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Abstract 

Background:  The advances of hyperspectral technology provide a new analytic means to decrease the gap of 
phenomics and genomics caused by the fast development of plant genomics with the next generation sequencing 
technology. Through hyperspectral technology, it is possible to phenotype the biochemical attributes of rice seeds 
and use the data for GWAS.

Results:  The results of correlation analysis indicated that Normalized Difference Spectral Index (NDSI) had high corre‑
lation with protein content (PC) with R2

NDSI = 0.68. Based on GWAS analysis using all the traits, NDSI was able to identify 
the same SNP loci as rice protein content that was measured by traditional methods. In total, hyperspectral trait NDSI 
identified all the 43 genes that were identified by biochemical trait PC. NDSI identified 1 extra SNP marker on chromo‑
some 1, which annotated extra 22 genes that were not identified by PC. Kegg annotation results showed that traits 
NDSI annotated 3 pathways that are exactly the same as PC. The cysteine and methionine metabolic pathway identi‑
fied by both NDSI and PC was reported important for biosynthesis and metabolism of some of amino acids/protein in 
rice seeds.

Conclusion:  This study combined hyperspectral technology and GWAS analysis to dissect PC of rice seeds, which 
was high throughput and proven to be able to apply to GWAS as a new phenotyping tool. It provided a new means 
to phenotype one of the important biochemical traits for the determination of rice quality that could be used for 
genetic studies.
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Background
Cultivated rice (Oryza sativa L.) is one of the major staple 
food in the world feeding over half of the world’s popu-
lation [1]. It is becoming more challenging for crop sci-
ence to feed the world’s fast growing population, which 
is expected to be over 9 billion by 2050, under the con-
dition of less land, water and more fluctuating climate 
conditions [2, 3]. Enhancing major crop quality through 

breeding programs, such as breeding elite varieties with 
increased yield, improved nutrition and strengthened 
resistance, is critical for a sufficient, reliable and sustain-
able world food supply [4, 5]. Therefore, to identify and 
characterize genes related to these important traits is 
important for understanding the genetic basis that causes 
the different phenotypes and breeding modern rice culti-
vars with higher yield, stress/disease resistance and rice 
qualities.

The advance of next generation sequencing (NGS) 
technologies has greatly improved the speed and accu-
racy of resequencing a large number of genomes, which 
facilitated the study of rice functional genomics and 
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molecular breeding [6, 7]. In addition, Genome-wide 
association study (GWAS) is becoming a powerful tool 
to bridge genotyping and phenotyping, since it rapidly 
identifies genes associated with phenotypic traits based 
on SNP markers, which has been applied extensively to 
dissect rice phenotypic traits [8, 9]. However, there is 
still a huge gap between phenotyping and genotyping, 
because the development of phenotyping is much slower 
compared to genotyping. There are mainly three reasons: 
Firstly, acquiring traditional agronomic traits is time-con-
suming and labor-intensive [10]. Secondly, these traits 
are biased due to a lack of international standards for the 
phenotypic trait measurement [11]. Thirdly, it is challeng-
ing to obtain high-quality phenotypic data, select suitable 
population size and study the extent of linkage disequi-
librium (LD), as long as low structured populations are 
provided [12, 13]. Rice has different phenotypic traits, 
such as physical and bio-chemical characteristics, growth 
performances and biotic/abiotic stress tolerance [13–15]. 
Many agronomic traits have been applied to investi-
gate rice phenotypes, including physical characteristics 
such as size, color, shape and texture, or the biochemi-
cal attributes such as protein, starch, gel consistency, and 
aroma [16]. Traditionally, phenotyping methods for rice 
varieties, like High Performance Liquid Chromatogra-
phy (HPLC), Gas Chromatography–Mass Spectrometer 
(GC–MS), and other biochemical processes provided by 
the national rice identification facilities are expensive, 
time consuming and labor intensive [17–19]. As a con-
sequence, these methods can only be applied to a small 
number of samples unless a great amount of labor, time 
and funding is invested, which has limited the develop-
ment of the phenotyping process. Therefore, developing a 
rapid method for high throughput phenotyping is neces-
sary for both phenomics and genomics. Compared with 
traditional methods of acquiring phenotypic traits, high 
throughput non-destructive phenotyping is of higher effi-
ciency, accuracy and more standardized. In addition, it is 
more cost-effective compared with traditional means of 
acquiring agronomic traits in the long run.

Hyperspectral technology has been greatly applied in 
plant phenotyping including biochemical attributes such 
as estimating the canopy water content [20], assessing 
rice leaf growth [21], determining the rice panicle con-
dition [22] and detecting the severity of damage caused 
by insects and bacteria [23–25]. It was also applied for 
evaluating physical characteristics of plants such as the 
firmness, elasticity, touch resistance of grapes [26]. Feng 
et al. used a High-throughput hyperspectral imaging sys-
tem (HHIS) to acquire hyperspectral data for the evalua-
tion of the growth of plants [14]. However, hyperspectral 
imaging system are usually heavy, large in size, compli-
cated to operate and the data acquired was redundant. 

Furthermore, the indices they obtained were agronomical 
traits, including Dry weight, Green leaf area and Chloro-
phyll content, instead of biochemical attributes of rice 
quality. The ASD FieldSpec4 Hi-Res spectroradiometer 
is faster and has wider spectrum range (350–2500  nm), 
which has been commonly used for soil mineral condi-
tions [27], discriminating different plant species [28], rice 
crop phenology [29] and biochemical content quantifica-
tion [30] etc.

Biochemical contents are one essential rice seed 
parameter that is used for grading rice quality, and it was 
time-consuming, labor intensive and expensive to meas-
ure, so in order to achieve high throughput phenotyping 
for genetic studies on rice seed quality, such as molecu-
lar breeding programs and functional genome study, we 
attempted to investigate the possibility of using hyper-
spectral traits extracted from an ASD FieldSpec4 Hi-Res 
spectroradiometer for GWAS analysis to identify SNP 
markers and genes that are related to the represented 
biochemical traits in this research. To our knowledge, 
there are no published studies that have applied hyper-
spectral indices of any biochemical contents related to 
rice quality in GWAS.

In our study, we attempt to extract hyperspectral indi-
ces representing biochemical contents that could be used 
for GWAS analysis, which had never been reported in 
any published research. The objects of this study were 
(1) to select hyperspectral indices that could represent 
the according biochemical trait, (2) using the selected 
hyperspectral variables as substitutions of biochemi-
cal measurements of rice to achieve high-throughput 
phenotyping for genetic studies and verify the results of 
GWAS on the extracted hyperspectral indices by com-
paring the identified SNP markers, Genes and pathways 
with those of biochemical traits. Eventually through this 
study, we hope to introduce a possible high throughput 
plant phenotyping method of biochemical contents that 
could be used in genetic studies based on hyperspectral 
technology.

Methods
Plant materials
Seeds of eighty cultivated rice accessions (including 56 
Japonica type rice and 24 Indica type rice) were grown 
in an experimental rice field at Rice Breeding Research 
Station in Jiaxing Academy of Agricultural Sciences, 
Zhejiang Province, China (N30°50′5″E120°42′59″). The 
rice field was allocated into 80 rice plots, with each 
rice variety grown in one rice plot. Rice seeds from five 
plants of each rice variety, 400 samples in total were 
collected for 9 phenotypic traits as designed (Table 1). 
After harvesting, rice seeds were collected and dried by 
natural air-drying method before being put in labeled 
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paper sample bags and sent to Key Laboratory of Spec-
troscopy Sensing (KLSS) at Zhejiang University. All rice 
seed varieties were listed in Additional file 1: Table S1. 

Biochemical components measurement
Air-dried rice seeds were sent to China National Rice 
Research Institute (CNRRI), Zhejiang province, China, 
to measure 4 biochemical components that were impor-
tant for rice quality determination basted on national 
rice standards NY/T593, including Crude Protein Con-
tent (PC), Amylose Content (AC), Gel consistency (GC) 
and Alkali Spreading Value (ASV) (Table 1). The detailed 
description of the analytical workflow chart for this study 
was summarized in Fig. 1. In order to verify the valida-
tion of the dataset during statistical analysis, the follow-
ing criterion was applied: if the data was not normally 
distributed, the dataset was not accepted. The biochemi-
cal components that didn’t meet the aforementioned 
criterion will not be used for further correlation analy-
sis. Eventually, the traits with an acceptable coefficient 
covariant and normalized distribution were subjected to 
hyperspectral trait extraction and Pearson correlation 
analysis for GWAS analysis.

Table 1  Summary of trait categories

Category Names Acronym

Biochemical traits Amylose content (%) AC

Gel consistency GC

Crude protein content (%) PC

Alkali spreading value ASV

Hyperspectral traits Reflectance at wavelength 1177 (nm) R1177

Reflectance at wavelength 1227 (nm) R1227

Normalized Differential Spectral Index NDSI

Differential Spectral Index DSI

Simple Ratio Index SRI

Fig. 1  Schematic overview of the primary procedures of extracting hyperspectral traits for GWAS
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Hyperspectral data acquisition
An ASD FieldSpec4 Hi-Res Spectroradiometer (Serial 
number 18577, Analytical Spectral Devices, Inc., Boul-
der, Colorado, USA) with a range of 350–2500  nm was 
used to acquire hyperspectral data. The spectral resolu-
tion is 3 nm @ 700 nm, 8 nm @ 1400/2100 nm with sam-
pling intervals (bandwidths) of 1.4  nm @ 350–1000  nm 
1.1 nm @ 1001–2500 nm. Rice grains were put in a petri 
dish (diameter: 8  cm). The sensor of spectroradiometer 
was fixed vertically down to the opposite to the center 
of the sample by a detachable rack system and the height 
between the spectroradiometer sensor and rice sample in 
petri dish was 20.7 cm. The light source was a 50 W halo-
genate lamp, which was 27.4 cm in height and 60 degree 
from the sample surface. The details of the hyperspectral 
data acquisition system and the spectral data acquisi-
tion process are shown in Additional file  2: Fig.  S1. For 
each rice variety, rice seeds of 5 plants were collected and 
pooled together. Around 3 grams of rice seeds were used 
to collected hyperspectral data. Each sample was manu-
ally loaded to acquire spectral data by spectroradiometer. 
The reflectance of all rice seeds from each sample that 
were within the vision field of spectroradiometer was 
acquired during each reading. For each sample, the spec-
tral acquisition process was repeated 3 times by the spec-
troradiometer automatically, before they were averaged 
to represent the sample’s mean spectral reflectance. The 
data was analyzed on the Matlab software 2014a platform 
(Matlab works, USA).

Hyperspectral data process and analysis
The hyperspectral data process followed published pro-
tocols with minor changes [31–33]. The acquired hyper-
spectral data was calibrated by the following equation:

Here, Ical, Iraw, Iwhite and Idark represented calibrated 
reflectance intensity, original intensity, white reference 
intensity and dark current, respectively. Idark was col-
lected by the spectroradiometer automatically; Iwhite was 
measured using a white Teflon tile with reflectance close 
to 100%. Data before 400  nm and after 2450  nm was 
removed due to the low signal-to-noise ratio before they 
were used for further analysis.

After calibration, the data were applied for the follow-
ing analysis. The average spectrum of all samples was 
extracted. Three indices including Simple Ratio Index 
(SRI), Normalized Difference Spectral Index (NDSI) and 
Differential Spectral Index (DSI) were induced for the 
correlation analysis and as a means to select the optimal 
wavelength combination for biochemical components. 

(1)Ical =
Iraw − Idark

Iwhite − Idark

These three indices were used because a number of 
research had reported normalized difference vegetation 
index derived indices could be used to estimate biochem-
ical components such as protein content of rice based on 
the hyperspectral data from rice canopy [34–37]. The for-
mulas are listed below:

Here, Ra and Rb stand for reflectance of two different 
wavelengths in each formula, respectively. The optimal 
wave lengths were selected by the following procedure. 
Reflectance of two random wavelengths was used in the 
aforementioned formulas to calculate the value of SRI, 
NDSI and DSI respectively, until all the wavelength com-
binations were applied. The resulting SRI, NDSI and DSI 
were then subjected to Pearson correlation analysis. The 
index of the best performance (the highest the determi-
nation coefficient) was selected as the hyperspectral trait 
for the according biochemical component.

Sampling, re‑sequencing and sequencing data process
One fresh leaf from each rice variety was collected for 
next generation sequencing. Leaf samples were wrapped 
in aluminum foil and put in liquid nitrogen for 2 h, prior 
to being stored at − 80  °C overnight before re-sequenc-
ing. Sample Re-sequencing was performed on the Illu-
mina HiSeq X Ten platform (Illumina, Inc., San Diego, 
CA, USA). Raw sequencing data was first processed with 
software Illumina Casava 1.8. Raw data was filtered for 
cleaner reads before further analysis. The filtering pro-
cess includes the deletion of the adapter sequences, reads 
with over 10% N contents and reads with over 50% nucle-
otides whose quality score was lower than 10. The quality 
score of nucleotides was calculated using the following 
formula:

where e stands for the sequencing error rate, Qphred rep-
resents the quality score of nucleotides.

The BWA software [38] was used for the alignment of 
resulted clean reads. Oryza sativa_IRGSP_1.0 was used 
as the reference genome which is available on the web-
site of National Center for Biotechnology Information 
(NCBI). The sequencing depth, genome coverage, and 
other information of each sample were collected through 
the alignment process, and mutations were called.

(2)SRI =
Ra

Rb

(3)NDSI =
Ra − Rb

Ra + Rb

(4)DSI = Ra − Rb

(5)Qphred = −10log10(e)
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SNP detection and annotation
The detection of SNPs was achieved mainly using GATK 
[39] software toolkit. Briefly, the main detection process 
includes: (1) Picard’s Mark Duplicate tool was used to 
remove duplicates and mask the effects of PCR-duplica-
tion of the resulted clean reads. (2) InDel Realignment 
was performed using GATK. During this process, local 
re-alignment was performed to correct the errors caused 
by the insertion deletion during the aliment process. (3) 
Base recalibration was performed using GATK to cali-
brate the SNP quality. (4) Variant calling using GATK, 
mainly includes SNP and InDel. (5) Strict SNP filtration 
was performed based on the following criteria: SNP clus-
ter filtering (if there were 2 SNPs within 5 bp, they were 
filtered out), SNP filtering near Indel (SNPs within 5 bp 
near Indel were filtered out); and adjacent InDel filtering 
(if two Indels’ distance is less than 10  bp, they were fil-
tered out) [40].

Phylogenetic analysis and population‑structure study
A neighbor-joining tree of all rice accessions was con-
structed using MEGA5 software [41] based on the SNP 
markers and neighbor-joining algorithm (p-distance 
model with 1000 bootstrap). Based on the high-consist-
ent SNP, the population structure of the samples was 
analyzed using admixture software [42]. A population 
structure map was constructed with the hypothesized 
K-value set from 1 to 15. A clustering process was per-
formed, and the clustering results were cross-validated. 
The optimal clustering number was determined accord-
ing to the minimum value of the cross-validation error 
rate. Based on SNPs, EIGENSOFT software [43] was 
used to perform Principal components analysis (PCA) 
analysis to cluster samples based on the first three prin-
cipal components. The SPAGeDi software [44] was used 
to estimate the relative kinship of populations. Link-
age disequilibrium analysis was performed using Plink2 
software [45] to calculate the linkage disequilibrium 
between SNPs within a distance of 1000 kb on the same 
chromosome.

Genome‑wide association study (GWAS)
The resulted SNPs (minor allele frequency (MAF) ≥ 0.05) 
was used for the following GWAS with the selected bio-
chemical and hyperspectral traits. The GWAS analysis 
was performed using the mixed linear model (MLM) of 
TASSEL software [46]. The formula for the mixed linear 
model is as follows:

Here, Q stands for the population structure calculated 
using admixture software, K stands for kinship of samples 

(6)y = Xα + Qβ + Kµ+ e

from SPAGeDi software. X is the genotype while y stands 
for phenotype. The genome-wide significance thresh-
olds of all tested traits were evaluated with Bonferroni 
correction:

Here, n stands for the effective number of independent 
SNPs. Bonferroni correction was applied here to control 
the type I error genome-wide. The P value threshold for 
significance in the Oryza sativa population was set to be 
p = 3.788e−09 and p = 3.788e−09 (suggestive and sig-
nificant, respectively) for the studied population. In this 
study, only the associations that exceeded the significant 
P-value threshold were considered. The extent of local 
LD was evaluated for each selected significant SNP to 
determine the interval of each locus.

Gene annotation and comparison
Functional annotation analysis of genes in the associ-
ated regions was performed using different databases 
including NCBI non-redundant (NR), The Gene Ontol-
ogy (GO), Clusters of Orthologous Groups (COG), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) Pathway 
analysis. A gene was annotated based on the principle 
that at least 2 databases provided the annotation descrip-
tion. Further validation of candidate genes was obtained 
by manually screening based on published research 
and gene function descriptions of the aforementioned 
databases.

Results and discussion
Biochemical traits acquisition
Table 2 shows the summary of the statistics of the phe-
notypic trait data. Figure 2 shows the frequency distribu-
tions of the phenotypic traits. Most of these traits were 
quantitative and continuous, which suggested that there 
might be a complex genetic influence, except ASV, which 
was not continuous (Fig. 2). Based on the general trends 
of other traits, almost all the other traits were roughly 
normally distributed.

(7)P =
0.01

n

Table 2  Summary statistics for biochemical traits

a  CV of ASV and AC are high (≥ 15%)

Min Max Mean SD CV

ASV (mm) 3.70 7.00 6.13 0.89 0.15a

GC (mm) 42.00 82.00 64.94 6.94 0.11

AC (%) 8.30 20.10 14.20 2.11 0.15a

PC (%) 7.40 10.50 8.62 0.77 0.09
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ASV and AC are two of the multidimensional charac-
teristics relating to rice grain quality that has been used 
worldwide in rice breeding and process technologies. 
The degree of degradation test was evaluated visually 
by inspectors which was graded by a range of scores 
from 1 to 7. Since a number of the ASV scores of the 
rice collection reached maximum measurement limit, 
which was 7, the distribution of ASV value was not nor-
malized and heavily skewed, thus not suitable for Pear-
son Correlation analysis. Therefore, it was not selected 
for the following Pearson correlation analysis. ASV 
is the inverse indicator of the gelatinization tempera-
ture (GT) of rice starch granules [47], which is closely 
related to rice cooking behavior and sensory properties 
due to crystalline melting and starch solubilisation dur-
ing cooking process. ASV is also related to AC, there-
fore, it can be observed in Table 2 that AC has a similar 
high CV (≥ 15%) as ASV. The CV of ASV and AC were 
very high (≥ 15%), which means these data sets had a 
higher dispersion. It could be caused by severe differ-
ences between the content of these biochemical traits. 
A Pearson Correlation analysis was conducted for 
hyperspectral traits and biochemical traits including 
PC, AC and GC.

Hyperspectral data analysis and hyperspectral traits 
extraction
Overall, the data size of hyperspectral data from the 
spectrometer was 6.5  MB. Based on the summary of 
Pearson correlation analysis of GC, AC and PC with 
all three hyperspectral indices shown in Table  3, GC 
and AC had low determination coefficient with all 
three hyperspectral indices (R2

SRI = 0.21, R2
NDSI = 0.21 

and R2
DSI = 0.26 for GC; R2

SRI = 0.24, R2
NDSI = 0.24 and 

R2
DSI = 0.31 for AC), while PC showed high determina-

tion coefficient with all three indices, especially NDSI 
R2

NDSI = 0.68. Therefore, NDSI was selected for the final 
GWAS analysis as a hyperspectral trait for PC. The cor-
relation between hyperspectral data and biochemical 
traits of AC and GC were low (R2 < 0.6). This might be 
because that due to a relatively small sample size and 
large dispersed data set of AC, the correlation between 
hyperspectral traits and AC became low. In order to 
construct a hyperspectral index that could be applied 
for AC, a bigger sample size would be selected in the 
future. In addition, because the GC is a complex trait 
and the nature of the GC data set was not a measure-
ment of the content of a certain chemical/compound, 
but the length of flow distance [48], which makes it not 

Fig. 2  Frequency distribution for all the traits. AC, PC, and GC fit normalized distribution, except for ASV, which is heavily right skewed due to many 
rice accessions reached the maximum measurement limit
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suitable for hyperspectral technology, because hyper-
spectral signal was relating to the resonance of cer-
tain chemical bonds [25]. There is not any published 
research on using hyperspectral technology to dissect 
GC of rice seeds. In addition, it was reported that the 
accuracy of the algorism developed for the extraction 
of phenotypic traits using phenotyping platforms is 
greatly affected by the sample size [49, 50]. At the same 
level of other effects, as the sample size increased, the 
degree of freedom of the test increased and the result-
ing P-value became more significant [51–53].

Eventually, PC was selected for hyperspectral analysis 
and GWAS. Two optimal wavelengths were selected for 
the biochemical trait PC based on formula 3. Figure 3a 
shows the mean spectra all rice accessions. The results 
of correlation analysis indicated that NDSI had high 
correlation with PC (R2

NDSI = 0.68) (Fig. 3b).

Genome sequencing and assembly
Sequencing results showed that approximately 12-fold 
coverage was achieved, generating a total of 419.53 Gbp 
clean data, with Q30 up to 94.65%. Detailed sequencing 
data statistics was listed in Additional file  3: Table  S2. 
The average matching ratio between the sample and 
the reference genome was 98.81%, and the genome 
coverage was 96.79% (at least one base coverage) when 
mapped on the reference genome. Only SNP mark-
ers with minimum allele frequency (MAF) higher than 
0.05 were selected for further analysis. Eventually, a 
total of 3,398,019 SNP loci and 773,337 Indel loci were 
identified in this study. The multiple test corrections 
get more severity as the number of sequencing cases 
increases. Due to the increase in the depth of sequenc-
ing, the marker density is continuously increasing, and 
the severity of the test is also increasing [51]. Here, 
the sequencing depth reached 12 × which relatively 
improved the chance of accurate SNP loci identifica-
tion. Together with strict SNP and gene screening, fil-
tering and gene function profiling, the resulted SNP/
gene loci using hyperspectral traits extracted from 
hyperspectral data in the GWAS analysis could be more 
specific and accurate.

Phylogenetic analysis and population‑structure study
The neighbor-joining tree of all rice varieties is shown in 
Fig. 4a. Figure 4b shows the result of PCA analysis using 
2 principle components PC1 and PC3. No Clear separa-
tion of subgroups was observed based on components 
PC1 and PC3 (Fig. 4b), which might be due to the pos-
sible complexity of the studied population and potential 
gene flow of each rice variety due to natural and artifi-
cial selection. Therefore, a population structure analysis 
using ADMIXTURE software was employed to calculate 
the optimum subgroups for GWAS analysis [54]. Based 
on the population structure map (Fig. 4d) and cross-val-
idation (CV) errors, the optimum cluster group number 
in this population was determined to be 6 (Fig. 4c). For 
better visualization of each subgroup and their position 
on the phylogenic tree, each rice variety subgroup on the 
tree was marked by different colors based on the result 
of population analysis. The linkage disequilibrium decay 
distance (LDD) of all samples was shown in Fig. 4e. The 
LD50, which was the LDD when the pairwise coefficient 
of determination (r2) dropped to half its maximum value, 
was applied to evaluate the linkage disequilibrium. The 
longer LD50 indicated a smaller chance of gene recom-
bination [55]. On average, it was observed that LD50 of 
all the rice samples was longer than 100 kb, which indi-
cated a small chance of LD [56]. However, the difference 
in LDD between each rice chromosomes suggested com-
plicated gene recombination events within this rice culti-
var population (data shown in Additional file 4: Fig. S2). 
The frequency of kinship-value in all the rice accessions 
were shown in Fig. 4f. As the kinship value increases, the 
frequency decreases rapidly, indicating a relatively high 
complexity of population structure, and relatively less 
kinship within this population.

GWAS analysis and candidate gene annotation
The threshold of p = 3.788e−09 was used to identify 
SNPs relating to selected traits PC and NDSI. Manhat-
tan plots and quantile–quantile plots for other traits were 
shown in Additional file 5: Fig. S2. The summary of iden-
tified associated gene numbers for 5 traits were listed in 
Table 4. The results of hyperspectral trait NDSI and bio-
chemical trait PC in GWAS were compared to evaluate 

Table 3  Pearson correlation analysis of extracted indices with selected wavelengths

a  NDSI was selected for correlation analysis and GWAS

SRI NDSI DSI

R2 Formula R2 Formula R2 Formula

GC (mm) 0.21 R1730/R1731 0.21 (R1731-R1730)/(R1731 + R1730) 0.26 R2208-R2203

PC (%) 0.66 R1227/R1177 0.68 (R1227-R1177)/(R1227 + R1177)a 0.67 R1227-R1177

AC (%) 0.24 R1638/R1799 0.24 (R1639-R1799)/(R1639 + R1799) 0.31 R2028-R2002
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the effects of using hyperspectral traits as phenotyping 
tool for biochemical traits (Fig. 5). The Manhattan plots 
and quantile–quantile plots of biochemical attributes of 
rice crude protein contents represented by PC and NDSI 
as a substitute of PC in GWAS were shown in Fig. 5.

As it was shown in the Manhattan plots and quantile–
quantile plots, by biochemical trait PC, we identified top 
peaks located on chromosomes 1 and 2, which were posi-
tions correlating with known loci SAS3 and EL5, respec-
tively (Fig.  5a, b). These two loci were also detected by 

Fig. 3  The mean spectra of rice accessions and Pearson correlation analysis. a The average spectra of all rice samples. The blue shade indicates 3 
times of standard deviation. b The correlation analysis of hyperspectral index NDSI and PC used for GWAS, with correlation coefficients of R2 = 0.68

Fig. 4  The population structure analysis based on all rice accessions. a Neighbor-joining tree of all rice accessions which was constructed from 
simple matching distance based on whole-genome SNP studies. Branch and circle block colors indicate different subgroup distributions. b Principal 
component (PCA) analysis plots of first and third components for all rice accessions, using the same colors as in a. c Cross-validation (CV) errors 
graph. d Population structure based on c (K = 6). e Genome-wide average LD decay analysis estimated from all rice accessions. f Histogram of 
kinship

(See figure on next page.)
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hyperspectral index NDSI (Fig.  5b), indicating hyper-
spectral index NDSI, could be used for GWAS analysis 
and identifying the all the gene loci as by biochemical 
trait PC. NDSI index also detected one SNP position 
7837287 located on chromosome 1 (Table 4), which was 
not identified by PC trait. Hu et al. [57], reported that in 
their study of doubled haploid lines, there were quantita-
tive loci located on chromosome 1. In addition, according 
to Zhang et al. [58] four protein fractions and crude pro-
tein contents were located on chromosome 1 and 2 based 
on their study on seventy-one recombinant inbred lines, 
including, Albumin, Globulin, Prolamin, Glutelin and 
crude protein, which is similar to our results.

SAS3 (OsSAMS3) for S-adenosyl-l-methionine syn-
thetases (SAMS) on chromosome 1 was previously 
recorded to be important for histone H3K4me3 in rice, 
because it regulates the expression of genes related to 
flowering development by DNA methylation. By knock-
ing down SAS3, the expression of the flowering key genes 
including Early heading date 1 (Ehd1), Hd3a and RFT1 
(rice FT-like genes) were greatly decreased, which lead 
to severe late flowering. This might cause decreasing of 
rice milking stage, which was important for the accu-
mulation of seed nutrition including rice protein con-
tent [59]. Meanwhile, rice EL5 belongs to an ATL family 
gene, which is characterized by a transmembrane domain 
at the N-terminal and a RING-H2 finger domain (RFD). 
Koiwai et  al. [60, 61] reported that EL5, function as a 
membrane-anchored E3, was important for the mainte-
nance of cell viability after root primordial formation was 
initiated. It was a ubiquitously expressed protein in rice, 
which could affect rice plant growth status by affect the 

development of root initiation, thus influence the accu-
mulation of rice nutrition including protein content.

LD block heatmaps based on the LD of each identified 
SNP loci are shown in Fig. 5c–e. The LD analysis of the 
three loci showed that these markers had relatively low 
LD parameter (R2 < 0.6) which indicates a relatively low 
correlation with each other. These LD regions indicated 
relatively strong inheritability with their traits accord-
ingly, which might not be due to LD block effects.

Potential candidate gene loci that could be related to 
PC content based on KEGG annotation, GO annota-
tion and NR annotation (NCBI) were summarized in 
Table  5. These gene loci were identified in a number of 
studies that have reported functions that might directly 
or indirectly be related to protein content variation. 
One research reported that glx-1, a glyoxalase gene, 
could express protein OsGlyI, which might be relating 
to improving abiotic stress tolerance and grain yield in 
rice [74]. During the past few years, more research has 
reported the function of non-coding RNAs and histone 
modifications on the regulation of transcription, flower-
ing periods, rice reproduction, and development of rice 
seeds. Two-component response regulator ORR2 was 
reported to cause rice morphology variation and cyto-
kinin metabolism [70].

The basic helix-loop-helix (bHLH) proteins, a super-
family of TFs, are one of the largest TF families in plants, 
which includes 177 bHLH genes in the rice genome. 
These conserved TFs have a diverse variety of func-
tions in many plant signaling processes that regulates 
the expression of functional proteins involved in differ-
ent biological processes including cell proliferation and 
differentiation [75], root development, anthocyanin bio-
synthesis, plant morphology and fruit pigment accumu-
lation [76], mineral uptake [77], abiotic stress response 
[78] and seed morphology [79], etc. In the study of pol-
len development regulation conducted by Ko et  al. [64] 
it was found that bHLH142 played an important role in 
pollen development, which could potentially affect the 
flowering date and the development of grains. According 
to Liu, the flowering time was associated with rice seed 
protein content [80]. Most interestingly, one research 
on the wheat grain storage proteins (GSPs) in response 
to nitrogen application reported that 26 differentially 
expressed genes (DEGs) were related to the accumulation 

Table 4  A subset of  associated loci and  candidate genes 
numbers according to GWAS analysis for PC and NDSI

a  Position in bp; Chr. Chromosome
b  Hyperspectral index NDSI could locate the exact SNP positions as PC

Trait Chr. SNP# SNP positiona P_value Gene#

NDSI 1 3 7837287 2.75E−10 65

1 10727694b 2.40E−10

2 21222443b 4.72E−19

PC 1 2 10727694b 8.53E−12 43

2 21222443b 6.09E−34

(See figure on next page.)
Fig. 5  Manhattan plot and QQ plot from genome-wide association studies with local LD block of three selected loci. a Manhattan plot by NDSI. 
b Quantile–quantile plot for NDSI. c Local LD block of around Os01g0243400. The square lattice panel represents the extent of LD based on r2. d 
Local LD block surrounding the locus Os01g0293000. e Local LD block surrounding the locus Os02g0560200. Blue horizontal dashed line and red 
horizontal dashed line indicates two genome-wide significance thresholds. The red dashed line is the negative logarithm of the 0.1/SNP number 
and the blue dashed line is the negative logarithm of the 0.01/SNP number. LD block heat maps (c–e) were surrounding the peak on chromosome 
1, 2 respectively. Navy blue vertical dashed lines indicate the position of SNP loci
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of GSPs. In their study, with an increasing level of nitro-
gen, the GSPs were remarkably increased, while three 
bHLH genes including TFs bHLH-150 were evidently 
down-regulated 10–25 and 15–35  days after anthesis 
[67]. This research suggests the function of bHLH-150 
in regulating the accumulation of rice storage protein. It 
indicates that SNP locus sf017837287 identified by NDSI 
but not PC is related to rice protein content. To further 
validate this result, a gene function analysis of bHLH-150 
in rice would be conduct in the future studies. However, 
this further illustrates the promising potential of hyper-
spectral traits in GWAS study which is rapid to acquire 
and can identify promising genes while biochemical traits 
could not. The detailed gene annotations were listed in 
Additional file 6: Table S3.

Comparison of gene loci identified by biochemical trait PC 
and hyperspectral trait NDSI
Kegg annotation histogram shows that traits PC (Fig. 6a) 
and NDSI (Fig.  6b) annotated exactly 3 same pathways 
including Cysteine and methionine metabolism, homol-
ogous recombination and plant hormone signal trans-
duction. These three pathways are included in three 
biological processes including, metabolism, genetic 
information processing and environmental informa-
tion processing. The cysteine and methionine metabolic 
pathway was reported important for biosynthesis and 
metabolism of some of amino acids/protein, because 
results of the reported research showed an increase of 
cysteine and glutathione, which was accompanied by an 
increasing level of free methionine and methionine that 
was incorporated into water-soluble protein fractions 
in rice seeds. It was noted that there were more isoleu-
cine, leucine, and valine contents in the transgenic lines 
of rice with high activity of cysteine and methionine 
metabolic pathway [81, 82]. The top hits of the SNP locus 
(Os01g0293000) in NCBI gene bank was annotated to be 

related to the biosynthesis of amino acids. Gene function 
analysis of genes identified by NDSI but not detected by 
PC on chromosome 1 position 7837287 was able to iden-
tify annotated gene bHLH-150 which was reported to be 
involved in the regulation of grain storage protein, which 
indicates that NDSI could possibly serve as a substitute 
of PC and identify more genes than PC involved in rice 
protein content in GWAS.

The distribution of pathways and gene loci that were 
identified by PC and NDSI based on Kegg database were 
summarized in the Venn diagrams in Fig. 6c, d, respec-
tively. It can be observed from Kegg pathway annota-
tion, that NDSI was able to locate the same biological 
pathway as PC. Meanwhile, in terms of gene numbers, 
NDSI located 65 genes, which covered all the 43 genes 
that were identified by PC. This result further proofed 
the accuracy and feasibility of hyperspectral index NDSI 
as a hyperspectral trait that could be used in GWAS as 
a substitute of PC. Since the acquisition of NDSI was 
cheaper, less biased from manual measurement, accurate 
in identifying SNPs, and much more rapid, this method is 
potentially a high throughput phenotyping tool in GWAS 
for protein content of rice quality.

Rapid acquisition of biochemical data by hyperspectral 
technology for genetic studies
Traditionally, it is time-consuming and labor-intensive to 
acquire most of the biochemical component traits, but 
using spectroradiometer we not only obtained stand-
ardized phenotypic traits accurately but achieved high-
through, which could be applied to keep up with the 
advancing speed of genotyping [2, 10]. Since the gap 
between the development of phenotyping and genotyp-
ing are mainly caused by the lacking of standards as well 
as low efficiency of current phenotyping method [83]. 
The study of high throughput phenotyping method using 
different sensors, computers and integrated platforms 

Table 5  Subset of potential candidate gene loci related to PC

#Gene name Chr SNP location Gene description References

Os01g0242600 1 7837287 C2 domain-containing protein At1g53590 [62–65]

Os01g0243400 1 7837287 Transcription factor bHLH150-like [66, 67]

Os01g0243700 1 7837287 Glucan endo-1,3-beta-d-glucosidase [68]

Os01g0292900 1 10727694 Sphingosine-1-phosphate lyase gene OsSPL1(SPL1) [69]

Os01g0293000 1 10727694 S-adenosylmethionine synthase 3 (SAS3) [59, 63]

Os02g0557800 2 21222443 Two-component response regulator ORR2 [63, 70]

Os02g0559300 2 21222443 Cyclin-dependent kinase C-2-like; probable serine/threonine-
protein kinase At1g54610

[62, 63]

Os02g0560200 2 21222443 E3 ubiquitin-protein ligase EL5 (EL5) [60, 71–73]

Os02g0560300 2 21222443 3-(3-Hydroxy-phenyl)propionate/3-hydroxycinnamic acid 
hydroxylase-like
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could improve the phenotyping speed, the standardiza-
tion of phenotypic traits, as well as incorporate pheno-
typing methods/traits that could not be measured or 
identified by human being [84, 85]. Optimize the criteria 
for phenotypic measurement and identification systems 
is of great importance for the advancing of phenotyping. 
Plant phenotypes are determined by the combination of 
plant genotypes and different environment conditions 
where the plant grows. Changes of environment condi-
tions are difficult to control and will cause great interfer-
ence. Coupled with the phenotypic measurement bias 
due to human interference, it will reduce the significance 

of the test. A good solution is to use an automatic phe-
notype identification system that can effectively reduce 
the error of manual operation. Strictly following the cri-
teria of processing and selection of phenotypic data set 
is important during the extraction of feasible hyperspec-
tral indices. In order to get the best results, CVs lower 
than 0.15 and normal data distribution are applied in this 
study for the best performance of Pearson correlation 
analysis and index extraction.

In the future study, more hyperspectral traits rep-
resenting different biochemical traits, such as starch, 
components relating to rice fragrance and texture, need 

Fig. 6  KEGG enrichment histogram and Vernn diagram. a Pathway association identified using biochemical trait, PC. b Pathway association 
identified using hyperspectral trait NDSI. c Venn diagrams of pathways identified by PC and NDSI. d Venn diagrams of genes identified by PC and 
NDSI
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to be extracted for GWAS analysis to improve applica-
tion of the SNP identification process. Meanwhile, more 
gene function analysis of GWAS on hyperspectral traits 
are needed to fully address the effect of hyperspectral 
traits in genetic studies. Other information related to this 
research is listed in Additional files 7, 8, 9, 10.

Conclusions
In this study, we tried to apply high through-put spectro-
radiometer hyperspectral data to extract hyperspectral 
traits that were highly related to biochemical attributes 
for rice quality. One resulted hyperspectral trait NDSI 
was used for GWAS as an alternative for rice protein 
content to investigate the possibility of using hyperspec-
tral trait for genetic study. The results showed that the 
application of hyperspectral trait NDSI had the potential 
to identify the same genes/pathways as PC and in addi-
tion, NDSI detected one more SNP locus that is related 
to grain protein content which could not be identified by 
PC. In conclusion, hyperspectral traits have the potential 
to be applied to GWAS as an alternative to traditional 
time-consuming and labor-intensive biochemical com-
ponent measurements, which could greatly improve the 
phenotyping speed and decrease bias caused by human 
operation for genetic study. This research provides a 
potential new method to phenotype biochemical traits 
of rice for genetic studies based on the hyperspectral 
technology.
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