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METHODOLOGY

Quantifying cereal crop movement 
through hemispherical video analysis 
of agricultural plots
Alexander Q. Susko1*  , Peter Marchetto2, D. Jo Heuschele1 and Kevin P. Smith1

Abstract 

Background:  Violent movement of crop stems can lead to failure under high winds. Known as lodging, this phe-
nomenon is particularly detrimental to cool-season cereals such as oat, barley, and wheat; contributing to yield and 
economic losses. Phenotyping the movement of cereal crops in real-time could aid in the breeding and selecting of 
lodging resistant cereals. Since no methods exist to quantify dynamic, real time plant responses in an agricultural set-
ting, we devised a video analysis protocol to quantify mean frequency and amplitude of plant movement for a 360° 
field of view camera system.

Results:  We present both the image analysis method for identifying predefined regions of a 2D field design as they 
appear on 360° field of view video, as well as a signal processing pipeline to quantify movement from time varying 
color signals from plot canopies within these predefined field regions. We detected significant differences in the natu-
ral frequency and amplitude of plant movement from video of 16 cereal cultivars planted in a randomized complete 
block design on five different windy days. Natural frequencies quantified by this method averaged 1.37 Hz, while over 
2.5-fold differences in amplitude within similar frequency ranges were detected across the 16 cereal cultivars.

Conclusions:  This method is sensitive enough to systematically differentiate small frequency and amplitude dif-
ferences in cultivar movement, and shows promise for investigating the physiological basis for differences in cereal 
movement and lodging resistance. The relative accuracy of the plot demarcation protocol suggests it could be used 
for other high-throughput phenotyping applications that require both high image resolution and a large field of view.
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Background
Prior to the failure (lodging) of plant stems under wind 
stress, an entire plant experiences movement. This move-
ment occurs in plants of all sizes and taxa; it is depend-
ent on plant structural traits and wind conditions, which 
together govern the failure velocity at which a plant stem 
will fail in the wind [1, 2]. Increasing stem resistance to 
wind is of critical interest to breeders of cereal crops such 
as oat, barley, and wheat, where development of lodging 
resistant varieties is a continuous challenge. Lodging in 
cereals is a major contributor to yield loss, which can be 

as severe as 31–37% when stems are lodged at a 45° angle 
or greater [3, 4]. While most strategies for improving 
lodging resistance focus on scoring lodging after a storm 
or measuring physiological parameters such as stem 
strength, less is known about how plants interact with 
the wind in real time, nor do methods exist to systemati-
cally quantify plant movement in agronomic or breeding 
experiments.

Plant movement has been studied theoretically from 
the scale of individual plants to entire canopies [1, 2]. At 
a basic glance, plant movement is governed by the spring 
constant (stiffness, K) of the stem [5]. In the simplest rep-
resentation, the natural frequency (ωn) at which a plant 
stem moves is governed by the ratio of stem stiffness to 
mass per unit length (mp) of the stem [5]:
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From Eq.  1, an increase in the stiffness of the stem, 
holding mp constant, will increase the natural frequency 
of the plant oscillations (movement). If the intermittent 
gusts across a cereal canopy encounter plants whose ωn 
matches that of the gusts, the movement of the plant will 
not dissipate and will likely be amplified. If the vibra-
tion is sustained long enough to cross a failure thresh-
old, the plants will lodge. However, additional physical 
parameters and the wind conditions all interact in reality 
to make plant movement a function of various physical 
properties at any given time point. These can include the 
structural (ζs) and aerodynamic (ζa) damping coefficients 
of the plant, stem acceleration ( ̈θ ), stem velocity ( ̇θ ), stem 
angle (θ), and the wind moment (force of wind multiplied 
by area exposed, Mw). These values can be used to esti-
mate the ωn at a given moment by the equation [5]:

An increase in plant natural frequency should increase 
the wind velocity required to induce failure and result 
in greater lodging resistance, because stem oscillations 
would dissipate after being excited by gusts that occur at 
a lesser frequency [6]. Realistically however, any change 
in physiology (i.e. mass per unit length, structural load-
ing) or environment (i.e. wind moment) will affect the 
resonant frequency and thereby change the failure veloc-
ity [6, 7] (Eqs. 1, 2). These expectations have been used 
to derive detailed equations relating plant movement 
and aerodynamic forces, which consider the natural fre-
quency of plant stems as a component along with other 
physiological traits to model the failure of plants under 
wind stress [1, 7, 8]. In agronomic crops, plant movement 
has been factored into models that describe theoretical 
failure velocities in wheat, barley, and maize for given 
certain physiological parameters [6, 9, 10]. However, the 
physiological factors incorporated into these models are 
not easy to quantify quickly, nor is there a large scale vali-
dation method for models of plant movement that could 
be employed across variable germplasm. Thus, quan-
tifying the phenomenon of plant movement relatively 
quickly that is scalable to large field experiments could 
lead to optimal phenotypic combinations for breeders to 
target that increase the wind resistance of cereal crops.

Empirical studies on plant-wind interaction employ 
a variety of technologies to quantify movement in plant 
systems primarily developing or validating theoretical 
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models on a small scale. A large portion of experimental 
research on plant movement has focused on understand-
ing tree sway to minimize timber losses from storms [2]. 
The earliest research on tree movement involved using 
a stopwatch to calculate a tree sway period. The study 
reported that as tree height increased, tree sway fre-
quency decreased [11]. Digital data on plant movement 
from a micrologger (accelerometer, gyrometer) data 
acquisition system further allowed theoretical assump-
tions of plant movement to be refined on the individual 
plant level in maize by the late 1980s [5]. The advent of 
digital video cameras have enabled new quantifications 
of plant movement, such as adapting the technique of 
Particle Image Velocimetry (PIV) to light reflected off 
of an alfalfa canopy to map turbulent air flows over the 
crop canopy [12]. Interactions between individual plants 
have also been quantified through video analysis, specifi-
cally by tracking changes in color within a given region 
of a video as stems oscillate and collide with each one 
another [13]. Color changes within defined regions of 
digital video, analyzed as time-varying signals, can thus 
be a non-invasive measure of plant movement.

Treating plant natural frequency (ωn) and the amount 
of movement (amplitude) at that frequency as plant phe-
notypes could enable genetic studies and breeding based 
on a crops’s real-time response to field wind stress. Imple-
menting a method to quantify phenotypes of plant move-
ment at high throughput in experimental designs such as 
the randomized complete block (RCB) pose another use 
for relating physiology, movement, and lodging: to better 
optimize physical trait combinations that are desirable in 
theory but in practice will require high statistical power 
to validate under variable field environments. While no 
systematic approaches exist for quantifying plant move-
ment for purposes of improving crop lodging resistance 
from video, many studies have devised methods to quan-
tify crop lodging from image and spectral data. Recent 
lodging phenotyping efforts include analyzing lodging 
in the visible spectrum from unmanned aerial vehicle 
(UAV) images in wheat, rice, and maize [14–16]. Addi-
tionally, lodging has been quantified in the field using 
merged thermal and infrared images, as well as through 
plant height differences detected through LIDAR [17, 
18]. UAV systems are not ideal for capturing video data, 
especially when data on plant movement is desired under 
high wind or stormy conditions. Ground based, autom-
atable camera systems are more amenable to capturing 
video under inclement weather, and 360° field of view 
video cameras are capable of imaging a full hemisphere 
per frame [19]. The use of a 360 video camera allevi-
ates the need for multiple cameras to capture replicated 
plots and for synchronization of separate videos at exact 
moments in time, while remaining close enough to the 
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canopy level to capture small differences in movement. 
Though hemispherical video can capture a large field of 
view, the analysis and demarcation of individual plots is 
more trigonometrically rigorous and requires novel anal-
ysis protocols. For purposes of measuring plant move-
ment, the two can be combined in a way that any field 
design can serve as input to guide image analysis and 
data organization.

In this paper, we develop novel video analyses and 
demonstrate that they  can be used to quantify plant 
movement as a phenotype in the field from a stationary, 
360° field of view camera system for purposes of under-
standing cereal crop lodging resistance under field wind 
stress. The context of this method focuses on individual 
plant rows as opposed to canopy dynamics of uniform 
fields, with the idea that this method could be general-
ized to an applied breeding scheme. The method pre-
sented quantifies the natural frequency (ωn) of movement 
and amplitude of single, homogenous rows of cereal 
cultivars without mechanical interference. Our method 
accomplishes this primary objective by (1) identifying 
plots from a predefined field design to systematize data 
analysis, (2) employing signal processing techniques to 
analyze plant movement as changes in the RGB color 
space, and (3) demonstrating the method’s capabilities 
by quantifying plant movement in the field for 16 cereal 
varieties planted in a randomized complete block (RCB) 
design.

Results
Automatic demarcation of single rows from hemispherical 
video
An automated camera track system [19] with a 360fly 
(360fly, Inc.) camera mounted 3  m off the ground, 
allowed us to capture hemispherical videos of 98 single 
row plots within a RCB design planted at four different 

planting dates (Fig.  1) (Table  1). The RCB design con-
tained four cereal crop species with 16 cultivars in total 
(Table 1). 

The camera track system was specifically designed for 
quantifying lodging and plant movement under field 
wind conditions, with open source design plans [19]. 
Four replicates were in view of the camera track (two 
inner and two outer replicates), with 2-minute videos 
taken at each of the four planting dates on five different 
windy days in July 2017 for a total of 20 videos capturing 
cereal movement (Table 2; Fig. 2a).

By centering the camera over a series of unique panels 
at each planting date, we calculated the orientation of the 
field with respect to the camera axes in a given video and 
subsequently rotated the input field design at that panel 
accordingly (Fig. 2a–d). The red square on each panel also 
served to normalize red color values in the RGB frames 
for comparing color values at a given plot under differ-
ent lighting conditions. Following this rotation, we trans-
formed the rotated 2D field coordinates into 3D spherical 
coordinates (Fig.  3). The latitude for a given point was 
used to obtain the number of pixels in the image out to 
that point, with the longitude used to calculate the num-
ber of indexed rows, columns in the image matrix using 
a law-of-sines relationship. This created a series of four 

Fig. 1  Camera track system (figure from [9]). The automatable camera track system that to which the 360 camera was mounted. Reproduced with 
permission from the journal

Table 1  Cultivars used in the lodging field design

Latin name Crop Cultivars

Avena sativa L. Oat ‘Gopher’, IL078721, ND021052, ‘Reins’

Hordeum vulgare L. 2-Row Barley ‘AC Metcalf’, ‘Conlon’, ‘ND Genesis’, 
‘Pinnacle’

Hordeum vulgare L. 6-Row Barley ‘Celebration’, ‘Quest’, ‘Stellar’, ‘Tradition’

Triticum aestivum L. Wheat ‘Linkert’, MN113946, ‘Rollag’, ‘Shelly’
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transformed points for each plot, expressed in indexed 
pixels, that could then be used in cropping functions. We 
used the plotfinder matlab script (Additional file  1) to 
automatically generate both cropped images and crop-
ping functions that used these pixel products of the field 
design transformation to illustrate demarcations of an 
entire cultivar row and 929  cm2 regions for quantifying 
plant movement (Fig.  4a–d). Visualized on the first still 
frame, the cropped image of ‘Gopher’ oat is seen in two 
different videos whose rotation in relation to the field 
panel differs (Fig. 4a, b). The 929 cm2 regions at canopy 
height for plant movement analysis is shown in a repli-
cate adjacent to the camera track (inner reps) (Figs.  2a, 
4c) and not adjacent to the camera track (outer reps) 
(Figs. 2a, 4d). Regions of the same size in the field become 
noticeably smaller in outer replicates when demarcated 
in the 360fly still frames (Fig. 4d). Along with a cropped 
image displaying the polygon region of interest, the crop-
ping function generated using Additional file 1 can then 
be used to crop 929 cm2 regions at each plot and analyze 
the color components of these plot segments over all 
video frames to quantify plant movement. 

Accuracy of the automatic plot demarcation
We assessed the accuracy of the plot demarcation 
method over the 5 video dates by comparing manual 
rotation angle (Θoff) calculation and cropping with the 
automatic Θoff calculation and cropping functions gen-
erated by the plotfinder script. The small Θoff differences 
(averaging between 0.66° and 2.42°) between automatic 
and manual estimation propagated larger transformation 
errors for outer replicates compared to the inner repli-
cates adjacent to the camera track (Table 3). These differ-
ences in combined x, y plot coordinate values averaged 
1.78 cm at the inner reps and 8.74 cm at the far reps due 
to Θoff calculation error propagation (Table 3).

As another metric of the plot demarcation accuracy, 
we measured how color signals of plant movement 
were affected by comparing the average normalized red 
value from the hand demarcated and plotfinder demar-
cated regions over all frames in the videos. For the inner 
replicates, the correlation at each video date across all 

planting dates and crop cultivars was significantly higher 
than in the outer replicates (Table 4). On the windiest day 
with the most plant movement (17 Jul 2017), the correla-
tions between normalized red color values were 0.92 for 
inner replicates, and 0.76 for outer replicates (Table  4). 
Likewise on the least windy day (11 Jul 2017), the corre-
lations between normalized red color values were lower 
overall (r = 0.83 for inner replicates, 0.67 for outer repli-
cates) (Table 4).

Processing signals of plant row movement
With the plotfinder method enabling the systematic 
cropping and color quantification of 929 cm2 plot canopy 
regions over each frame in a video, we devised a signal 
processing pipeline to quantify plant row movement 
from time-varying changes in color across plot canopies. 
We visualize a sample of plant movement waveforms by 
plotting the normalized red color values of four cereal 
cultivars taken at the panel denoting the 25 Apr. 2017 
planting date on 10 Jul 2017 (Fig. 5a). The normalized red 
color values of the 929 cm2 regions over all frames in a 
video revealed color changes at two major scales. The first 
scale was low frequency (< 0.5 Hz), high amplitude color 
changes detectable due to changes in sunlight exposure 
from passing clouds during a single video, which sub-
stantially altered the red color values of the plots relative 
to the red panel. This is evidenced by the shared low fre-
quency, high amplitude wave movements across all plots 
shown (Fig. 5a). The second color change within each of 
these waveforms, occurring at higher frequency (1–2 Hz) 
and lower amplitude, can be seen that represent the 
plant swaying back and forth, thereby changing the mean 
normalized red value within the demarcated 929  cm2 
region (Fig. 5a). Digital bandpass filtering was necessary 
to remove low frequency color changes (< 0.5  Hz) due 
to sunlight changes and high frequency waves (> 4.9 Hz) 
due to camera movements and other noise, leaving only 
the signal of the individual row movement (Fig. 5b). The 
filtered signals of normalized red values are thus cen-
tered at 0 and have distinguishable peaks, which are 
used to calculate the mean natural frequency (ωn) for the 
bandpassed peak distribution (Fig.  5c). The movement 
trends of the plotted waveforms in Fig. 5a correspond to 
the behavior of the cultivars in the supplemental video 
(Additional file 2), such as low ωn, high amplitude move-
ment (‘Gopher’ Oat, ‘Pinnacle’ 2-row Barley) and high ωn, 
low amplitude movement (‘Linkert’ Wheat).

Analysis of plant row movement signals
We finally used the peak detection method on the fil-
tered signals of plant movement to generate a distri-
bution of peaks for each plot per video date (Fig.  5c). 
The mean natural frequency (ωn) obtained from these 

Table 2  Video date and wind speeds

Average wind speed, gust, and direction at each video date

Video date Average wind 
speed (kph)

Gust (kph) Direction (°)

10 Jul 2017 10.3 14.6 357

11 Jul 2017 6.7 10.3 112

12 Jul 2017 14 18.6 268

13 Jul 2017 10.2 12.9 345

17 Jul 2017 17.8 26.4 164
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distributions, modeled as a response in Eq.  10 with 
appropriate F-tests (see Methods), revealed differences 
among cultivars and planting dates that were significant 
in a ANOVA of the linear model on data from the five 
video dates (Table  5). The position effect of replicates 
nested within planting dates was significant at all video 

dates in explaining variation in mean ωn (Table  5). The 
mean ωn values across all cultivars was 1.37  Hz, with 
significant differences detected among cultivar means 
according to an LSD test on two of the five video dates 
(Table 6). Grouped in Table 6 by crop, wheat cultivars on 
average had higher mean ωn values than the other cereals 

Fig. 2  Rotation of field coordinates. The camera orientation is determined from still frames (a). The sample still frame shows the position of the 
inner (orange dashed rectangles) and outer (blue dashed rectangles) replicates in view with respect to the camera track (a). The red square on 
the panel is masked out from the rest of the image, and the leftmost corner is identified with the color values ± 40 pixels from this corner used to 
determine which way the panel is facing (b). Once the direction and degree in this direction that the image is rotated is quantified (Θoff), the field 
design coordinates are rotated in that direction such as 45.9° toward the Northeast (c) or 41.9° toward the southwest (d)
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across the five video dates. Different planting dates also 
possessed significantly different mean ωn values, though 
their rank was not universally consistent across the five 
video dates (Table  7). Notably, the windiest date (17 Jul 
2017) contained almost universally lower observations of 
ωn across cultivars and planting dates (Table 6).

In addition to analyzing variation in mean frequency, 
we analyzed the variation in the amount of row move-
ment (amplitude) within a 0.2 Hz frequency interval (bin) 
between 1.1 and 1.3  Hz. The amplitude within this fre-
quency bin encompassed many mean natural frequen-
cies of the cultivars in this study varied significantly 
among cultivars and planting dates across data from the 

five video dates. When modeled as a response in Eq. 10 
and analyzed with an ANOVA, the 1.1–1.3 frequency 
bin had significant cultivar, planting date, and planting 
date x cultivar interaction effects (Table 8). The position 
effect of replicates nested within planting dates was insig-
nificant across four of five video dates on the variation in 
total amplitude (Table 8). Significant differences in mean 
amplitude among cultivars were detected at one of the 
five video dates according to an LSD test (Table 9). Cul-
tivars with a lower ωn generally had more movement in 
the 1.1–1.3 Hz interval as measured by the sum of the red 
area between peaks, while those with a higher ωn had less 
movement (Table  9). Near-universal increases in total 

Fig. 3  Spherical transformation via triangulation. After accounting for camera rotation using Θoff, distances to the rotated point (x’n, y’n) are used to 
calculate the longitude, and along with height (zn) the latitude of a point of interest transformed on to a spherical plane
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Fig. 4  Cropped images showing automated plot identification results. Two still frames from different video dates (a, b) of the same oat plot 
(‘Gopher’) demarcated in two different orientations. Two still frames from the same video date below showing the 929 cm2 demarcation for the 
analysis of plant movement. ‘ND021052’ Oat as an inner rep (c—green circle highlight) and ‘Quest’ 6-row Barley as an outer rep (d—green circle 
highlight)

Table 3  Errors in plot demarcation induced from manual versus automatic Θoff estimates

Average Θoff differences and subsequent error propagation (in cm) for combined x and y components of the field coordinates and grouped by replicate position at 
each video date. Manual versus automatic (plotfinder) estimations of Θoff were used and averaged across the four panels for each video date

10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

Avg. angle difference (°) 1.64 2.42 0.66 1.19 1.13

Inner reps (cm) 2.89 3.22 1.34 1.12 0.33

Outer reps (cm) 12.83 16.07 5.51 6.78 2.92
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amplitude were observed for the windiest video date (17 
Jul 2019) compared to the other video dates among the 
cultivars (Table  9). Finally, significant differences in the 
total amplitude of plant movement among planting dates 
were detected at each video date (Table 10). 

Discussion
Measurements of cereal crop lodging, while increasingly 
possible at high throughput through UAVs and image 
analysis, cannot capture the dynamic response that a 
cereal crop experiences during high winds or storms. 
Treating movement as a response variable could improve 
a breeder’s understanding of cereal wind resistance by 
relating cereal physiology to repeated measures of plant 
movement under different wind conditions and final 
lodging outcomes. There are obvious challenges to phe-
notyping plant movement on a large scale agricultural 
experiment using mechanical methods. Manual vibra-
tion and timing tests would prove laborious on the scale 
of common field experimental designs, while mechanical 
sensors on tens or hundreds of replicates would present 
data synchronization challenges for large field experi-
ments. Thus a video analysis method using a colorimet-
ric, signal processing approach to quantify movement 
offers a non-invasive measure of this dynamic pheno-
type that is better scaled to agricultural experiments. The 
desired capabilities of a scalable phenotyping method for 
plant movement are twofold: the method must be sys-
tematic enough to eliminate sources of human or equip-
ment measurement errors under the intermittent winds 
that excite plant movement, while providing enough data 
of replicated varieties to elucidate trends in movement 
that require increased statistical power to discern in the 
field. The pairing of novel hemispherical image analysis of 
agricultural plots with the analysis of plant canopy move-
ment in a systematic way enables differentiation of crop 
movement at the cultivar level. Though the analysis of 
plant movement from video data predates digital video, 
we consider our method generalizable to available cam-
era technology and common field experimental designs 
for measuring movement as a plant phenotype for breed-
ing or other biological purposes [20].

Demarcating individual crop rows from 360 video is 
novel with respect to high throughput image analysis 

of agricultural research plots, which is often performed 
using UAV captured images. Demarcating plots from 
a 360 image negates the need for stitching images cap-
tured by UAV mounted cameras, though at the cost of 
a smaller field coverage on a per image basis compared 
to multiple images stitched into one from a UAV [21]. In 
methodological studies of UAV image alignment of agri-
cultural plots, regions of a field are identified through 
ground control points (GCP) with known GPS coordi-
nates, which can be manually tagged in each image and 
then used to aid alignment along with shared spectral 
features in the images being stitched [22]. Plot misalign-
ments induced by stitching error depend on the height of 
the UAV, spectral properties of the image, and number of 
GCPs. Among published studies, these stitching errors 
on average range from 1.5 to 4.5  cm at UAV heights of 
30 m and 100 m respectively, and 8 cm to 13 cm depend-
ing on the spectral band analyzed and the number of 
GCPs used [23, 24]. Our average plot coordinate mis-
alignment errors of 1.78  cm for inner reps (at 2.28  m 
from the camera track) and 8.74  cm (at 6.86  m from 
the camera track) for outer reps falls within the errors 
induced by stitching algorithms using GCPs. In theory, 
mounting the camera higher would decrease the error 
due to angle estimation errors by the plotfinder script 
(Additional file  1) at a given distance, as points would 
shift towards the center (pole) of the 360 image. While a 
high image spatial resolution is not critical for the meas-
urement of plant movement from a time-varying color 
signal, decreasing this resolution will make subsequent 
analyses more sensitive to errors in camera system align-
ment or angle calculation. Despite alterations to camera 
system dimensions, the final errors will heavily depend 
on the panel being in alignment with the field design, 
as any misalignment will propagate at further distances 
even if the angle of the panel is accurately quantified by 
the plotfinder script. The plot demarcation method could 
be adapted to other cropping systems and field designs 
that desire a large field of view and the possibility for 
repeated imaging or videos of agricultural plots [19] with 
careful construction of the camera system.

The plot demarcation and plant movement quantifica-
tion methods are well integrated via the use of the panels 
that enable normalization of color values in RGB video 

Table 4  Average correlation of normalized red color values over frames by video date

Correlation coefficients (r) of normalized red values over frames between manual and automatic (plotfinder) demarcation methods, averaged over all plots, and 
grouped by replicate position at each video date. Unique letters indicate significant differences between mean correlation coefficients within a video date at alpha = 
0.05

Position 10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

Inner reps 0.83 a 0.83 a 0.87 a 0.77 a 0.92 a

Outer reps 0.69 b 0.67 b 0.77 b 0.62 b 0.76 b
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Fig. 5  Signal processing visual. The red color value for each frame is normalized to the red color value for the red square on the panel, generating a 
waveform of both plant movement and outdoor lighting conditions over the video (Column a). The waveforms in column a are then bandpassed, 
centering the signal at 0 and removing the low frequency (< 0.5 Hz) components of the signal (Column b). Peaks within the bandpassed signals are 
identified with a minimum prominence of 0.005 Normalized Red Value, with the distance between each peak (in frames) calculated and divided by 
the frame rate to estimate the natural frequency (ωn, in Hz) to the next peak. The mean of the distribution of these frequencies constitutes the ωn 
for the plot (Column c—red lines)
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Table 5  ANOVA P value results for mean by ωn by video date

*Significant at alpha = 0.05

10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

Cultivar < 0.001* 0.011* 0.002* 0.030* < 0.001*

PlantingDate 0.211 0.100 0.145 0.055 0.039*

Pos (PlantingDate) < 0.001* < 0.001* < 0.001* < 0.001* 0.008*

Cultivar * PlantingDate 0.405 0.369 0.441 0.372 0.448

Cultivar * Pos (PlantingDate) 0.712 0.222 0.964 0.023* 0.989

Table 6  Mean separations for mean ωn (Hz) between cultivars by video date

Unique letters indicate significant differences between means within a video date at alpha = 0.05

Cultivar 10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

‘AC Metcalf’ 2-row 1.41ab 1.46a 1.48a 1.25bc 1.25a

‘Conlon’ 2-row 1.27b 1.46a 1.47a 1.33abc 1.26a

‘ND Genesis’ 2-row 1.51ab 1.53a 1.50a 1.44ab 1.16a

‘Pinnacle’ 2-row 1.43ab 1.41a 1.47a 1.28abc 1.11a

‘Celebration’ 6-row 1.22b 1.48a 1.54a 1.46ab 1.14a

‘Quest’ 6-row 1.37ab 1.43a 1.43a 1.30abc 1.40a

‘Stellar’ 6-row 1.45ab 1.28a 1.54a 1.32abc 1.08a

‘Tradition’ 6-row 1.45ab 1.31a 1.32a 1.28abc 1.15a

‘Gopher’ oat 1.31ab 1.29a 1.40a 1.18c 1.03a

‘IL078721’ oat 1.55ab 1.46a 1.50a 1.41abc 1.06a

ND021052 oat 1.59a 1.36a 1.62a 1.21bc 1.15a

‘Reins’ oat 1.38ab 1.20a 1.34a 1.35abc 1.06a

‘Linkert’ wheat 1.60a 1.41a 1.48a 1.43ab 1.07a

MN113946 wheat 1.57ab 1.55a 1.56a 1.35abc 1.39a

‘Rollag’ wheat 1.39ab 1.52a 1.41a 1.64a 1.48a

‘Shelly’ wheat 1.59a 1.55a 1.60a 1.52a 1.38a

Table 7  Mean separations for ωn (Hz) between planting dates

Unique letters indicate significant differences between means within a video date at alpha = 0.05

Planting date 10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

25 Apr 2017 1.37bc 1.52a 1.44b 1.70a 0.85d

5 May 2017 1.47b 1.41b 1.47b 1.19c 1.01c

15 May 2017 1.62a 1.15c 1.27c 1.06d 1.26b

26 May 2017 1.30c 1.59a 1.71a 1.47b 1.53a

Table 8  ANOVA results for the total amplitude of movement (1.1–1.3 Hz bin) by video date

*Significant at alpha = 0.05

10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

Cultivar 0.003* < 0.001* 0.027* 0.026* 0.005*

PlantingDate 0.021* 0.055 0.277 0.052 0.017*

Pos (PlantingDate) 0.587 0.022* 0.097 0.405 0.293

Cultivar * PlantingDate 0.018* 0.050* 0.221 0.010* 0.052

Cultivar * Pos (PlantingDate) 0.714 0.514 0.342 0.159 0.511
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frames and identification of plots within the RCB field 
design. From this normalization and subsequent band-
pass filtering of raw waveforms, we were able to compare 
parameters of plant movement across videos where dif-
ferent lighting conditions were present. Bandpass fil-
tering also allowed for the removal of higher frequency 
(> 5 Hz) color changes due to camera vibrations induced 
at sufficiently high windspeeds on the camera system, 
leaving a signal of plant movement for analysis. The abil-
ity to treat parameters of plant movement such as natu-
ral frequency and amplitude as phenotypes that can be 
analyzed in common experimental designs such as the 
RCB represents a rigorous analytical framework for fur-
ther testing models of plant wind interactions in the field. 
In the test of the plot demarcation and signal processing 
pipelines, we analyzed the RCB separately at five differ-
ent dates. Lighting and wind conditions are expected to 
vary over different dates, and changes in lighting condi-
tions (due to sun elevation or cloud cover) at the time 
of imaging will affect the absolute amplitude measure-
ments as they are quantified based on the area under 

the bandpassed waveforms. However, a variety prone to 
larger amplitude movements will still be detected relative 
to those with lower amplitude movements when meas-
ured over a constant area of the plant canopy (929 cm2 in 
our case), even if the magnitude of the absolute amount 
of movement is less due to lighting conditions in a given 
video. Thus, a researcher employing this method over 
an entire growing season to investigate biological ques-
tions would be advised to employ a repeated meas-
ures ANOVA account for variation due to windspeed 
and lighting conditions among sampling dates in a final 
model of plant movement comparing varieties or crops. 
The RCB field design we used allowed us to statistically 
test the results from the video and signal processing pipe-
lines by comparing relevant experimental effects and 
their interactions at seperate video dates. The presence of 
a significant effect of replicate position (inner vs outer) 
for natural frequency indicates that blocking the experi-
ment with camera distance, as was done here, is critical 
in minimizing the effect of distance from the camera on 
mean natural frequency. Such effects on the variation 

Table 9  Cultivar differences for the total amplitude of movement (1.1–1.3 Hz bin) by video date

Total amplitude is expressed in percent normalized red color units. Unique letters indicate significant differences between means within a video date at alpha = 0.05

Cultivar 10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

‘AC Metcalf’ 2-row 1.59a 2.44abc 1.78a 1.46a 3.90a

‘Conlon’ 2-row 1.29a 2.11bc 2.28a 1.84a 2.18a

‘ND Genesis’ 2-row 1.88a 2.20abc 1.72a 1.37a 2.46a

‘Pinnacle’ 2-row 1.17a 2.39abc 1.75a 1.74a 3.22a

‘Celebration’ 6-row 2.39a 1.48c 1.51a 1.48a 1.56a

‘Quest’ 6-row 1.50a 3.01ab 2.24a 2.36a 3.94a

‘Stellar’ 6-row 0.88a 2.23abc 1.06a 1.16a 2.30a

‘Tradition’ 6-row 1.13a 1.91c 1.96a 2.09a 3.13a

‘Gopher’ oat 2.16a 3.12a 2.37a 2.67a 3.02a

‘IL078721’ oat 1.06a 1.48c 0.65a 0.96a 0.85a

ND021052 oat 1.19a 1.58c 1.06a 1.63a 2.35a

‘Reins’ oat 1.61a 1.53c 1.45a 1.24a 1.60a

‘Linkert’ wheat 1.29a 1.43c 1.19a 1.37a 1.41a

MN113946 wheat 0.85a 2.26abc 1.18a 1.60a 2.32a

‘Rollag’ wheat 1.24a 1.90c 1.37a 0.99a 2.18a

‘Shelly’ wheat 1.39a 1.97c 1.71a 2.13a 1.27a

Table 10  Mean separations for the total amplitude of movement between planting dates

Total amplitude is expressed in percent normalized red color units. Unique letters indicate significant differences between means within a video date at alpha = 0.05

Planting date 10 Jul 2017 11 Jul 2017 12 Jul 2017 13 Jul 2017 17 Jul 2017

25 Apr 2017 1.91a 1.91bc 1.80a 1.21b 0.83c

5 May 2017 1.43a 2.10b 1.54a 1.89a 3.87a

15 May 2017 0.89b 2.70a 1.82a 2.04a 2.95a

26 May 2017 1.63a 1.63c 1.43a 1.61ab 1.96b
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in mean natural frequency are likely manifestations of 
errors in angle calculation identified in lower correlations 
between automatic and hand plot demarcation, indicat-
ing that there is more error in quantifying color changes 
at greater distance from the camera. This primarily stems 
from errors in calculating Θoff, resulting in a shift of the 
929 cm2 region to another plot and capturing a color sig-
nal that is not representative of the intended plot can-
opy. While the plots captured in the hemispherical still 
frames occur at varying latitudes (viewing angles) in the 
images that are in theory affected by different lighting 
conditions, the predominant lack of a significant posi-
tion effect on plant movement where the total amount of 
color change over time is directly quantified suggests that 
this issue is not as critical as improper angle calculation 
for accurate measurement of plant movement. That said, 
care should be taken to account for variation in lighting 
conditions at different viewing angles within hemispheri-
cal images for other applications if specific indices (i.e. 
ratios of spectral bands) are desired.

Mechanical estimates of plant movement, while useful 
for theoretical validations, are not as easily scaled to the 
level of field agricultural experiments compared to video 
based, colorimetric methods. Manually collected data 
on crop movement has been used to select for lodging 
resistance in cereals in the absence of naturally induced 
lodging, such as the ‘snapback’ trait in oats and other 
cereals [25]. The snapback trait consists of a researcher 
drawing a cereal row back, and rating (i.e. 1–10 scale) 
the strength and springiness of the stem [26, 27]. The low 
trait heritability of subjective snapback scores spurred 
the development of a more precise measure of stem dis-
placement through hanging weights at a standard loca-
tion along cultivar stems, thereby providing an estimate 
of torque that a stem can resist versus the torque that is 
applied (Coefficient of Lodging Resistance) [26]. None-
theless, both snapback and coefficient of lodging resist-
ance traits are hindered by subjective or cumbersome 
measurement. Free vibration tests, where a researcher 
pulls the main cereal stem back a set distance and manu-
ally times the subsequent oscillations, represents a stand-
ard field measurement technique for stem frequency for 
validating models of plant movement [6, 28]. Mechani-
cal estimation of plant movement through accelerometer 
data, while increasingly feasible with compact sensors, 
poses difficulties in large field experiments such as the 
RCB design we used given difficulties in scaling materials 
and synchronizing data across all plots at any given point 
in time, notwithstanding possible mechanical interfer-
ences with plant movement [5]. Regardless of the method 
used to obtain plant movement data, any signal of wind 
induced plant movement will be highly intermittent 

given the inconsistent nature of wind speeds and direc-
tion at canopy level and the low frequency of plant 
oscillations. Both of these factors make signals of plant 
movement poor candidates for analysis via standard sig-
nal processing techniques such as the fourier transform. 
While errors might be induced due to physical properties 
of the camera system used, the ability to analyze multi-
ple replicates of the same varieties provides the statistical 
power needed to differentiate cultivar differences in plant 
movement to provide insights for field investigations of 
plant-wind interactions.

The cultivar mean natural frequency (ωn) values esti-
mated by our method fall within ωn values either theo-
retically or empirically determined for cereal crops. 
Theoretical natural frequencies of a generic cereal crop 
range between 1.10 and 5.31  Hz, based on dimension-
less parameters while empirical data on in-field wheat 
stems (cultivar ‘Mercia’) using a manual free vibration 
resulted in an average natural frequency of 0.91  Hz [7, 
9]. Additional empirical data from free vibration tests 
in spring barley indicate an average natural frequency 
of 0.67 Hz and 0.60 Hz for the cultivars Golden promise 
and Optic, respectively [6]. While mean ωn values calcu-
lated for the cultivars in our study were higher on average 
(1.37  Hz) than those reported for different cultivars of 
the same cereal crops, barley cultivars in our study gener-
ally had lower resonant frequencies than the wheat culti-
vars, a trend also apparent in [6]. Observations taken on 
the video date with the highest average wind speed and 
gusts were almost universally lower in mean ωn values for 
cultivars and planting dates, which is to be expected as 
the wind moment increases thereby reducing the natu-
ral frequency by the square root of the increase in wind 
moment, all else equal [5] (Eq. 2) (Table 6). Considering 
its generalizability to different field applications, these 
video and signal processing methods represent good 
candidates for obtaining more information about the 
phenomenon of plant movement and its relationship to 
lodging resistance.

Conclusions
We submit a novel video analysis pipeline that enables the 
automatic demarcation of agricultural plots from 360 video 
and a signal processing pipeline for analyzing color signals 
of plant movement in common field experimental designs. 
When coupled together, this method can be used to ana-
lyze video taken under varying wind speeds, allowing for 
the quantification of plant natural frequencies of move-
ment under direct wind stress where typical high through-
put phenotyping platforms (i.e. UAVs) are not suitable. 
When applied over a growing season, this method should 
amend itself to discerning trends in plant movement over 
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time. These could include the physiological relationships 
between physiology, movement, and lodging, or even thig-
motropic responses of plant tissues to plant movement 
[29]. In the broader goal of improving lodging resistance 
of cereal crops, the analysis of plant movement from 360 
video will expand the quantifiable variation of this com-
plex trait for use in plant improvement.

Methods
Camera, field, and naming conventions
Camera system
We designed and constructed an automatable camera 
track system to collect hemispherical video of single 
row research plots [19]. Briefly, the camera track system 
spanned 39.6 m at 2.7 m above ground level and deployed 
a 360fly 4k hemispherical video camera (360fly, Inc.). The 
camera tracking was repurposed industrial curtain track-
ing (AmCraft Manufacturing, Inc.) mounted on 3.65 m, 
5.08 × 5.08 cm steel posts set 61 cm into concrete form 
tubes below the field surface. Movement of the cam-
era along the track was accomplished by attaching the 
camera to a custom trolley linked to by a timing belt to 
a solar powered motor. Control of the motor was auto-
mated using a Raspberry Pi 3 Linux computer (Raspberry 
Pi Foundation). An example photo of the camera track is 
shown (Fig.  1). Importantly, 91 × 61  cm painted panels 
(panels) with a unique black, white, and red block design 
were centered underneath the camera track at regu-
lar intervals with the red square always oriented in the 
northwestern corner of the installed panel (Fig. 2a). The 
unique black and white block design served to uniquely 
mark the field location at each panel, while the red square 
served to orient the camera and apply necessary correc-
tions to the geometric transformation of the 2D field into 
a 3D, hemispherical image.

Camera specifications
The 360fly 4k hemispherical video camera (referred to as 
360 camera) recorded plant movement in the field. The 
360 camera contained an 8 Elements Glass Ultra Fisheye 
Lens with an aperture of F2.5, effective focal length of 
0.88 mm, and a minimum focus distance of 30 cm. The 
horizontal field of view was 360°, while the vertical field of 
view was 240°. Brightness was set to full brightness, while 
the aperture and contrast settings were set in the middle 
values for each. Videos were recorded at 24 frames per 
second with a per frame image size of 2880 × 2880 pixels. 
The 360fly ios app (V 2.0.0) was used to maintain con-
sistent settings and initiate camera recordings while the 
camera was mounted on the track system, and the 360fly 
Director (V 0.10.4.0) software for Microsoft Windows 10 
was used to download the videos from the camera and 
export them into.mp4 format.

Field design
The camera system imaged a randomized complete block 
(RCB) design. The design contained four cultivars of 
four different cereal grains (Table 1) for a total of 16 cul-
tivars. Cereal cultivars were planted in single row plots 
(hereafter referred to as plots) of 3.04  m in length with 
30 cm spacing between rows with a north–south orien-
tation. A row of winter wheat separated each cereal plot 
used in the study. Each cultivar was replicated 8 times, 
with four replicates sufficiently close to the camera for 
analysis. Furthermore, this design was planted at four 
different planting dates (25 Apr, 5 May, 15 May, and 26 
May 2017) in adjacent regions of the field. The camera 
system bisected the center of each planting date of the 
experimental design between the 4th and 5th replica-
tion, allowing video recording of different cultivars and 
growth stages at each video recording date. Average wind 
speed, gust, and direction data were obtained for each 
video date from the Minnesota DNR Mesonet station 
located on the research plots of the Minnesota Agricul-
tural Experiment Station in St. Paul, MN (Table 2) [30].

Pre‑analysis procedures
Prior to identifying plot regions within the 360 video and 
subsequent signal processing, we defined the field coor-
dinate system and plot naming conventions. This allowed 
us to generalize the matlab scripts in the pipeline across 
different parts of the field RCB as indicated by the unique 
panels. The lodging RCB was numbered in a serpentine 
pattern beginning in the northeastern corner of the field, 
moving to the west, and then back to the east in the next 
replicate at each panel (see Additional file 3 for an illus-
tration). We organized the plot naming and field coordi-
nates according to this serpentine order. At each camera 
stopping point over a panel, 4 blocks were in view that 
contained between 22 and 28 plots in total. We created 
two files associated with each panel, one for plot names 
and the other for plot coordinates. For our field layout, 
the plot name files (Additional files 4, 5, 6, 7) were 22–28 
lines depending on the panel it was associated with and 
contained the cultivar names associated with the serpen-
tine numbered plots, beginning in the northeast corner 
of the analyzable field region. Each plot was named: Cul-
tivar_Crop_PlantingDateRep (i.e. Gopher_oat_4A).

This allowed for regular expressions to search the 
names and append relevant plot data to the signal out-
put from the videos. The plot coordinates file (Additional 
files 8, 9, 10, 11) contained the same number of rows as 
the plot names file for a given panel. The columns in the 
coordinates files contained the x, y, and z coordinates for 
each corner of a plot to represent the top of the canopy 
in 3D space. The first column contained plant heights (z 
values) for each plot. The remaining 8 columns contained 
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the cartesian (x, y values) coordinates for each corner of 
a plot (SW, SE, NW, NE), with 2 columns (containing x, y 
distances) for each corner of the plot. These plot coordi-
nates are hand-defined by the researcher and utilized in 
subsequent transformations to demarcate regions in the 
hemispherical image. We present distances in feet within 
the supplemental files given our field planting equipment, 
but ultimately these units are arbitrary. Plot coordinates 
were expressed from the center of the panel, with the x 
axis denoting the camera track path, and the y axis per-
pendicular to the camera track at the panel center point 
(origin). In our field setup, points north of the x axis had 
positive y values while those south had negative y values, 
and points east of the y axis had positive x values while 
those west had negative x values.

Video naming protocol
We set a standard file naming convention for vid-
eos (.mp4 files) so that the date information could be 
obtained throughout the video analysis and signal pro-
cessing pipelines. We used the following file naming con-
vention for videos: FLYmm_dd_yy_pn.mp4, with n being 
the panel number imaged in that video.

Plotfinder analysis to demarcate agricultural plots in a 360 
image
This portion of the methods section details the demarca-
tion of agricultural plots from images taken using the 360 
camera along with researcher defined field coordinates 
and plot names. The text below explains the processes 
coded in Additional file 1. Analysis was written in Matlab 
v2016b, and must be executed in Matlab v2016b or later.

Section 1.1: locate panel in the 360 video still frame (image)
The panel, identified by the red square in the northwest 
corner of each panel, provides a reference upon which 
all subsequent transformations of the field design are 
based. Masking the red square in the northwest corner 
of the panel provides a reference point for all measure-
ments to conduct this transformation. The red square is 
masked by applying a threshold (with threshold values 
determined using the Matlab color thresholder applica-
tion) to the 360 image in RGB color space (R: 251-255, G: 
0-159, B: 0-255). Depending on ambient lighting condi-
tions, these threshold values may need to be changed for 
individual videos to completely identify the red square. 
To ensure that the masked object using the threshold 
is the red square on the panel, square structuring ele-
ments of 4 pixels in size helped define the right angle 
edges of the red square, while all masked objects whose 
areas were < 5000 pixels (the area of the true red square 
is approximately 6000 pixels in the center of the image) 
were then unmasked, leaving only a masked image of 

the red square. While not experienced in this experi-
ment, sunlight conditions that create an excessively satu-
rated image might necessitate altering the minimum red 
square size or ensuring that the red square is adjacent to 
black panels instead of white to better define the location 
of the red square. With the red square masked from the 
original image, the left-most corner of the square serves 
as the reference point for all subsequent measurement 
(Fig. 2b). The leftmost corner of the red square is identi-
fied by finding the minimum column index of the image 
array where a non-zero element is present. Knowing the 
column index for the leftmost corner, the row index is 
found where the minimum row in the minimum column 
index is not zero. The column and row indices for the left 
most corner are then retained in memory as the script 
advances.

Section 1.2: identify direction and calculate angle of rotation
Estimating the direction and angle (in degrees)  of rota-
tion of the panel within the image allows the field design 
to be rotated to the correct orientation in the image. The 
column index of the leftmost corner of the red square is 
used to determine which direction the panel is facing in 
relative terms within the 360 image, as the camera axes 
might not be in line with the field axes when the camera 
is installed on the track system. The direction of rotation 
is determined by obtaining the RGB color values of the 
40 pixels above and below the leftmost corner column 
(Fig. 2b). A mean red color value of > 245 will indicate the 
presence of a white square, while lower values will indi-
cate that the ground is in view. Thus if the mean value 
of the indices below the left most column is > 245 while 
the mean above the left most column is < 245, the panel 
is rotated northeastward relative to the camera axes 
(Fig. 2a, b). Once the direction of rotation is known, the 
degrees rotated in that direction can be calculated from 
the remaining indices of the masked red square. In Fig. 2c 
representing a northeastern rotation of the panel in the 
image, the angle between the camera x axis and the field 
x axis (Θoff) is calculated using the relationship

While in Fig. 2d representing a southwestern rotation 
(as well as the northwest and southeastern rotations) of 
the panel in the image, the same angle is calculated

With the points A,B,C representing the same triangula-
tion (in row indices for AB and column indices for BC) of 
the panel offset angle in the image. The leftmost corner of 
the red square will not always represent the same point 

(3a)Θoff = −90− tan d−1 AB

BC

(3b)Θoff = tan d−1AB

BC



Page 15 of 20Susko et al. Plant Methods           (2019) 15:55 

on the physical panel (Fig.  2c, d). Thus, the script will 
identify the indices of the relevant corner given a certain 
rotation condition.

Section 1.3: identify the panel in frame and incorporate field 
design
The researcher assigns the panel in frame a number that 
corresponds to those in the field coordinates or plot 
names files so that the correct versions of these files are 
used in subsequent transformations. The panel is identi-
fied based on user input at line 14 of the plotfinder script 
(Additional file  1). Once the panel is known, the corre-
sponding plot names and plot coordinates files are read 
into the script from the working directory.

Section 1.4: rotate field design, transform field design 
to spherical coordinates
This section describes the rotation of the field design 
according to the direction of rotation and Θoff value cal-
culated in section 1.2. Following this rotation, the rotated 
2D plot coordinates are transformed into spherical coor-
dinates for use in identifying their location on a hemi-
sphere. Each set of field (x, y) coordinates are extracted 
from the file into an n × 2 matrix, which is then trans-
posed to a 2 × n matrix. All points in the 2 × n matrix are 
rotated clockwise around the origin by multiplying with a 
2 × 2 rotation matrix. In the case of a northeastern rota-
tion of the panel (Fig. 2c) and a 2 × n matrix representing 
the x and y coordinates of the southwestern corner points 
of the plots, the calculation is:

For a southwestern rotation of the panel (Fig. 2d) in the 
image, 180° is added to theta offset in the rotation matrix:

The rotation matrix for a northwestern rotation is the 
same as in Eq. 4a, while a southeastern rotation will have 
90° added to Θoff instead of the 180° as in Eq. 4b. In addi-
tion to adding 90° or 180° to Θoff, it is necessary to flip 

(4a)

[

cosdΘoff sindΘoff

−sindΘoff cosdΘoff

]

∗

[

SWy1 SWy2 SWyn . . .

SWx1 SWx2 SWxn . . .

]

=

[

SW ′
y1 SW ′

y2 SW ′
yn . . .

SW ′
x1 SW ′

x2 SW ′
xn . . .

]

(4b)

[

cosd(Θoff + 180) sind(Θoff + 180)

−sind(Θoff + 180) cosd(Θoff + 180)

]

∗

[

SWy1 SWy2 SWyn . . .

SWx1 SWx2 SWxn . . .

]

=

[

SW ′
y1 SW ′

y2 SW ′
yn . . .

SW ′
x1 SW ′

x2 SW ′
xn . . .

]

the sign of all field coordinate values in a southeastern 
or southwestern rotation condition. This is done by ele-
ment wise multiplication of − 1 to all values within the 
coordinate matrices prior to multiplication by the rota-
tion matrix.

Following rotation of the field coordinates in relation to 
the camera axes, the rotated field coordinates are trans-
formed from the Cartesian (x, y) to spherical (latitude, 
longitude) coordinates. This is accomplished by two sep-
arate triangulations in three dimensional space (Fig.  3). 
The latitude angle (φn) for a given coordinate n is calcu-
lated by taking the inverse sine of the ratio of plant height 
to the distance from the camera height to the nth point 
on the field:

With the value of φn ranging from 0° to 90°. The lon-
gitude angle (Θn) for a given coordinate is calculated by 
taking the inverse 4-quadrant tangent of the ratio of y to 
x distance to the rotated field coordinate:

With the value of Θn ranging from − 180° to 180°. The 
nth plot coordinate is then represented in a new n × 2 
matrix containing the latitude and longitude values for 
each coordinate in the rotated hemispherical image. 
These values are stored in plot order corresponding to 
that given in the plot coordinates and plot names files.

Section 1.5: obtain indexed pixel values as a function 
of spherical coordinates for each field design coordinate
Once plot coordinates are transformed from Cartesian to 
spherical coordinates, the latitude for a given point can 
then be represented in terms of the distance from the 
center of the image as a percentage of total pixels. This 
assumes that the image was taken directly above the 
panel so that the image center (pole) and the panel center 
are in alignment. The relationship between degrees lati-
tude and number of pixels is non-linear: as latitudinal 
coordinates approach the equator (0°), fewer pixels are 
required to represent the change in latitude. Given the 
240° field of view captured by the 360Fly 4K camera, the 
edge of the hemisphere does not represent the equator. 
Instead, the radius from the image center to the equa-
tor is assumed to be located at the 1440th row for frames 
taken at a 2880 × 2880 pixel resolution. Due to the field of 
view and other unknowns regarding the lens optics, we 
empirically determined the relationship between degrees 
latitude and the percentage of pixels in the image along 

(5)ϕn = sin d−1 zn
√

x′n + y′n + zn

(6)Θn = tan 2d−1 y
′
n

x′n
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the radius at the 1440th row. The percent distance (Dn) in 
an image is thus a quadratic function of a point’s latitude 

As the 1 × n matrix of Dn values represents the hypote-
nuse out to a given point based on the nth point’s latitude 
and longitude, this distance Dn for a point is used to esti-
mate the distance (in percent of total indices) along the x 
and y axes within the image. The percentage of the image 
in terms of rows (Rn) is calculated as

And the percentage of the image in terms of columns 
(Cn) is calculated as

The resulting 1 × n matrices of Rn and Cn values are 
concatenated into a 2 × n matrix of the same dimensions 
as the initial coordinate input for a given set of points. 
Expressing distances as a percent of the image size from 
the image center (radius), they represent the percent dis-
tance in rows and columns to a given point from the field 
design on the hemispherical image.

Section 1.6: create correction matrix for points in field design 
for applying correct index sign
Though the row and column indices are expressed as per-
centages of the radius of the hemispherical image, the 
calculations in section 1.5 do not assign the correct sign 
to these indices to indicate their location in regards to 
the image center. The Rn and Cn values calculated above 
are expressed in percent distance from the image center 
without the correct sign indicating where the points fall 
with respect to the image center. Longitude angles for the 
nth point are used to assign the appropriate sign to the 
Rn and Cn values. For rows, if the longitude angle for the 
nth point is between 0 and 180°, Rn will be negative while 
if the longitude angle is between 0 and − 180°, Rn will be 
positive. For columns, if the longitude angle for the nth 
point is between 90 and − 90°, Cn will be positive while if 
the longitude angle is between 90 and 180° or − 180 and 
− 90°, Cn will be negative. The correction matrix will have 
dimensions of n × 2, with the first column containing the 
row distance as a percentage of image size, the second 
column containing the column distance as a percentage 
of image size, and n rows for the number of points in the 
field design.

(7)Dn = ϕ2
n ∗ 10

−7
− ϕn ∗ 5

−3
+ 0.3609

(8a)Rn =
Dn ∗ sin dθn

sin d(90)

(8b)Cn =

√

D2
n − R2

n

Section 1.7: apply the correction matrix to the index values
The correction matrix indicating the correct sign for 
the row, column index percentages is applied, with the 
index percentages converted to actual pixel indices 
based on the image size, and then added to the image 
center row, column index to obtain the final transfor-
mation of the field coordinates to their location in the 
hemispherical image. The correction matrix for each 
coordinate is multiplied element-wise by the matrix of 
row and column distance percentages

This resulting matrix contains the Rn and Cn values 
whose signs reflect the correct orientation with respect 
to the image center. The Rn and Cn distance percent-
ages are then multiplied element-wise by the image size 
(2880 pixels) express these values as image pixels. Since 
these values now represent the number of pixels to the 
nth point along the image y and x axes from the center 
of the image, half the value of the image size (1440 pix-
els) is added to every element within this matrix. The 
resulting array contains the indexed pixel value for the 
row and column in the image where a plot coordinate is 
located.

Section 1.8: crop plots based on these rotated coordinates, 
export images and cropping functions
With each of the four corners of a plot represented in 
terms of indexed rows and columns pixels in the image, 
demarcation of the original image can begin. Each row 
in the resulting pixel arrays for plot corners (NW, NE, 
SE, SW) represents a unique plot in the field design that 
corresponds with the order in the original plot coor-
dinates and plot names files. The nth row of each of the 
four arrays containing row and column pixels are used 
to demarcate a polygon cropping region on the origi-
nal image with the plot name appended to the filename 
according to the nth row of the plot names file. The script 
will produce the same number of images as the number 
of rows in the input plot coordinates and plot names files. 
Additionally, a cropping function is generated by the 
script that can demarcate the plot region across frames 
in a video. Examples of the resulting cropped plots in dif-
ferent rotation conditions and region of interest sizes are 
shown (Fig. 4a–d). The correctness of the plot demarca-
tion can be visually assessed by the user though com-
paring the cropped image of a plot with the entire field 
captured in one of the uncropped frames.

(9)
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Plotfinder accuracy
We assessed the plotfinder accuracy by comparing the 
differences in feet on the ground generated by automatic 
angle detection and manual angle measurement. We ran 
the still frames from each video through the plot finder 
script to calculate Θoff and obtain the rotated coordinates 
for each corner of the demarcated 929 cm2 area. We then 
manually calculated the angle of the red square by meas-
uring the distance manually using the line tool in Pow-
erpoint (Office 365), which gives the height and width 
that the line travels in the image and used those values to 
calculate Θoff manually (Eq. 3a–b). This value of Θoff was 
then used to recalculate the x and y coordinates of each 
plot corner. The average x, y values of the outer and inner 
reps were then grouped and averaged, with the x and y 
differences calculated before a final averaging of the x 
and y differences for the outer and inner reps.

To evaluate the automatic plotfinder script demarca-
tion error on quantifying color changes indicative of 
plant movement, we manually outlined cropping func-
tion demarcating 929  cm2 regions (as in Fig.  4c, d) of 
the 98 plots at each of the 5 video dates using the image 
segmenter app built into Matlab v2016b. We used this 
manual demarcation to compare with the automati-
cally generated cropping function using the plotfinder 
script and plot names, plot coordinates files that denoted 
929cm2 regions in the field. Both the manual and auto-
matically generated cropping functions were applied 
over each frame to calculate the average normalized red 
color value in the demarcated region. The average nor-
malized red values from the manual and automatically 
generated cropping functions were then correlated over 
all frames and planting dates for each video date. A lin-
ear model with one term indicating whether the position 
of the rep (inner or outer) was used to explain the cor-
relation for each video date (across planting dates, plots). 
An LSD test with Bonferroni correction in the R package 
agricolae was then used to assess whether the differences 
in mean correlation coefficients between the inner and 
outer reps was significant.

Movement Analysis using the plotfinder generated 
cropping functions
The second half of the method first uses two matlab 
scripts (Additional files 12, 13) written in MATLAB 
v2016b followed by two R scripts (Additional files 14, 15) 
written in R v3.4.1.

Section 2.1: obtaining raw waveform data on plant 
movement
We apply our plot demarcation method to a novel strat-
egy for quantifying plant row canopy movement by 

analyzing the change in normalized red color values 
averaged within the demarcated plots of the RGB 360 4k 
video. While reflectance of plant tissue is low in the red 
band of visible light due to absorption by chlorophyll, 
the soil between rows reflects wavelengths in this part of 
the visible spectrum back to the camera [31]. Since the 
stem oscillations are captured against ground surfaces or 
large gaps in foliage in this field layout, the red channel of 
the RGB 360 4k video should be best suited to detecting 
movement of a cereal row canopy within a fixed region 
across all frames. These specific regions correspond to a 
929 cm2 region at the height of the plant canopy with one 
edge along the center of the row. These functions were 
called by a script that was unique to each panel (Addi-
tional file  12). This script incorporated the plotfinder 
generated cropping functions specified for each plot, and 
calculated the average red value at each frame for every 
plot. The average red value for each plot was then nor-
malized to the red square on the panel at that frame in 
the video, so that color values could be compared across 
different lighting conditions within a video and across 
videos. Each waveform script produced a resulting array 
with the number of rows equaling the number of frames 
in the video, and the number of columns equaling the 
number of plots. The arrays for each video are exported 
as a text file with the same file name as the video ana-
lyzed. These steps are then repeated for all the videos. 
This enables collection of the waveforms in plant row 
canopies to be quantified and expressed in normalized 
red color units, as shown in Fig. 5a.

Section 2.2: organizing raw waveform data on plant 
movement for analysis
We quantify the amount of canopy movement within 
each of these demarcated regions of the plot using a time 
domain signal processing approach (Additional file  13). 
First, we utilized a bandpass filter on each plot’s wave-
form to filter out low frequency changes in red values 
due to light changes from passing clouds during a video. 
The bandpass filter centers each waveform at 0, enabling 
comparisons of canopy movement across different light-
ing conditions (within and among videos) and across 
different cereal cultivars, which have different mean red 
color values. The equiripple bandpass filter implemented 
in the MATLAB script contained the following filtering 
parameters as expressed in percentage of analyzable fre-
quencies (0–12 Hz in this case given the 24 fps record-
ing rate). Filtering began with an Fstop1 of 3%, Fpass1 of 
4%, and ended with an Fpass2 of 40%, Fstop2 of 50% to 
eliminate high frequency (> 0.5 Hz) noise due to camera 
vibrations induced by high winds. The attenuation of the 
passed versus filtered signal was 100  dB, while the Ap 
value within the passed signal was 5  dB. This filter was 
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applied to each column in input text file of raw plot wave-
forms from a video.

Following bandpass filtering of each waveform, we 
obtained the amplitude (in normalized red color units) 
and time location (in frames) of each local maxima of 
the waveform color signal with at least a 0.5% red change 
prominence. Next, we calculated the distance (in frames) 
between peaks, skipping the first peak. A visualization 
of the peak identification process is presented in Fig. 5b. 
These distances were used to estimate the frequency 
between peaks, as the distance in frames was divided 
by the frame rate (24 fps). Finally, we summed the total 
(absolute) area under the curve that lies between peaks to 
estimate the amplitude change in the waveform. The data 
was then written to a text file for each plot containing 
one column listing the frequency of a given cycle, and the 
absolute area encompassed by that cycle. For each video, 
a subdirectory was written that contained the individual 
files for each plot.

This frequency and area data was run through an R 
script (Additional file  14) to organize it for analysis. 
The user navigates to the directory containing all video 
dates for one panel. The r script then goes through 
each subdirectory to read in the individual plot files 
containing the frequency and area data. Information 
including cultivar, replicate, video date, and planting 
date are obtained from the standard naming protocol 
outlined above. For each file, the pass range (between 
0.5 and 4.9  Hz) is used to calculate a mean, median, 
and standard deviation of the frequency distribution 
for each plot (Fig.  5c). The areas in the plot file are 
then binned according to their corresponding frequen-
cies into 0.2 Hz bins from 0.5 to 4.7 Hz. Each plot file 
is condensed to one line containing these values, with 
the resulting dataframe for one video date contain-
ing a row for each plot. A position vector indicating 
whether a plot is near or far from the camera track is 
added last, with the numbers corresponding to the file 
alphanumeric order in the subdirectories as opposed 
to how they are physically laid out in the serpentine 

pattern. Finally, all of the dataframes for each video 
date are concatenated into a single dataframe for each 
panel. Dataframes for all panels are then concatenated 
into a final dataframe for the statistical analysis of plant 
movement.

Section 2.3: statistical analysis of plant row movement
Plant row movement was modeled using the compo-
nents of a randomized complete block design (Addi-
tional file  15). We analyzed two response variables of 
plant movement: the mean frequency (ωn) of the peak 
distribution for each row in a video date, as well as the 
total (absolute) area between peaks in the 1.1–1.3  Hz 
frequency band. Each response variable was modeled 
using the following linear model:

With ß1 representing the cultivar effect, ß2 the plant-
ing date effect, ß3 the effect of a replicate in the jth posi-
tion (inner or outer) nested within the ith cultivar, ß4 
the cultivar by planting date interaction effect, and ß5 
the cultivar by jth position nested within the ith plant-
ing date interaction effect. The ANOVA for estimating 
the significance of each effect was conducted using the 
expected mean squares and F values presented in the 
table below (Table 11).

The F values were tested according to the relevant 
degrees of freedom for each mean square component 
in the ratio using the probability density function for 
an F distribution in R. For all of these linear effects, an 
LSD test with a false discovery rate correction in the R 
package agricolae was used to quantify the mean value 
for each level within the response variable and assess 
significant differences in either mean frequency or total 
area at alpha = 0.05 [32]. The ANOVA and LSD tests 
were run separately on movement data obtained at each 
of the five video dates (Table 2).

(10)
yijkl = β01+ β1xi1 + β2xi2 + β3xi(j)3

+ β4(xi1 ∗ xi2)k + β5

(

xi1 ∗ xi(j)3

)

l
+ εijkl

Table 11  Expected mean squares and F test calculations for parameters in Eq. 10

Source of variation Row effect Expected mean squares F value

Cultivar ΚC
2 σe

2 + σ2
CxP(PD) + ΚC

2 (σ2
CxP(PD) + ΚC

2)/σ2
CxP(PD)

PlantingDate Κ2
PD σe

2 + σ2
P(PD) + Κ2

PD (σ2
P(PD) + Κ2

PD)/σ2
P(PD)

Pos (PlantingDate) σ2
P(PD) σe

2 + σ2
P(PD) σ2

P(PD)/σe
2

Cultivar * PlantingDate Κ2
CPD σe

2 + σ2
CxP(PD) + Κ2

PC (σ2
CxP(PD) + Κ2

CPD)/σ2
PxR(C)

Cultivar * Pos (PlantingDate) σ2
CxP(PD) σe

2 + σ2
CxP(PD) σ2

CxP(PD)/σe
2

Residuals σe
2 σe

2
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Additional files

Additional file 1. Plotfinder_published. Matlab script to demarcate user-
defined regions of a field from hemispherical video

Additional file 2. FLY07_12_17_p2. MP4 video file from 360Fly 4k camera, 
taken 12 Jul 2017 at planting date 2. Used as sample video for published 
scripts

Additional file 3. Fieldmap_readme. Field design at the panel in planting 
date 2. Corresponds to analyzable plots in Additional file 2.

Additional file 4. FieldPlotnames7. Field plot names file for 25 Apr 2017 
planting date

Additional file 5. FieldPlotnames5. Field plot names file for 5 May 2017 
planting date

Additional file 6. FieldPlotnames3. Field plot names file for 15 May 2017 
planting date

Additional file 7. FieldPlotnames1. Field plot names file for 25 May 2017 
planting date

Additional file 8. FieldCoordinates7. Field Coordinates file for 25 Apr 2017 
planting date

Additional file 9. FieldCoordinates5. Field Coordinates file for 5 May 2017 
planting date

Additional file 10. FieldCoordinates3. Field Coordinates file for 15 May 
2017 planting date

Additional file 11. FieldCoordinates1. Field Coordinates file for 25 May 
2017 planting date

Additional file 12. FLY07_12_17_p2. Matlab script to obtain normalized 
waveforms from sample video (Additional file 2)

Additional file 13. BandpassParse_p2. Matlab script to filter and parse 
waveforms from Additional file 12.

Additional file 14. Stationary_organization_published. R script to organ-
ize the frequency, amplitude, and plot data from Additional file 13 into an 
statistically analyzable format

Additional file 15. Stationary_analysis_published. R script to analyze the 
data from Additional file 14.

Abbreviations
Cn: percent of image size along image y axis from image center to the nth 
point; dB: decibel; Dn: distance to the nth point as mapped on the image (as a 
percentage of image size); fps: frames per second; GCP: ground control point; 
Hz: hertz; mp: stem mass; Mw: wind moment (height * force); n: the nth coordi-
nate point in a field design; RCB: randomized complete block; Rn: percent of 
image size along image x axis from image center to the nth point; SWxn , SW

′
xn: 

field design x cartesian coordinates to the nth southwest corner, field design x 
cartesian coordinates to rotated nth southwest corner; SWyn , SW

′
yn: field design 

y cartesian coordinates to the nth southwest corner, field design y cartesian 
coordinates to rotated nth southwest corner; UAV: unmanned aerial vehicle; xn: 
field design x cartesian coordinates to the nth point; yn: field design y cartesian 
coordinates to the nth point; zn: field design z coordinates from the height 
of the canopy at the nth point to the height of the camera; ζa: aerodynamic 
loading coefficient of plant stem; ζs: structural loading coefficient of plant 
stem; θ: stem angle; θ̇: stem velocity; θ̈ : stem acceleration; Θn: longitude angle 
of the nth point; Θoff: rotation angle of field design relative to camera axes; 
φn: latitude angle of the nth point; ωn: natural frequency of a plant stem or 
cultivar row.
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