is showing state-of-the-art results in analyzing time-series data. Therefore the macronutrient ion concentra-
tions affected by accumulated environment conditions can be analyzed using LSTM.

Results:  The trained LSTM can estimate macronutrient ion concentrations in closed-loop soilless cultures using envi-
ronmental and growth data. The average training accuracy of six macronutrients was R2 = 0.84 and the test accuracy 
was R2 = 0.67 with RMSE = 1.48 meq L−1. The used values of input interval and time step were 1 h and 168 (1 week), 
respectively. The accuracy was improved when the input interval became shorter, but not improved when the LSTM 
consisted of a multilayer structure. Regarding training methods, the LSTM improved the accuracy better than the 
non-LSTM. The trained LSTM showed relatively adequate accuracies and the interpolated ion concentrations showed 
variations similar to those seen during traditional cultivation.

Conclusions:  We could analyze the nutrient balance in the closed-loop soilless culture, the model showed potential 
in estimating the macronutrient ion concentrations using environmental and growth factors measured in green-
houses. Since the LSTM is a powerful and flexible tool used to interpret accumulative changes, it is easily applicable 
to various plant and cultivation conditions. In the future, this approach can be used to analyze interactions between 
plant physiology and root-zone environment.
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Background
Horticultural crops provide humans with nutritious 
food and are cultivated worldwide. Protected cultivation 
methods are commonly used to ensure high quality, high 
yield crops. One goal of protected cultivation is to pro-
duce crops at maximum levels using minimal amounts of 
energy and resources. To meet this goal, soilless cultures 
have been applied globally and have exhibited greater 

benefits compared to soil cultures in terms of improved 
crop yield and quality. To achieve maximum efficiency, it 
is important to analyze the environments with which the 
plants interact; although interactions between plants and 
aerial environments have frequently been studied [4, 26, 
42], studies on root-zones are rare due to the complexity 
of the root-zone environment.

Closed-loop soilless cultures are constantly being 
evaluated for sustainable agricultural research. In the 
closed-loop condition, root-zone is a crucial environment 
because nutrient solutions are reused and plants uptake 
ions selectively [34]; therefore, an imbalance of nutri-
ents can occur and result in the accumulation of specific 
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nutrients [24, 33, 39]. Accumulation of specific ions can 
increase deviations in nutrient solutions, resulting in 
reduced crop yields. To that end, root-zone environments 
in closed-loop soilless cultures should be adequately 
evaluated.

Because the electrical conductivity (EC) of a solution is 
linearly related to the total equivalents of ions in the solu-
tion [14], nutrient solution concentrations are controlled 
by measuring EC in most existing closed-loop soilless 
cultures. However, because EC does not show each ion 
concentration, the ion balance in EC-based control sys-
tems cannot be estimated. For example, the nutrient solu-
tions were empirically refreshed with growth stage in an 
EC-based control system, but the solutions were roughly 
controlled [24, 25]. To monitor individual ions in real 
time, several ion-selective electrodes have been intro-
duced, but it require sampling and calibration processes 
[22]. Moreover, an automated system to sample, measure, 
and drain the nutrient solution has been developed, but 
this system exhibited a sampling blockage period due to 
a drainage problem [8]. These past studies indicated that 
many problems need to be solved in order to adequately 
control nutrient solutions in closed-loop soilless cultures.

Recently, deep learning has been used to draw mean-
ingful interpretations from complicated nonlinear data 
[15, 18, 43], and also showed meaningful result in agri-
culture. Recently, deep learning approach has been used 
to estimate CO2 concentrations in greenhouses with 
acceptable levels of accuracy [31]. As part of deep learn-
ing, long short-term memory (LSTM) is used to analyze 
time-series data, such as voice recognition, video recog-
nition and natural language processing. LSTM has shown 
state-of-the-art performance and higher accuracy than 
previous algorithms in many regions [11, 30], and also 

can be used to predict root-zone EC in closed-loop soil-
less cultures [32]. Ions of nutrient solutions are also influ-
enced by the accumulation of time-series factors such as 
greenhouse environmental influence, water supply, water 
drainage, and plant growth. Therefore, the objective of 
this study was to estimate macronutrient ion concentra-
tions in closed-loop soilless cultures with LSTM using 
greenhouse environmental data and plant growth data.

Methods
Greenhouse and cultivation conditions
Data were collected from a Venlo-type greenhouse at 
the experimental farm of Seoul National University, 
Suwon, Korea (37.3°N 127.0°E). Four cultivation lines, 
each with seven rockwool slabs, were installed in the 
cultivation area. Five sweet pepper plants (Capsicum 
annuum L.) were grown per slab, and planting density 
was 5  plants  m−2. Plants were sown on May 29, 2017 
and transplanted on July 13, 2017. Each cultivation line 
had an independent closed-loop system with mixing 
tank, drainage tank and stock solution (Fig.  1). For this 
study, one line in the middle of the four cultivation lines 
was selected to maintain an average cultivation environ-
ment. Greenhouse daytime and nighttime temperatures 
were maintained at 25–30 °C and 17–22 °C, respectively 
(Fig. 2).

The composition of the stock solution was 
14.17  meq  L−1 of NO3

−, 1.14  meq  L−1 of H2PO4
−, 

5.92 meq L−1 of K+, 8.85 meq L−1 of Ca2+, 3.17 meq L−1 
of Mg2+ and 3.20  meq  L−1 of SO4

2− as macroelements; 
and 0.038  meq  L−1 of Fe2+, 0.020  meq  L−1 of Zn2+, 
0.003  meq  L−1 of Cu2+, 0.021  meq  L−1 of Mn2+ and 
0.001  meq  L−1 of MoO4

2− as microelements. Nutri-
ents were divided into two solutions, A and B, and 

Fig. 1  A diagram of the closed-loop cultivation system used in this study
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the composition was based on the PBG nutrient solu-
tion of the Netherlands. EC of nutrient solutions was 
maintained between 2.6 and 4.0  dS  m−1 and pH was 
maintained between 4.5 and 6.5. An integrated solar 
radiation method was applied for irrigation control. In 
this closed-loop system, water and stock solution were 
combined in a mixing tank prior to being used for irri-
gation, and any drainage was returned to the mixing 
tank (52  cm × 26  cm × 26  cm). EC and pH in the water 
tank was monitored every 3  days using a multimeter 
(Multi 3420 SET C, Wissenschaftlich-Technische-Werk-
stätten, Weilheim, Germany). EC and water content in 
root media were measured using a TDR sensor (WCM-
control, Grodan, Roermond, the Netherlands). Fresh 
water mixed with the stock solution had EC and pH val-
ues of 0.17 dS m−1 and 7.11, respectively, and contained 
0.21 meq L−1 of Na+, 0.29 meq L−1 of Cl−, 0.04 meq L−1 
of K+, 0.71  meq  L−1 of Ca2+, 0.21  meq  L−1 of Mg2+, 
0.19  meq  L−1 of SO4

2−, 0.39  meq  L−1 of NO3
− and 

0.04 meq L−1 of PO4
3−. Drainage ratios were maintained 

at 50–60% during the experimental period. Plants were 
grown to maintain two main stems, which were vertically 
trellised to a “V” canopy system [20]. Data were collected 
184–288 days after transplanting.

Long short‑term memory (LSTM)
LSTM has been used to analyze long sequential periods 
[16]. In this study, we used the many-to-one structure 
of LSTM (Fig.  3). Symbols h and σ represent a hyper-
bolic tangent function and a sigmoid function, respec-
tively. LSTM not only multiplies but also adds sequence 
information, which solves problems associated with a 

vanishing or exploding gradient. LSTM accepts current 
input and previous output at the same time, and accepted 
values are operated at the gates. Information is saved in 
the cell state, so sequences can be processed by model 
training. Gates of LSTM are divided into three parts: 
the input gate determines input and output selections, 
the forget gate determines how much previous informa-
tion should be forgotten, and the output gate mixes the 
cell state with input data. Many-to-one LSTM yields the 
final output when the computation step reaches the pre-
determined time step. In this study, multi-task learning 
(MTL) was applied [36]. The LSTM was shared by each 
task that predicted each ion, and two fully-connected lay-
ers yielded each ion concentration (Fig. 3b).

LSTM has hidden layers like ordinary artificial neural 
networks [10, 17]. Empirically, input and output activa-
tion functions were set to the hyperbolic tangent func-
tion, and the gate activation function was set to the 
sigmoid function. The number of neurons was varied 
to find optimal values. Stacking hidden layers does not 
change the accuracy significantly, so one hidden layer 
was used for LSTM [41, 44]. AdamOptimizer was used 
to train the LSTM [23]. The hyperparameters for the 
LSTM and AdamOptimizer were set to universal values 
except for learning rate and epsilon. Learning rate and 
epsilon were empirically optimized for regression in this 
study. For regularization, layer normalization was used 
[3]. Neural networks are trained to minimize cost [37], so 
mean square error (MSE) was used instead of root mean 
squared error (RMSE) as a cost-reducing computation. 
The coefficient of determination (R2) was used for train-
ing and testing accuracy, and RMSE was used to verify 

Fig. 2  Daily average air temperature, relative humidity, and radiation measured in the greenhouse from January 12 to April 26, 2018
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model robustness. Lastly, a multilayer perceptron (MLP) 
was used as a baseline model to verify accuracy by LSTM 
structure and MTL training. The MLP used had five hid-
den layers with 512 perceptrons. The inputs of MLP were 
the same as those of LSTM, but time step was not con-
sidered. TensorFlow (v. 1.9.0) was used for deep learning 
computations [1].

Data collection and processing
Experimental data regarding nutrient solutions and 
growth environments were used for model training. EC 
and moisture contents were measured by EC sensors 
(SCF-01A, Dong Il Kyegi, Busan, Korea) and FDR sen-
sors (CoCo 100B, Mirae Sensor, Seoul, Korea) (Table 1). 
Light intensity in the greenhouse was measured by a 
pyranometer (SP-110, Apogee, Logan, UT, USA). Data 
were measured every 10  s from January 12 to April 26, 
2018. Because the 10-s interval was relatively short, mean 
values of specific intervals were used. Plant growth data 
were collected from five other plants on the same row 
every 3  days, and also mean data values were used for 
model training. In this study, fivefold cross validation was 
conducted. The ratio of test data were 20% in all valida-
tion processes.

Substrate nutrient solutions were sampled to deter-
mine ion concentrations. Sampling was conducted daily 
at 4:00  P.M. The concentrations of K+, Ca2+, Mg2+, 
SO4

2− and H2PO4
− were measured using an inductively-

coupled plasma atomic emission spectrometer (VARIAN 
730ES, Varian, Sydney, Australia). The concentration 
of NO3

− was measured using an ion chromatographer 
(ICS-3000, Dionex, Sunnyvale, CA, USA). Missing envi-
ronmental data were also interpolated using linear inter-
polation, including missing values of EC and pH which 

were interpolated using manually-monitored data. Sixty-
six points were used for the experiment; afterward, daily 
ion concentrations over the experimental period were 
estimated and analyzed using a trained LSTM.

To train the LSTM without biasing some features, 
data were normalized within the range of 0–1. Neural 
networks could not converge without normalization 

Fig. 3  A structure of long short-term memory (LSTM, a) and a diagram of model training with multi-task learning (MTL, b). The abbreviation FC 
represents fully-connected layers, and the symbol h and σ represent the hidden layers with hyperbolic tangent and sigmoid as an activation 
function, respectively

Table 1  Data used as  input for  long short-term memory 
(LSTM) and their ranges

Input data (unit) Range

Electrical conductivity (EC) of the substrate (dS m−1) 1.6–4.8

Moisture content of the substrate (%) 29.1–100.0

EC of nutrient solutions in the drainage tank (dS m−1) 0.0–6.0

Volume of nutrient solutions in the drainage tank (L) 0.0–11.3

Cumulative drainage volume per day (L) 0.0–182.2

Volume of nutrient solutions in the mixing tank (L) 1.7–14.1

Mixing volume of drainage (L) 0.0–4.9

Mixing volume of water (L) 0.0–7.5

Mixing volume of stock solution (L) 0.0–0.17

Cumulative irrigation volume per day (L) 0.0–196.0

Preset radiation integral for irrigation control (J cm−2) 0.0–150.0

Target volume of irrigation per dripper (mL) 160.0–220.0

Root-zone temperature (°C) 10.5–44.9

Root-zone pH 2.7–4.6

Light intensity (W m−2) 0.0–492.7

Greenhouse temperature (°C) 10.7–44.3

Greenhouse relative humidity (%) 8.6–83.9

SPAD 40.9–74.7

Plant height (cm) 115.0–217.0

Plant diameter (mm) 13.0–16.8

Number of nodes 16–40



Page 5 of 12Moon et al. Plant Methods           (2019) 15:59 

[3]. In this study, previously acquired data regarding 
nutrient solutions and growth environments were used 
as input, and time step of LSTM and interval of input 
data were varied to determine optimal values. The 
amount of input data was determined according to the 
time step and interval based on when the ions were 
sampled. Concentrations of K+, Ca2+, Mg2+, SO4

2−, 
NO3

− and H2PO4
− were used as outputs (i.e., the num-

ber of tasks was six).

Interpolation of unmeasured ion concentrations
After the LSTM was trained and showed adequate 
accuracy, it was used to interpolate ion concentrations 
not measured (Fig.  4). The average of the five mod-
els from fivefold validation was used for the interpo-
lating value. Maximum and minimum outlier models 
were excluded, so three values were averaged for the 
interpolation. In this study, plant growth data and 
environmental data were measured during the entire 
experimental period, while ion concentrations were 
measured over specific periods. In the model training, 
the LSTM was then trained and evaluated using the 
data measured during the specific periods. Finally, the 
trained LSTM interpolated ion concentrations over 
the entire experimental period and ion changes in the 
root-zone were analyzed.

Results
Plant growth and root‑zone changes
Plant growth was stable and normal throughout the 
experimental period (Fig. 5). Plant heights and the num-
ber of nodes showed sigmoidal patterns, while diameters 
showed no significant differences over time. The ranges 
of heights and diameters were 156–206  cm and 14.8–
15.9 mm, respectively. The number of nodes changed at 
the range of 25–38 nodes. Soil plant analysis develop-
ment (SPAD) values showed relatively constant values 
regardless of the period, but values for upper leaves were 
higher than for lower leaves.

The substrate EC and pH were disturbed during the 
last part of the experimental period (Fig.  6). EC fluctu-
ated during the latter part of the cultivation, while pH 
increased before stabilizing between 6 and 7. EC and 
pH ranged from 2.6 to 3.6  dS  m−1 and 3.4–8.0, respec-
tively. Although pH fluctuated approximately 10% out of 
the control range, the nutrient solutions were managed 
within the normal range.

Ion concentrations also showed deviances (Fig.  7). 
Measured concentrations tended to be disturbed dur-
ing the latter part of the growth stage. With the excep-
tion of outliers during the late growth stage, overall ion 
concentrations were generally constant. However, the 
concentrations of K+ slightly decreased over time, while 
Mg2+ and SO4

2− concentrations tended to increase. 

Fig. 4  A methodology for interpolating unmeasured ion concentrations and analyzing changes in root-zone macronutrients
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H2PO4
− fluctuated more than other ions, but the concen-

tration range was lower.

Validation of the trained LSTM
As a result of experimentation with varied hyperparam-
eters, the average test accuracy varied depending on the 
structure (Table 2). Even in the best combination, the test 
accuracy of each ion varied with ion concentration in the 
range of 0.51–0.78. Average accuracy of the best results 
was R2 = 0.67, RMSE = 1.48  meq  L−1 (Fig.  8). Average 
accuracy of the training data was R2 = 0.84. Estimating 

the concentration of Ca2+ showed the highest accuracy, 
while the lowest accuracy was shown estimating the con-
centration of K+. In terms of the parameters, the learn-
ing rate almost did not affect the accuracy of the training. 
Optimal values of the input interval and the time step 
were 1  h and 168 (1  week), respectively. The trained 
model showed that accuracy improved when the inter-
val became shorter. Regardless of the interval of input 
data, accuracy usually decreased when the time step 
was shorter than 1 week. Conversely, a time step longer 
than 1  week did not increase accuracy. In terms of the 

Fig. 5  Plant height, diameter, number of nodes, SPAD of upper leaves and SPAD of lower leaves measured from January 12 to April 26, 2018. 
Average values of five plants from each line were used to train the LSTM

Fig. 6  Daily average changes in substrate EC and pH from January 12 to April 26, 2018
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structure, accuracy was not improved when the LSTM 
consisted of a multilayer structure. Regarding training 
methods, the LSTM improved the accuracy better than 

MTL (Table 3). Using both improving methods resulted 
in the highest accuracy, and accuracies plummeted when 
the LSTM structure was not used.  

Fig. 7  Target ion concentrations in the root-zone of a closed-loop soilless culture measured from January 12 to April 26, 2018
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Interpolating ion concentrations for all periods
Interpolation of ion concentrations was smooth at the 
beginning of the experiment, but large variations occurred 
later in the study (Fig.  9). NO3

− and Ca2+ showed rela-
tively large deviances compared to other ions, and SO4

2− 
concentration was also highly variable. The ratio of K+ 
and NO3

− tended to decrease over time, while all other 
ions tended to increase. After mid-March, ion concentra-
tions became highly variable and were relatively high, but 
decreased to normalized values within a week. Ion con-
centrations had high deviances, but the ratio of each ion 
concentration was relatively stable (Fig. 9b).

Discussion
The robustness of the trained multi‑tasking LSTM
The accuracies of the ion concentrations varied per ion 
(Figs. 7, 8), which may be typical for nutrient solutions as 
previous studies have shown that variability in ion con-
centrations are dependent on each ion [8, 22]. Ion uptake 
in plants differs depending on the individual ions and 
varies with growth stage. Our results suggest that the 
LSTM was appropriately trained and was robust because 
it exhibited adequate accuracies for six different ions 
despite ionic differences. In an open condition, only the 
concentration of water and stock solution should be con-
sidered when replenishing the nutrient solution [29, 35]. 
However, restricted drainage in closed-loop conditions 
resulted in wider variation in ion concentrations, which 
made estimation of ion concentrations difficult and 
resulted in relatively low accuracies. Despite the wider 
variation in ion concentrations, the accuracies were still 
high enough to say the model was relatively robust.

In this study, learning rate increased because of nor-
malization method [5]. However, the rate had little 
effect on the accuracy. It seemed that the highest accu-
racy is already yielded in relatively low learning rate 
(0.001), which used generally in neural network train-
ing. Although we did not compare all of the parameter 
combinations, converging speed of training seemed to 
be faster in higher learning rate, but the model unstably 
converged with high variance. In contrast, lower learn-
ing rate stably converged to the global minima, at least 
to the best model, but it needed more time to converge 
than higher learning rate. By the nature of the neural net-
work training, once the LSTM converged, it can be used 
as an accurate model. Therefore, high learning rate is 
acceptable as long as the LSTM converge. After the train-
ing, model robustness was acquired using a 1-h interval 
and 168 time steps, so these settings were selected as the 
optimal condition although a time step of 1008 with a 
10-min interval increased R2 by 0.01. Usually, irrigation 
disturbs ion concentrations, but irrigation time was often 
less than 1 h [40]. In this study, irrigation was determined 
by the integrated radiation, and the time of ion sampling 
was fixed at 4:00  P.M.; therefore, the time of the irriga-
tion event would be different for each sampling time, 
but could not be considered due to the interval. That is, 
the data at the 1-h interval could reduce the sensitivity 
of the model. The model would have higher accuracy if 
the interval and time step were adjusted. Regardless of 
the intervals, we did not see improved accuracies in cases 
when the time step was longer than 1  week. The exact 
cause is unknown, but information that is longer than 
1 week does not have a significant impact on the environ-
ment or plant changes.

Similarly, the structure of the LSTM did not signifi-
cantly affect the accuracy. The dimension of the input 
data processed at one time is usually much larger than 
the dimension of the data used for this study when the 
LSTM is used [6, 7]. Because the dimension of the data in 
this study was about 20, the relationship between the ion 
concentrations and the plant environment may be found 
once a sufficient time step and interval were determined. 
Likewise, the number of layers did not affect accuracy 
because the data were simple enough that a multilayer 
was unnecessary.

As reported in other studies, accuracies improved 
when MTL was used for model training [19]. Previous 
studies have shown that increased model robustness was 
acquired by constructing a model to learn various tasks 
simultaneously (such as sentiment prediction and ques-
tion type classification) using MTL in natural language 
processing [45]; therefore, accuracies could increase if 
EC, pH, or other greenhouse environmental factors are 
processed at the same time as the ion concentrations.

Table 2  The average test accuracy of  the  six 
macronutrients (R2) for  long short-term memory (LSTM) 
using a combination of hyperparameters

A combination of hyperparameters that showed the best accuracy is in italics

Number 
of perceptrons

Time 
step

Interval Dropout 
probability

Learning 
rate

R2

8 168 1 h 1.0 0.001 0.58

64 168 1 h 1.0 0.02 0.64

128 1008 10 min 0.9 0.045 0.66

256 144 10 min 0.9 0.045 0.52

512 12 1 h 0.9 0.001 0.61

512 108 1 h 0.9 0.001 0.62

512 168 1 h 0.5 0.001 0.43

512 168 1 h 0.9 0.03 0.67

512 168 1 h 0.9 0.001 0.66

512 168 1 h 1.0 0.03 0.65

512 336 30 min 0.9 0.03 0.44

512 336 1 h 0.9 0.03 0.66

1024 168 1 h 0.9 0.03 0.60
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The accuracies using LSTM were significantly higher 
because of the large amount of information used to 
process time-series data [13, 21]. A LSTM structure 
can obtain information from input data by as much as 
the time step, while a non-LSTM structure cannot. If a 
non-LSTM structure attempted to use the same amount 
of input data as a LSTM, the structure would be over-
loaded and make computation inefficient. Estimating ion 

Fig. 8  Comparison between measured and estimated ion concentrations under closed-loop cultivation conditions. All of the test data from cross 
validation were represented. The unit of RMSEs are meq L−1

Table 3  Accuracy according to the existence of long short-
term memory (LSTM) and multi-task learning (MTL)

R2 and RMSE represent the average values of the six ions

Methodology R2 RMSE (meq L−1)

With LSTM, with MTL 0.67 1.58

With LSTM, without MTL 0.51 1.66

Without LSTM, with MTL − 0.75 3.90

Without LSTM, without MTL − 0.54 3.62
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concentrations using MTL and the LSTM is the more 
appropriate method.

In addition, the LSTM is a model-free method, so appli-
cation and modification of the model is relatively easy. 
Because most of the greenhouse environmental data is 
time-series data, it can be used to estimate plant growth 
if the same model is trained using different data. The 
trained LSTM can also be applied to different domains or 
conditions using relatively small amounts of data if trans-
fer learning is used [12], i.e., the trained LSTM could be 
applied to estimate ion concentrations under different 
conditions such as other greenhouses, plant factories, or 
crops.

Reasonability of interpolated ion concentrations
The deviance of both the ions and actual measured ion 
concentrations was large (Fig.  9a), but the ratio of the 
ions changed in reasonable range (Fig. 9b). These results 
suggest that the interpolation of the ion concentrations 
was a reasonable approach, and the deviance was due to 
the nature of the closed-loop condition. One character-
istic of a closed-loop condition is frequent variation in 
ion concentrations toward the latter stages of cultivation 
[2, 24]. After April, ion concentrations greatly increased 
before returning to prior levels, but the ion concentra-
tions fluctuated similar to the increasing tendency of the 
EC (Fig.  6). Therefore, the trained LSTM had inferred 

Fig. 9  Comparisons of measured and interpolated ion concentrations using the trained long short-term memory (LSTM, a) and the ratio of each 
ion concentration to total ion concentration (b) from January 12 to April 26, 2018. The letters m and e represent measured and estimated values, 
respectively. All measured data were used for training or test in cross validation
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the relationship between EC and ion concentrations 
appropriately. Total ion concentrations are known to be 
positively correlated with EC and pH [38], similar to the 
changes of known ion concentrations, so the interpolated 
ion concentrations were reasonable.

Analysis of ion uptake in plant
Nutrient uptake of sweet peppers is largely unchanged 
after completion of growth [27]. During the latter period 
of cultivation, fruit removal can affect nutrient uptake 
[28]. However, in this study ion concentrations sharply 
changed, so the effect of fertilization was likely to be 
greater than the disturbance due to the nutrient uptake.

NO3
− and Ca2+ showed relatively large deviances com-

pared to other ions. Sweet pepper plants have a high 
uptake of NO3

− and Ca2+, so the amount of NO3
− and 

Ca2+ in nutrient supplies are large [9, 27]. We saw no 
rapid change in EC and pH, so other unmeasured ions 
accumulated during the latter part of cultivation could 
disturb the root-zone nutrients. Therefore, nutrients 
were supplied in relatively high doses so that NO3

− and 
Ca2+ would be the most affected ions based on their 
abundance.

Sweet pepper plants also have high uptake of K+ [27]. If 
the renewal period of the nutrient solution is not appro-
priate, the amount of K+ and NO3

− can decrease [2, 25]. 
In this study, the ratio of these ions decreased at a very 
small rate indicating that the renewal interval was close 
to the optimal value; however, fine tuning of the interval 
time is possible according to the interpolated ion con-
centrations. Therefore, the interpolation of ion concen-
trations could also help optimize the renewal interval of 
nutrient solutions.

Conclusions
The model trained in this study estimated ion concen-
trations in soilless cultures, and the LSTM was used as 
a deep learning approach. After model training, accuracy 
R2 values ranged between 0.51 and 0.78 for six macro 
ions. The trained LSTM could interpolate daily ion con-
centrations, and ion concentrations were within reason. 
The interpolated ion concentrations showed variation 
similar to those seen during traditional cultivation. How-
ever, the model accuracy is limited in this study, so the 
same accuracy cannot be guaranteed in changed condi-
tions. The trained model could be applied to differing 
cultivation conditions or domains such as plant factories, 
other pepper varieties or other crops. Neither Na+ nor 
Cl− were considered in this study, but studies on other 
ions could be conducted using these same methods. 
Because the LSTM can be used to analyze accumulative 
changes, further studies predicting future ion concentra-
tions based on predicted environment changes could be 

conducted. Stable and continuous measurement systems 
could improve the model robustness. This methodology 
can be used to interpret the interaction between the root-
zone environment and plants in future research.

Authors’ contributions
TM, TIA and JES conceived the research, TM and TIA performed the experi-
ments, TM analyzed the results, and TM and JES prepared the manuscript. All 
authors read and approved the final manuscript.

Funding
This work was supported by the Korea Institute of Planning and Evaluation 
for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through 
the Agriculture, Food and Rural Affairs Research Center Support Program 
funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA; 
717001-07-1-HD240).

Availability of data and materials
All data generated or analysed during this study are included in this published 
article.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 1 February 2019   Accepted: 22 May 2019

References
	1.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat 

S, Irving G, Isard M, et al. TensorFlow: a system for large-scale machine 
learning. In: Proceedings of the 12th USENIX symposium on operating 
systems design and implementation. OSDI’16. USENIX, Berkeley; 2016. p. 
265–83.

	2.	 Ahn TI, Son JE. Changes in ion balance and individual ionic contributions 
to EC reading at different renewal intervals of nutrient solution under EC-
based nutrient control in closed-loop soilless culture for sweet peppers 
(Capsicum annum L. ‘Fiesta’). Korean J Hortic Sci Technol. 2011;29:29–35

	3.	 Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv preprint. 2016. arXiv​
:1607.06450​.

	4.	 Bita C, Gerats T. Plant tolerance to high temperature in a changing envi-
ronment: scientific fundamentals and production of heat stress-tolerant 
crops. Front Plant Sci. 2013;4:273.

	5.	 Bjorck N, Gomes CP, Selman B, Weinberger KQ. Understanding batch nor-
malization. In: Proceedings of advances in neural information processing 
systems 31. NIPS’18. NIPS Proceedings, Canada; 2018. p. 7705–16.

	6.	 Brunner G, Wang Y, Wattenhofer R, Weigelt M. Natural language multitask-
ing: analyzing and improving syntactic saliency of hidden representa-
tions. arXiv preprint. 2018. arXiv​:1801.06024​.

	7.	 Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk 
H, Bengio Y. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint. 2014. arXiv​
:1406.1078.

	8.	 Cho WJ, Kim HJ, Jung DH, Kim DW, Ahn TI, Son JE. On-site ion monitoring 
system for precision hydroponic nutrient management. Comput Electron 
Agric. 2018;146:51–8.

	9.	 De Kreij C, Voogt W, Baas R. Nutrient solutions and water quality for soil-
less cultures. Research Station for Floriculture and Glasshouse Vegetables 
(PBG), Naaldwijk, The Netherlands, Brochure 196; 1999.

	10.	 Elman JL. Finding structure in time. Cogn Sci. 1990;14:179–211.

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1801.06024
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078


Page 12 of 12Moon et al. Plant Methods           (2019) 15:59 

	11.	 Fischer T, Krauss C. Deep learning with long short-term memory net-
works for financial market predictions. Eur J Oper Res. 2018;270:654–69.

	12.	 Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale senti-
ment classification: a deep learning approach. In: Proceedings of the 28th 
international conference on machine learning. ICML’11. IMLS, Amherst; 
2011. p. 513–20.

	13.	 Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. LSTM: a 
search space Odyssey. arXiv preprint. 2015. arXiv​:1503.04069​.

	14.	 Griffin BA, Jurinak JJ. Estimation of activity coefficients from the electri-
cal conductivity of natural aquatic systems and soil extracts. Soil Sci. 
1973;116:26–30.

	15.	 Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing non-local interactions 
by long short-term memory bidirectional recurrent neural networks 
for improving prediction of protein secondary structure, backbone 
angles, contact numbers and solvent accessibility. Bioinformatics. 
2017;33:2842–9.

	16.	 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 
1997;9:1735–80.

	17.	 Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are 
universal approximators. Neural Netw. 1989;2:359–66.

	18.	 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, 
Andreetto M, Adam H. Mobilenets: Efficient convolutional neural 
networks for mobile vision applications. arXiv preprint. 2017. arXiv​
:1704.04861​.

	19.	 Johnson M, Schuster M, Le QV, Krikun M, Wu Y, Chen Z, Thorat N, Viégas 
F, Wattenberg M, Corrado G, et al. Google’s multilingual neural machine 
translation system: enabling zero-shot translation. Trans Assoc Comput 
Linguist. 2017;5:339–51.

	20.	 Jovicich E, Cantliffe DJ, Stoffella PJ. Fruit yield and quality of greenhouse-
grown bell pepper as influenced by density, container, and trellis system. 
HortTechnology. 2004;14:507–13.

	21.	 Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recur-
rent network architectures. In: Proceedings of the 32nd international con-
ference on machine learning. ICML’15, IMLS, Amherst; 2015. p. 2342–50.

	22.	 Jung DH, Kim HJ, Choi GL, Ahn TI, Son JE, Sudduth KA. Automated lettuce 
nutrient solution management using an array of ion-selective electrodes. 
Trans ASABE. 2015;58:1309–19.

	23.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv 
preprint. 2014. arXiv​:1412.6980.

	24.	 Ko MT, Ahn TI, Son JE. Comparisons of ion balance, fruit yield, water, and 
fertilizer use efficiencies in open and closed soilless culture of paprika 
(Capsicum annuum L.). Kor J Hortic Sci Technol. 2013;31:423–8.

	25.	 Ko MT, Ahn TI, Cho YY, Son JE. Uptake of nutrients and water by paprika 
(Capsicum annuum L.) as affected by renewal period of recycled 
nutrient solution in closed soilless culture. Hortic Environ Biotechnol. 
2013;54:412–21.

	26.	 Lawlor DW. Photosynthesis, productivity and environment. J Exp Bot. 
1995;46:1449–61.

	27.	 Marcussi FFN, Bôas V, Lyra R, Godoy LJGD, Goto R. Macronutrient accu-
mulation and partioning in fertigated sweet pepper plants. Sci Agric. 
2004;61:62–8.

	28.	 Marti HR, Mills HA. Nutrient uptake and yield of sweet pepper as affected 
by stage of development and N form. J Plant Nutr. 1991;14:1165–75.

	29.	 Massa D, Incrocci L, Maggini R, Carmassi G, Campiotti CA, Pardossi A. 
Strategies to decrease water drainage and nitrate emission from soilless 
cultures of greenhouse tomato. Agric Water Manag. 2010;97:971–80.

	30.	 Meng Z, Watanabe S, Hershey JR, Erdogan H. Deep long short-term 
memory adaptive beamforming networks for multichannel robust 
speech recognition. arXiv preprint. 2017. arXiv​:1711.08016​.

	31.	 Moon T, Ahn TI, Son JE. Forecasting root-zone electrical conductivity of 
nutrient solutions in closed-loop soilless cultures via a recurrent neural 
network using environmental and cultivation information. Front Plant Sci. 
2018;9:859.

	32.	 Moon TW, Jung DH, Chang SH, Son JE. Estimation of greenhouse CO2 
concentration via an artificial neural network that uses environmental 
factors. Hortic Environ Biotechnol. 2018;59:45–50.

	33.	 Neocleous D, Savvas D. NaCl accumulation and macronutrient uptake by 
a melon crop in a closed hydroponic system in relation to water uptake. 
Agric Water Manag. 2016;165:22–32.

	34.	 Olsen C. The significance of concentration for the rate of ion absorption 
by higher plants in water culture. Physiol Plant. 1950;3:152–64.

	35.	 Pardossi A, Malorgio F, Incrocci L, Carmassi G, Maggini R, Massa D, Tog-
noni F. Simplified models for the water relations of soilless cultures: what 
they do or suggest for sustainable water use in intensive horticulture. 
Acta Hortic. 2006;718:425–34.

	36.	 Ruder S. An overview of multi-task learning in deep neural networks. 
arXiv preprint. 2017. arXiv​:1706.05098​.

	37.	 Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Cognit Model. 1988;5:1.

	38.	 Savvas D, Adamidis K. Automated management of nutrient solutions 
based on target electrical conductivity, pH, and nutrient concentration 
ratios. J Plant Nutr. 1999;22:1415–32.

	39.	 Savvas D, Gizas G. Response of hydroponically grown gerbera to nutri-
ent solution recycling and different nutrient cation ratios. Sci Hortic. 
2002;96:267–80.

	40.	 Shin JH, Son JE. Application of a modified irrigation method using com-
pensated radiation integral, substrate moisture content, and electrical 
conductivity for soilless cultures of paprika. Sci Hortic. 2016;198:170–5.

	41.	 Tai KS, Socher R. Manning CD Improved semantic representations from 
tree-structured long short-term memory networks. arXiv preprint. 2015. 
arXiv​:1503.00075​.

	42.	 Verdaguer D, Jansen MA, Llorens L, Morales LO, Neugart S. UV-A radia-
tion effects on higher plants: exploring the known unknown. Plant Sci. 
2017;255:72–81.

	43.	 Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural 
network for segmenting neuroanatomy. NeuroImage. 2018;170:434–45.

	44.	 Yao K, Peng B, Zhang Y, Yu D, Zweig G, Shi Y. Spoken language under-
standing using long short-term memory neural networks. In: 2014 IEEE 
spoken language technology workshop. SLT’14, IEEE, South Lake Tahoe; 
2014. p. 189–94.

	45.	 Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning 
based natural language processing. arXiv preprint. 2017. arXiv​:1708.02709​
.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.08016
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1708.02709

	Long short-term memory for a model-free estimation of macronutrient ion concentrations of root-zone in closed-loop soilless cultures
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Greenhouse and cultivation conditions
	Long short-term memory (LSTM)
	Data collection and processing
	Interpolation of unmeasured ion concentrations

	Results
	Plant growth and root-zone changes
	Validation of the trained LSTM
	Interpolating ion concentrations for all periods

	Discussion
	The robustness of the trained multi-tasking LSTM
	Reasonability of interpolated ion concentrations
	Analysis of ion uptake in plant

	Conclusions
	References




