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Abstract 

Background:  Efficient seed germination is a crucial task at the beginning of crop cultivation. Although boundaries 
of environmental parameters that should be maintained are well studied, fine-tuning can significantly improve the 
efficiency, which is infeasible to be done manually due to the high dimensionality of the parameter space.

Results:  Traditionally seed germination is performed in climatic chambers with controlled environmental conditions. 
In this study, we perform a set of multiple-day seed germination experiments in the controllable environment. We use 
up to three climatic chambers to adjust humidity, temperature, water supply and apply machine learning algorithm 
called Bayesian optimization (BO) to find the parameters that improve seed germination. Experimental results show 
that our approach allows to increase the germination efficiency for different types of seeds compared to the initial 
expert knowledge-based guess.

Conclusion:  Our experiments demonstrated that BO could help to identify the values of the controllable param-
eters that increase seed germination efficiency. The proposed methodology is model-free, and we argue that it may 
be useful for a variety of optimization problems in precision agriculture. Further experimental studies are required to 
investigate the effectiveness of our approach for different seed cultures and controlled parameters.
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Introduction
Seed germination has been an interesting subject of study 
for many years. On the one hand, it is the topic for basic 
research since many biochemical processes occur dur-
ing dormancy and different stages of seed germination. 
On the other hand, the problem is also of great practi-
cal importance: finding the optimal parameters such as 
substrate material, amount of water supply, air tempera-
ture, the proportion of plant growth promoters, etc. is 
a challenging task. Seed germination comprises many 
processes, and relationships of factors affecting termina-
tion of seed dormancy are very diverse. For example, the 
aforementioned water and temperature combined with 
light and nitrate level influence seed germination, how-
ever, their effect does depend on the level of dormancy of 
the seeds [1].

The problem becomes even more challenging when 
multiple parameters must be considered together, and 

specific sets of parameters are supposed to be optimized 
for each time step. Dynamic models of seed germination 
have been developed [1–3] to address this issue. These 
models may be helpful in understanding the underlying 
processes of seed germination. However, to achieve sat-
isfactory optimization results using model-based tech-
niques, comprehensive prior knowledge of the problem 
structure is required [4]. Moreover, particular dynamic 
models may not be appropriate for the specific condi-
tions that these models were not developed for, e.g., dif-
ferent plant species, substrates or growth stimulators.

A more adaptive approach, based on machine learning 
(ML) methods, seems to be promising to tackle this issue. 
Among those methods the Bayesian optimization (BO) 
[5, 6] algorithm based on the Gaussian process regres-
sion (GPR) is one of the most attractive. It is a black-box 
optimization algorithm that does not require knowl-
edge of the system intrinsics. It is widely used in the ML 
community for hyperparameter optimization and was 
even successfully applied in culinary arts [7]. Similarly, 
an approach based on Genetic Algorithms and GPR has 
been previously proposed for precision agriculture [8].
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In this paper, we apply BO to simplified seed germina-
tion process in the controllable environment in order to 
identify the values of the controlled parameters that yield 
the best germination efficiency. First, we select the num-
ber of tunable parameters that we can control during the 
germination period (several days) with the help of cli-
matic chambers, e.g., humidity, temperature, amount of 
water supply provided and choose the reasonable bounds 
for these parameters based on the expert knowledge. 
Then, we iteratively apply BO algorithm, to find the val-
ues of parameters that maximize the number of germi-
nated seeds. We show that starting with an initial expert 
knowledge-based guess our approach allows to find such 
values of parameters that yield solid improvement both 
when initial germination efficiency is low (first experi-
ment) and high (second experiment).

Materials and methods
In this section, we describe the methodology and the 
algorithms used to build our framework. Figure 1 shows 
a schematic overview of the proposed system.

Seed germination
We conducted two experiments, first, using pea seeds 
(Pisum sativum L.) and, second, using radish seeds 
(Raphanus sativa L.) in different settings. Seeds were 
purchased from Federal Scientific Center of Vegetable 
(Odintsovo, Russia). The weight of 100 seeds showed an 
average of 0.751± 0.01 g for radish, and of 19.95± 1.31 g 
for pea. All seeds were presterilized in 0.5% of KMnO4 
solution for 10 min and then rinsed for several times 
with deionized water. Three climatic chambers (Binder 
KBWF 240, KBF 240, KMF 240) allowed to control air 
temperature ( ±0.1 ◦C ) and humidity ( ± 1% ), which was 
maintained at 80%. No light sources were used in the 
chambers during the experiments.

The first experiment was conducted in the form of 
sequential trials with each trial comprising three concur-
rent germination processes and lasting for 72  h (3  days 
in total). One hundred pea seeds were placed on a dish 
covered with sterile cheesecloth and put in each of the 
three climate chambers to germinate. Totally, 7 control-
lable parameters were selected: air temperature and the 
amount of water supplied at 0, 24, 48, 72 and 0, 24, 48 h 
steps, respectively. The temperature in the chambers was 
changed smoothly between the selected values during the 
trials.

During the second experiment, only two climatic cham-
bers were used (KBF 240, KMF 240) to set 4 controllable 
parameters, namely temperatures at 0, 12, 24, 36 h. Seeds 
were placed in containers of size 21× 15.5× 0.8 cm with 
two sections (each accommodating 16 seeds) on the cloth 
and watered once at the beginning of a trial with a fixed 
amount of 6 ml. Figure 2 depicts a single container at the 
beginning (left) and the end (right) of a trial.

These containers, then, were grouped by 3, giving 96 
seeds in a group. Three such groups then were placed 
almost vertically in each of two climatic chambers with 
the same controllable parameters set, thus, for each trial 
giving 6 repetitions with a total amount of seeds equal to 
96 in each of them. Figure 3 shows how containers with 
seeds were installed in the chambers during the second 
experiment.

After the seeds were germinated, the number of ger-
minated and well-germinated seeds were counted in 
each chamber. In the first experiment, we considered 
the seeds germinated when only the radicle emerged 
and could be visibly separated from the seed. If not 
only radicle but also the hypocotyl emerged and could 
be visibly separated, the seed was classified as well-
germinated. For the second experiment, we considered 
seeds germinated if radicle emerged and its length is 
less than 17.5 mm, and well-germinated if it is larger. 

Fig. 1  System overview
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Figure  4 shows an example of not germinated (left), 
germinated (middle) and well-germinated (right) radish 
seeds according to our methodology.

Bayesian optimization framework
In this section, we describe the Bayesian optimization 
framework based on the Gaussian process regression that 
we used in our work.

Fig. 2  Container with radish seeds before germination (left) and after (right)

Fig. 3  Chamber with 3 groups of 3 containers installed during a single trial in the second experiment

Fig. 4  Example of not germinated (left), germinated (middle, 12 
mm) and well-germinated (right, 38 mm) radish seeds in the second 
experiment at the same scale
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Gaussian process regression
Bayesian optimization relies on the Gaussian Process 
Regression [9], also called kriging in geostatistics, which 
learns a generative probabilistic model of an arbitrary 
function of independent variables with the assumption of 
normality. A Gaussian process is completely determined 
by its mean µ(·) and covariance (kernel) k(·, ·) functions:

where x ∈ R
d is a vector of d input parameters.

Let consider the GP model with an additive normal 
noise:

where ǫ ∼ N (0, σ 2) . Given the training data 
X = (x1, . . . , xn)

⊺ ∈ R
n×d , y =

(
y1, . . . , yn

)
⊺
∈ R

n , where 
n is the number of available measurements and (·)⊺ 
denotes the transpose, the predictive distribution at an 
unobserved point x∗ is given by

where K (X,X) is a matrix of the form 
Kij = k(xi, xj), i, j = 1, . . . , n . Particular choice of the 
kernel function depends on the assumptions about the 
model and a particular application, however, there exist 
commonly used kernels, such as Radial basis func-
tion (RBF) and Mateŕn that work well in general. Kernel 
hyperparameters are usually optimized using Maximum 
Likelihood Estimation (MLE) [10] or its variations.

Figure  5 shows an example of GPR using RBF kernel 
over the sine function with noisy measurements, where 
predictive variance increases at points with missing 
measurements. Outside of the interpolation region pre-
dictive variance significantly increases with the mean 
failing to capture the true function trend.

Bayesian optimization
An advantageous property of GPR is that it provides not 
only the prediction of the value at unobserved points 
but the complete probabilistic distribution determined 
by the mean and variance. The general idea behind BO 
algorithms is to use such distribution to explore param-
eter space and select values of x∗ in a way that it will most 
probably maximize target function f (x) . The common 
approach is to select a particular acquisition function 
that takes parameters of the predictive distribution of the 

f (x) ∼ GP
(
m(x), k

(
x, x′

))
,

m(x) = E f (x),

k(x, x′) = E
[(
f (x)−m(x)

)(
f
(
x′
)
−m

(
x′
))]

,

(1)y(x) = f (x)+ ǫ,

f ∗ ∼ N
(
µ̂, σ̂ 2

)
,

µ̂(x∗) = m(x∗)+ K (x∗,X)[K (X,X)+ σ 2I](y −m(X)),

σ̂ 2(x∗) = k(x∗, x∗)− K (x∗,X)[K (X,X)+ σ 2I]−1K (X, x∗),

fitted model as an input and outputs some value which 
is maximized instead. There exist multiple strategies, for 
example, using the probability of improvement, expected 
improvement or integrated expected improvement over 
the current best value, entropy search or upper confidence 
bound (UCB) [6]. We have selected the UCB acquisition 
function in our work as it is easy to evaluate and was 
shown to be effective in practice. It is expressed using the 
predictive mean and variance as follows:

Exploration–exploitation trade-off is managed by the 
parameter κ , where for small κ regions with a high mean 
(exploitation) and large κ regions with high uncertainty 
(exploration) are preferred, respectively. We will further 
omit κ from the arguments of the UCB function where it 
is assumed fixed.

Figure 6 shows the 4th step (with 2 initial data points at 
the boundaries) of the BO algorithm on an example func-
tion with several local maximums using UCB acquisition 
function with the fixed κ = 2.

It is critical to note that BO performance is profoundly 
affected by the dimensionality of the input data due to 
the exponential growth of the parameter space. It may 
start to perform poorly when the number of controlled 
parameters becomes larger than ten [11].

Noise estimation
We defined the target function that we aim to optimize 
as the sum of averages of germinated and well-germi-
nated seeds (see “Seed germination” section). First, 
let N denote the number of seeds used in the experi-
ment. Second, due, to the stochasticity, we model the 
success of a single seed germination for the fixed values 
of parameters x as a Bernoulli trial. Then, the probabil-
ity that a single seed is germinated equals to p(x) = p , 

(2)aUCB(x, κ) = µ̂(x)+ κ · σ̂ (x)

Fig. 5  Gaussian process regression (red dashed line depicts the 
predictive mean and orange fill depicts the standard deviation 
intervals) with noisy measurements (blue dots) of the sine function 
(solid green line) using RBF kernel. The predictive variance increases 
in the areas of missing measurements, and the predictive mean fails 
to capture the true function trend outside of the interpolation region
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whereas probability that a single seed is well-germi-
nated, given that it has germinated, equals to q(x) = q . 
If Ng and Nwg denote the number of germinated and 
well-germinated seeds in the experiment, respectively, 
then, it can be shown that for sufficiently large N (for 
details, see “Appendix” section) our target function is

where µ = p(1+ q) and σ 2 = p(1+ 3q)− p2(1+ q)2 . 
Due to the normality of the obtained distribution, its var-
iance can be interpreted as an input-dependent Gaussian 
noise in the Eq. (1). Therefore, we can simplify hyper-
parameter optimization by setting a lower bound of the 
noise variance with the following value:

Alternatively, for each obtained observation yi a lower-
bound of the noise variance can be estimated as (for 
details, see “Appendix” section)

in order to incorporate the dependence on the values of 
observations.

Concurrent experiments
Aforementioned BO formulation assumes that the opti-
mization process is sequential, i.e., only a single x∗ is 
selected at each step. However, it may be necessary to be 
able to select several vectors of parameters to explore, 
e.g., if there are multiple CPU cores for computations or 
several experimental setups available (climate chambers 

y(x) =
Ng + Nwg

N
∼ N

(
µ,

1

N
σ 2

)
,

(3)
1

N
max
p,q

σ 2(p, q) =
1

N
.

1

N
· yi(2− yi), i = 1, . . . , n

in our case). This is referred in the literature as batch set-
ting [12, 13] or setting with a delayed feedback [14]. In 
this work we consider the following approach from [12] 
to tackle this problem: for each trial comprising the selec-
tion of multiple vectors of parameters, we find the maxi-
mizer of acquisition function and “observe” the target 
function using the predictive mean of GPR instead of the 
real outcome (see Algorithm 1). 

Exploration–exploitation control
It may happen when performing exploitation that the 
algorithm could propose parameters that are very close 
to the already explored data points, e.g., try 22.001 ◦C 
temperature after 22.000 ◦C , which yields a change 
beyond the controllable precision. In order to cope with 
this problem and reduce the manual labor of an operator 
in the selection of κ from Eq. (2) that will give a reason-
able exploitation, we propose an additional optimization 
procedure. First, we formulate the notion of a reasonable 
exploitation as the following constraint:

(4)min
i=1,...,n

∥∥∥∥arg max
x

aUCB(x, κ)− xi

∥∥∥∥
∞

≥ ǫxploit,

Fig. 6  The fourth step of the Bayesian optimization procedure with κ = 2 . Left: optimized function (solid green line), observed points (blue dots), 
GPR predictive mean (dashed red line) and standard deviation intervals (orange fill). Right: UCB acquisition function at the current step with star 
depicting the next guess, which is close to the true maximum
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where n is the number of already observed data points 
and ǫxploit is a predefined constant. This constraint means 
that at least one of the parameters must be at least as 
far as ǫxploit from the respective parameter of the closest 
already observed data point. One can think of a more fair 
constraint, where a too small change of a parameter is 
diminished to zero, however, it may pose challenges for 
the optimization algorithms. Similarly, in order to avoid 
unreasonable exploration, we consider the following 
constraint:

where xi is taken from a subset of size s ≤ n of already 
observed points, e.g., one may like to ignore manu-
ally initialized data (see “Data preparation” section) and 
prefer exploration around knowingly good regions. This 
constraint means that the selected parameters must 
be at most as ǫxplore far in total form the closest already 
observed data point. Algorithm 2 describes the explora-
tion–exploitation control procedure. 

Experimental evaluation
In this section, we describe the details of our experimen-
tal setup and provide the obtained results.

Selecting parameters
We implemented1 our solution with Python 3 program-
ming language using the Bayesian optimization library.2 
As the covariance function we selected the composition 
of constant, isotropic Mateŕn (with ν = 2.5 , assuming 
sufficient smoothness) and white noise kernels with tun-
able hyperparameters:

where δij is a Kronecker-delta, α, ρ ∈ R
+ . Optimiza-

tion of the hyperparameters is performed at each step 

(5)min
i=n1,...,ns

∥∥∥∥arg max
x

aUCB(x, κ)− xi

∥∥∥∥
1

≤ ǫxplore,

k(xi, xj) = α · Cν(xi/ρ, xj/ρ)+ σ 2δij

when new data is being available using the MLE with 
the number of optimizer restarts equal to 30. Bounds 
for hyperparameter optimization were set as follows: 
α ∈ [10−5, 105] , ρ ∈ [10−5, 105] and σ 2 ∈ [0.01, 105, ] (see 
“Seed germination” and “Noise estimation” sections). GP 
mean was selected to be the mean value of the observed 
measurements.

Given the small number of tunable parameters (7 in 
the first experiment and 4 in the second), we considered 
the basic BO approach. As an acquisition function, we 
selected UCB since it has been shown to be effective in 
various scenarios. Exploration–exploitation trade-off 
was managed through κ parameter based on the expert 
knowledge, i.e., at each step, κ was selected in such a 
way that the algorithm does not purely exploit almost 
the same parameters or explore knowingly unprofitable 
regions. Additional control was performed by setting 
ǫxploit equal to 0.1 ◦C and 1 ml and ǫxplore equal to 10 ◦C 
and 100  ml for the temperature and the water supply, 
respectively. For constrained optimization we have used 
SciPy [15] library implementation of the Sequential least 
squares programming (SLSQP) algorithm [16]. Each opti-
mization step requires the evaluation of the maximum 
of acquisition function at several points, which impose 
computational overhead, however, it can be considered 
negligible compared to the time-scale of a single trial.

Data preparation
To set up the experiments, we had to consider several 
issues. First, we had to select the boundaries for the opti-
mized parameters: we selected them at 0, 40 ◦C (in both 
experiments) and 0, 250 ml (in the first experiment) for 
the temperature and the water supply, respectively. Sec-
ond, as the parameters may have different unit measures, 
which affects modeling due to isotropy of the selected 
kernel, we needed to scale them appropriately: we line-
arly mapped temperature and water supply values to [0, 
1] and [0,  0.5] intervals, respectively, assuming “equiva-
lence” of 1 ◦C and 12.5 ml (during the second experi-
ment, this step was ignored as the only temperature was 
varied). Finally, we had to add some initial data so that 
optimization could kick off: we picked all of the possible 
combinations of 0 and 40 temperatures (in both experi-
ments) with 0 water supply (in the first experiment) on 
each day and assigned the “observed” target function 
values equal to 0 (totally 24 = 16 initial points). It can be 
considered reasonable as extreme conditions should pro-
duce poor results.

1  https​://githu​b.com/tzoik​er/bo-seed-germi​natio​n/tree/v0.1.
2  https​://githu​b.com/fmfn/Bayes​ianOp​timiz​ation​.

https://github.com/tzoiker/bo-seed-germination/tree/v0.1
https://github.com/fmfn/BayesianOptimization
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Results
First experiment (poorly germinated pea seeds)
For a single germination process, we used N = 100 
pea seeds and conducted only a single repetition for 
each selected vector of controlled parameters. The first 
trial was conducted using the single reference vector of 
parameters selected with the expert knowledge, which 
gave the number of germinated seeds equal to 73, and 
the two vectors selected by the BO algorithm. At the 
11th observation the algorithm discovered the param-
eters, which yielded 73 germinated seeds with an addi-
tional amount of 18 well-germinated. The 20th selected 
vector of parameters produced as much as 80 germinated 
and 33 well-germinated seeds, which in total gave a 55% 
improvement over the initial guess. Subsequent 13 steps 
didn’t provide any further enhancement.

Figure 7 shows the target values obtained during 11 tri-
als of the first experiment. Black dashed line denotes the 
kriged average and shows the trend of improvement in 
the germination efficiency, whereas the green top dotted 
line shows the best-observed values for each trial. Table 1 
depicts all of the 33 vectors of parameters and respective 
observed target function values obtained during 11 trials.

Notably, without any prior knowledge of the underlying 
system, the algorithm was able to learn the values of the 
controlled parameters that yield sufficient improvement 
of the germination efficiency. The values of the param-
eters that achieved the maximum found target function 
value of 1.13 at the 20th iteration are listed in italics in 
Table 1. The identified values can be explained from the 
physiological point of view. For example, periodically 
changing temperature may be favorable due to the natu-
ral adaptation of seeds to day and night, whereas water 

supply identified by the algorithm is in a good agreement 
with the dynamics of water uptake by seeds, previously 
described in [17]. According to this study, water uptake 
by plant seeds is triphasic, comprising a rapid initial 
absorption, followed by a plateau phase and a further 
increase due to embryonic axes elongation.

Second experiment (well‑germinated radish seeds)
Although the first experiment showed a substantial 
improvement of germination efficiency in the case of 
poorly germinated seeds, it could not be that easily 
observed for well-germinated seeds. Therefore, in the 
second experiment, we used N = 96 radish seeds with 6 
repetitions for a single germination trial. The first 4 trials 
were conducted by setting all of the temperature param-
eters as either 21, 22, 23 or 24. At the 9th trial (5th auto-
matic step), the algorithm discovered the parameters, 
which yielded the best average of 10 germinated and 88 
well-germinated seeds.

Figure 8 shows the target values obtained during 12 tri-
als, where the last trial served as a validation for the best 
found vector of parameters during the 9th trial. Green 
dotted line shows the best-observed mean value of the 
target function, whereas the red dashed line depicts the 
first expert-knowledge guess-based trial.

Table 2 lists all of the 11 vectors of parameters and the 
corresponding means and standard deviations of the tar-
get function values obtained during 12 trials. The com-
plete table containing target function values for every 
repetition during each trial can be found in Additional 
file 1.

Although with the initial guess seeds already propa-
gated efficiently, the algorithm was able to achieve sub-
stantial improvement after the several steps and identify 
the parameters, which yielded the maximum mean value 
of 1.903 of the target function with low dispersion.

Conclusions and future work
We applied Bayesian optimization framework to the seed 
germination process in a controlled environment. Our 
experiments demonstrated that the proposed method-
ology allowed to identify the values of the controllable 
parameters that increase germination efficiency in dif-
ferent settings for different seeds both in the case when 
initial expert-knowledge based guess yields low and high 
germination efficiency. The proposed methodology is 
model-free, and we argue that it may be useful for a vari-
ety of optimization problems in intelligent agriculture. 
Using this approach, we achieved increase in germination 
efficiency (according to our metrics) from 36.5 to 56.5% 
by 19 iterations in the first experiment (pea seeds) with 
low initial germination efficiency, whereas in the second 
experiment (radish seeds) with high initial germination 

Fig. 7  Target function values (blue dots) for each chamber during 
11 trials, the maximum in each trial (green top dotted line) and the 
kriged mean (black dashed line). The highest germination efficiency is 
achieved at the 7th trial with 80 germinated and 33 well-germinated 
seeds
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efficiency the increase was from 91.8% up to 95.2% by 5 
iterations.

We note that selection of the controllable parameters 
must be made carefully during the preliminary planning. 
On the one hand, increasing their number allows to per-
form better fine-tuning, on the other hand, it makes BO 
algorithms less efficient and requires more trials to be 
conducted, which may be both overly time-consuming 
and equipment demanding.

Combination of the proposed technique with the 
existing methods of computer vision-based seed 
counting [18, 19] and seed quality evaluation [20] may 
decrease manual labor significantly and improve scal-
ability. The BO methods definitely could help to reveal 
optimum chemical parameters of growing mediums 
or find the environmentally friendly doses of plants 
biostimulants (humic substances, synthetic hormones, 
etc.), which effects on plants usually have a nonlinear 

Table 1  Values of the 33 explored vectors of parameters (t1, . . . , t4, w1, . . . , w3)
T and respective target function values

Parameters t and w stand for the air temperature in ◦C and the water supply in ml, respectively. The optimal parameters are highlighted in italics

# t1 t2 t3 t4 w1 w2 w3 Target

1 24.7 21.5 24.2 22.6 200 200 200 0.73

2 24.6 19.8 24.5 24.1 200 195 213 0.41

3 25.9 22.0 25.1 22.0 200 182 203 0.69

4 24.9 21.4 24.2 23.0 200 200 197 0.49

5 25.1 24.8 26.8 27.8 196 3 179 0.82

6 23.0 21.3 27.8 26.6 187 208 206 0.66

7 24.7 21.6 24.3 22.4 200 197 207 0.69

8 25.0 22.5 24.3 21.4 200 195 202 0.51

9 20.6 26.7 29.3 28.8 178 9 179 0.54

10 25.1 24.8 26.8 27.8 196 3 179 0.87

11 21.7 26.2 28.6 28.6 182 8 179 0.91

12 26.5 27.7 25.7 26.6 159 10 169 0.77

13 21.6 26.3 28.7 28.6 182 8 179 0.81

14 25.6 21.7 24.3 22.1 204 189 201 0.58

15 26.0 21.8 25.8 26.8 195 178 227 0.78

16 28.2 24.1 26.6 28.9 228 18 235 0.73

17 27.5 24.7 24.0 30.1 239 5 248 0.54

18 30.4 21.0 34.3 23.7 241 0 250 0.67

19 26.4 22.2 29.9 25.6 170 39 144 0.89

20 25.8 23.7 29.6 25.2 173 39 162 1.13

21 25.8 25.7 30.2 25.5 249 45 108 0.69

22 22.4 22.4 32.4 25.2 127 52 201 0.7

23 23.3 22.3 31.6 26.0 139 52 188 0.98

24 21.0 20.6 30.1 23.2 146 30 186 0.55

25 24.0 23.9 32.7 24.5 125 61 194 0.87

26 24.2 23.2 31.8 25.0 136 54 184 0.97

27 25.7 24.7 32.7 26.6 138 73 188 0.77

28 22.4 20.8 29.6 23.3 147 18 164 0.78

29 23.0 21.6 29.8 24.0 150 27 166 1.0

30 22.7 22.5 29.8 22.7 156 26 172 0.69

31 24.0 21.6 28.9 23.6 160 28 157 0.68

32 24.1 22.0 29.0 23.9 162 32 160 1.1

33 24.0 22.4 29.0 23.1 167 32 165 0.92



Page 9 of 10Nikitin et al. Plant Methods           (2019) 15:43 

dose-effect relationship. Further experimental stud-
ies are required to investigate the effectiveness of our 
approach for this environmental and plants issues. 
Additionally, we aim to consider partially-controllable 
environments and apply the proposed method at the 
next stages of plant growth.

Additional file

Additional file 1. Radish seeds experiment data. The complete list of 11 
explored vectors of parameters and target function values obtained dur-
ing 12 trials of the second experiment with radish seeds.
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Appendix
Let random variable x ∼ B(1, p) denote the suc-
cess of a seed germination with a probability p and 
y|x = 1 ∼ B(1, q) denote the success of a well-germina-
tion with a probability q given that germination occurred. 
Using the formula for a full probability:

Then, the distribution of a random variable z = x + y is

with the mean and the variance

Let zi ∼ pZ , i = 1, . . . ,N  be identically independently 
distributed random variables. Then, according to the 

px,y(x = 0, y = 0) = 1− p

px,y(x = 1, y = 0) = p(1− q)

px,y(x = 0, y = 1) = 0

px,y(x = 1, y = 1) = pq

pz(z = 0) = 1− p

pz(z = 1) = p(1− q)

pz(z = 2) = pq

(6)µ = p(1+ q),

(7)σ 2 = p(1+ 3q)− p2(1+ q)2.

Fig. 8  Target function values (blue dots) for each vector of 
parameters, mean of the initial expert-knowledge guess (red dashed 
line) and the best found mean for the 9th vector (green dotted line) 
with around 10 germinated and 88 well-germinated seeds

Table 2  Values of  the  11 explored vector of  parameters 
(t1, . . . , t4)

T and  the  corresponding mean and  standard 
deviation values of the target function

Parameters t stand for the air temperature in ◦C . The optimal parameters are 
highlighted in italics

# t1 t2 t3 t4 Mean SD

1 23.0 23.0 23.0 23.0 1.767 0.028

2 22.0 22.0 22.0 22.0 1.707 0.054

3 24.0 24.0 24.0 24.0 1.835 0.023

4 21.0 21.0 21.0 21.0 1.425 0.071

5 23.9 23.9 27.1 23.9 1.818 0.053

6 21.7 27.7 25.2 21.7 1.804 0.047

7 19.7 25.0 25.1 26.5 1.795 0.042

8 21.7 24.8 25.3 23.6 1.826 0.063

9 23.0 27.7 22.3 25.6 1.903 0.026

10 23.3 26.9 23.0 25.3 1.866 0.041

11 20.7 33.2 20.7 25.8 1.878 0.031
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Central Limit Theorem, for sufficiently large N, the dis-
tribution of their average can be well approximated by a 
normal distribution:

Given M samples wi ∼ Nw , i = 1, . . . ,M one can find the 
sampling mean µ̃ = (w1 + · · · + wM)/M and estimate 
the variance, by substituting the Eq. (6) into the Eq. (7), as
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