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Abstract 

Background:  Plant height is an important selection target since it is associated with yield potential, stability and 
particularly with lodging resistance in various environments. Rapid and cost-effective estimation of plant height 
from airborne devices using a digital surface model can be integrated with academic research and practical wheat 
breeding programs. A bi-parental wheat population consisting of 198 doubled haploid lines was used for time-series 
assessments of progress in reaching final plant height and its accuracy was assessed by quantitative genomic analysis. 
UAV-based data were collected at the booting and mid-grain fill stages from two experimental sites and compared 
with conventional measurements to identify quantitative trait loci (QTL) underlying plant height.

Results:  A significantly high correlation of R2 = 0.96 with a 5.75 cm root mean square error was obtained between 
UAV-based plant height estimates and ground truth observations at mid-grain fill across both sites. Correlations for 
UAV and ground-based plant height data were also very high (R2 = 0.84–0.85, and 0.80–0.83) between plant height 
at the booting and mid-grain fill stages, respectively. Broad sense heritabilities were 0.92 at booting and 0.90–0.91 at 
mid-grain fill across sites for both data sets. Two major QTL corresponding to Rht-B1 on chromosome 4B and Rht-D1 
on chromosome 4D explained 61.3% and 64.5% of the total phenotypic variations for UAV and ground truth data, 
respectively. Two new and stable QTL on chromosome 6D seemingly associated with accelerated plant growth was 
identified at the booting stage using UAV-based data. Genomic prediction accuracy for UAV and ground-based data 
sets was significantly high, ranging from r = 0.47–0.55 using genome-wide and QTL markers for plant height. How-
ever, prediction accuracy declined to r = 0.20–0.31 after excluding markers linked to plant height QTL.

Conclusion:  This study provides a fast way to obtain time-series estimates of plant height in understanding growth 
dynamics in bread wheat. UAV-enabled phenotyping is an effective, high-throughput and cost-effective approach to 
understand the genetic basis of plant height in genetic studies and practical breeding.
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Background
Plant height is an important agronomic trait and it was 
reduction in plant height that enabled the Green Revo-
lution [1]. Although plant height has been reduced to 
around 75–80  cm for irrigated wheat with high yield 

potential, its control remains a very important aspect 
in breeding programs. Two major genes, Rht1 (or Rht-
B1b) and Rht2 (or Rht-D1b) confer reduced plant height 
without detrimental effects on grain yield potential in 
varying environments [2]. Rht genes also have confound-
ing effects on anther extrusion: a major trait for hybrid 
wheat production [3, 4], resistance to Fusarium head 
blight (FHB) [5, 6], and resistance to at least one insect 
pest [7]. Therefore, fine-tuning of plant height for a target 
environment is not only important for pure-line breeding 
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but can also be important in hybrid wheat breeding 
where tallness of the male parent is required for efficient 
production of hybrids [8]. However, the association of 
Rht-B1 and Rht-D1 with undesirable traits, for example 
shortened coleoptile length, has caused wheat researcher 
to seek alternate dwarfing genes with less adverse effects. 
Recently, Rht24 was reported as new gene for reduced 
plant height but affecting floral architecture and response 
to FHB [8, 9]. It was also reported to increase kernel 
weight [10]. Reports of some other reduced height genes, 
such as Rht4, Rht5, Rht7, Rht8, Rht9, Rht12, Rht13, Rht14, 
Rht16, Rht18, Rht21, Rht23, and Rht25, also offer other 
possibilities for wheat improvement [11].

Marker-assisted selection based on quantitative trait 
loci (QTL) or functional genes can enhance the selec-
tion accuracy and ultimately increase genetic gain in each 
breeding cycle [12, 13]. Wheat has determinate growth 
habit thus plant height progressively increases during 
vegetative growth until the reproductive stage. Conven-
tionally, plant height is measured once, after anthesis 
when full height potential has been reached. Therefore, 
temporal characterization of plant height could provide 
a better understanding about the mechanism of plant 
growth and underlying genetics [14]. Quantitative meth-
ods, such as QTL analysis and association mapping, can 
give an insight about the genetic loci and genomic pre-
diction analysis help in selection of genotypes with strong 
genetic basis for trait of interest [15, 16].

Multi-location characterization of wheat germplasm is 
essential to evaluate adaptability of genotypes and pat-
terns of G × E interaction for trait stability [17]. Field-
based phenotyping tends to be laborious, with high 
likelihood of error and represents a major bottleneck for 
genome-to-phenome knowledge [18]. High throughput 
phenotyping platforms have higher capability for high 
precision, non-destructive characterization of quanti-
tative traits [19]. Recent advances in proximal remote 
sensing using unmanned aerial vehicles (UAV) with RGB 
(red, green, blue) and multi-spectral imaging have made 
it possible to create high throughput, cost-effective and 
accurate quantitative phenotyping datasets [12, 20]. UAV 
platforms can easily acquire multi-point data for complex 
traits such as biomass, normalized difference vegeta-
tion index, plant density, early emergence, rate of senes-
cence rate, and plant height [20–25]. These platforms are 
low cost compared to traditional and recently advanced 
ground-based phenotyping platforms [25].

UAV-based plant height has been estimated using 
digital surface models (DSM). High correlations with 
ground-based reference measurements have been made 
for barley [21], wheat [26], poppy [27] and sorghum [28]. 
DSM gives information of altitude in the form of raster 
values. The drawbacks of previous approaches were that 

estimations were made of the average heights of whole 
canopies, including not only the heights of ears, but also 
the heights of lower leaves and even the elevation of 
bare ground patches within canopy gaps [29]. Further-
more, accurate assessment of the ground surface eleva-
tion imposes a major restriction factor data acquisition 
for UAV-based phenotyping of plant height in crops such 
as wheat with dense canopies. These limitations have 
made UAV-based platforms more complex and time-
consuming by increasing the workload such as flights 
before planting and post-imaging quality control analysis 
[30]. This kind of data noise can adversely affect genetic 
analyses and genome-based selection. Previously, DSM-
derived plant height data had been applied for genomic 
prediction in sorghum [24]. Therefore, there is a need to 
standardize UAV-based data for accurate and error-free 
characterization of plant height for quantitative genetic 
studies and selection of advanced lines in breeding pro-
gram. To date, there is no report on the use of UAV-
derived plant height data for quantitative loci analysis in 
wheat.

The major objectives of the present study were to (1) 
standardize a rapid method for plant height estimation 
using a UAV platform, (2) identify quantitative trait loci 
for plant height using UAV and ground-based measure-
ments, and (3) assess genomic prediction accuracy for 
plant height in wheat.

Materials and methods
Germplasm and experimental design
A set of 198 doubled haploid (DH) lines derived from the 
cross Yangmai 16/Zhongmai 895 were used to evaluate 
a UAV-based platform for measuring plant height and 
its application in QTL analysis and genomic prediction. 
Yangmai 16 and Zhongmai 895 are elite varieties that 
have been widely cultivated in Yangtze River, and Yel-
low and Huai Valleys regions, respectively. Experiments 
were conducted during 2016–2017 and 2017–2018 at 
Xinxiang (35°18′0″N, 113°52′0″E) and Luohe (33°34′0″N, 
114°2′0″E), both in Henan province. The DH lines and 
two parents were planted in randomized complete blocks 
with three replications (200 genotype × 3 replications) at 
each site. The size of each plot was 3.9 m2 (1.3 m × 3 m) 
with six rows at 0.30  cm spacing and the plant density 
was maintained at 270 plants/m2. Both sites were irri-
gated at same developmental stages according to local 
agricultural practices.

Remote sensing campaign, mosaicking and DSM 
generation
An auto-operational DJI Inspires 1 model T600 (SZ DJI 
Technology Co., Shenzhen) carrying a Sequoia 4.0 cam-
era (https​://www.micas​ense.com/parro​tsequ​oia/) was 

https://www.micasense.com/parrotsequoia/
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used for aerial imagery. Sequoia has a 16-megapixel RGB 
camera and 4 monochrome sensors (NIR, Red, Green 
and Red-edge). Flight missions over the targeted field 
were controlled by flight planning software Altizure DJI 
version 3.6.0 (https​://www.altiz​ure.com). Images were 
acquired in sunny conditions from 30  m altitude while 
maintaining 85% forward and 85% side overlapping 
between images to ensure enough ground sampling dis-
tance. Pix4D Mapper (PIX4d, Lausanne, Switzerland) 
(https​://pix4d​.com/) was used for orthomosaic and DSM 
generation using world geographic coordinates of GCPs 
as previously reported by Hassan et  al. [20]. Pix4D has 
the advantage of auto-processing in feature point match-
ing and point cloud generation. All correspondence 
between overlapping images estimated from their geo-
graphical coordinates and pixels were used to detect the 
accuracy of matching points to minimize spaces between 
point clouds. The image resolution or ground sampling 
distance at 30 m was 2.5 cm/pixel.

DSM evaluation and plant height model (PHM) 
development
As wheat canopies are relatively dense at maturity, there 
are lower possibilities of error in detecting bare ground 
patches within the canopy, especially if plants densi-
ties are maintained at 270 plants/m2. For more accuracy, 
ortho-mosaic images with Red and Green bands were 
used to classify the vegetation and bare ground soil [27]. 
Visual classification of bare soil patches and separation 
between plots were also done by RGB images. DSM gen-
eration was based on the World Geodetic System (1984), 
which does not reflect the actual height of canopies. The 
digital terrain model (DTM) was generated through ras-
ter values of bare ground along the edges of each plot; 
this gave information on the altitude of the ground sur-
face [21]. For this, polygon shapes were sketched on bare 
ground surfaces across the experimental area to deter-
mine the lowest and highest ground elevation points in 
each zone, to minimise overall surface curvature using 
QGIS 1.18.15 (www.qgis.org). The PHM was calculated 
by subtracting the DTM from the DSM (Fig. 1).

Estimation and validation of UAV‑based plant heights
After construction of the PHM, a workflow program 
reported by Hassan et al. [20] was followed for segmen-
tation of the PHM into specific genotypes representing 
plots by sketching polygon shapes using QGIS 1.18.15 
(www.qgis.org). For precise segmentation, ortho-mosaic 
images generated sequentially with DSM were used for 
segmentation. In order to avoid over-lapping of plants 
from adjacent plots, plant heights were estimated from 
a trimmed section of the plots to overcome expected 

(1)PHM = DSM− DTM

data noise at the plot margins. UAV-based plant height 
was averaged from pixel values obtained at the highest 
and lowest points in the upper boundary of the canopy 
to avoid detection of low pixel values from lower canopy 
boundaries. The lower boundary of the canopy might 
include the elevation of gaps between plants and leaves. 
Lower and upper elevations of each plot from PHM were 
estimated by zonal statistics of polygon shapes using 
QGIS 1.18.15 (www.qgis.org). Small polygon shapes 
within each plot were sketched randomly to obtain upper 
and lower boundaries of the canopy top assuming a 
10 cm difference while rejecting the extreme lower values 
that could not be spike height. Individual plant heights 
were calculated as the mean of randomly estimated upper 
and lower boundaries of the canopy and used for valida-
tion and statistical analysis (Fig. 1).

H is plant height estimated from PHM, where U is 
the highest point and L is the lowest point of the upper 
boundary of the canopy at specific location.

UAV-based plant height was validated through ground-
based measurements using a ruler at mid-grain fill. 
Plant height was averaged from 10 plants of each plot 
representing a DH line. A total 600 of plots were meas-
ured in 2 days at each experimental site. Average height 
error was calculated as the difference between ground 
measurements and plant height estimated from the UAV 
platform. The root means square error (RMSE) was also 
calculated along with the regression fit for validation of 
UAV platform measurements.

SNP genotyping, QTL analysis and genomic prediction
The Yangmai 16/Zhongmai 895 DH population and 
parents were genotyped at Capital Bio Corporation 
(Beijing, China; http://www.capit​albio​.com) using the 
commercially available Affymetrix wheat 660  K SNP 
array.Previously, This array was used for genome-wide 
QTL mapping studies [30–32]. IciMapping 4.0 was used 
for linkage map construction using Kosambi mapping 
approach. Inclusive composite interval mapping-addi-
tive (ICIM-ADD) method was used for the QTL analy-
sis at LOD threshold of 2.5 [33]. To assess the accuracy 
of identification of QTL from UAV-based remote sens-
ing, we cross-validated our results with ground truth 
data obtained at mid-grain fill. For this, the averaged 
data from 2 years (2016–2017 and 2017–2018) at both 
experimental sites was used for quantitative genomic 
analysis. For temporal assessment of genomic variation, 
plant height was phenotyped at booting and mid-grain 
fill. QTL with overlapping confidence intervals were 
considered to be the same. Differences between the 

(2)H = average (U+ L)

https://www.altizure.com
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phenotypic variances explained by QTL from both data 
sets were detected as validation for UAV-based QTL.

We evaluated whether ground-based measurements 
can be replaced by UAV-based remote sensing for future 
genomic prediction of yield-related traits. For this, rrB-
LUP (http://cran.rproj​ect.org/web/packa​ges/rrBLU​P/
index​.html) was used to detect the genomic prediction 
accuracy of UAV-based plant height by comparison with 
ground-based reference data. To estimate genetic values 
for traits measured across environments, the following 
model was used for genomic best linear unbiased predic-
tion (G-BLUP);

(3)yi = µi + xg + εi,

where phenotypes are viewed as the sum of a random 
effect representing genomic signals (ui), marker effects 
(xg) and a model residual (εi) [34].

We cross-validated UAV-based data through esti-
mating predication accuracy by removing markers and 
chromosomes linked with major plant height reducing 
genes.

Statistical analysis
Linear regression was calculated to evaluate the rela-
tionship between UAV-based plant height and ground-
based manually measured data. A mixed linear model 

Fig. 1  Phenotyping pipeline for estimation of plant height using UAV platform. DTM digital terrain model, DSM digital height model, PSM plant 
surface model, UAV unmanned aerial vehicle

http://cran.rproject.org/web/packages/rrBLUP/index.html
http://cran.rproject.org/web/packages/rrBLUP/index.html
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was used to test the significance (P ≤ 0.05) of variation 
at among DH lines, environments and effects of their 
interactions for both data sets by the following general 
model;

where Y is the response demonstrated by fixed (β) and 
random (μ) effects with random error (ε) and X and Z 
indicate fix and random effects, respectively.

Furthermore, for better understanding of G × E 
interaction combined heritabilities across environ-
ments were calculated:

where σge
2 is genotype × environment interaction vari-

ance, e is number of environments and r indicates total 
replicates for each genotype [35]. The R packages such as 
“lme4” (https​://CRAN.R-proje​ct.org/packa​ge=lme4) and 
“car” (https​://CRAN.R-proje​ct.org/packa​ge=car) were 
used for all statistical analysis [36].

Results
Accuracy assessment of UAV‑based plant height
Regression analysis showed high R2 values (0.96) at both 
sites between UAV-based and ground-based plant height 
measurements at the mid-grain fill stage (Fig.  2). High 
correlations (R2= 0.84–0.85 and 0.80–0.83) were also 
obtained between booting and mid-grain fill from UAV 
and ground-based data sets, respectively. An accurate 
DTM with low error noise ranging from ± 3.5 to 4.5 cm 
across both sites was generated from the spaces adjacent 
to each plot (Fig. 3a). UAV-based single plant height was 

(4)Y = Xβ + Zµ+ ε

(5)h2 = σ 2
g /

(

σ 2
g + σ 2

ge/r+ σ 2
ε /re

)

measured instead of whole canopy height through aver-
aging highest points randomly detected from the canopy. 
Plant height was under-estimated but without probabil-
ity of noise due to avoidance strategy for lower bound-
ary of canopy and bare ground estimation. The average 
difference between predicted plant height from UAV and 
that observed from ground measurement was approxi-
mately 14.02 cm with a root mean square error (RMSE) 
of 5.75  cm across sites. Chances of error probability in 
estimation of UAV-based plant height were on average 
higher (15.83  cm) from plots with higher canopy eleva-
tions from ground level as compared to low elevation 
plots (11.08 cm)(Fig. 3b).

Phenotypic variation
The average ground measurement-based plant heights 
of Zhongmai 895 and Yangmai 16 were 71.11 and 
85.66 cm, respectively. While UAV-based plant heights 
of parents and DH lines are given in Fig.  3c. Plant 
height showed continuous variation across the DH 
population and followed normal distributions at both 
growth stages (Fig.  2). Both UAV and ground-based 
data sets showed similar patterns of phenotypic vari-
ation among genotypes and G × E interaction at the 
mid-grain fill stages (Table  1). Significant variation 
(P < 0.0001) among the DH lines was also observed at 
the booting stage from the UAV data set. The stand-
ard deviation was 20.44 cm for UAV and 18.29 cm for 
ground-based data in DH population. Heritabilities 
were very high at both developmental stages, i.e. 0.92 
at booting and 0.90–0.91 at mid-grain fill for UAV and 
ground-based plant height, respectively (Table 1).

Fig. 2  Regression plots, histograms and R2 values between UAV-based plant height at two developmental stages and ground measurements taken 
from two experiment locations (a Xinxiang and b Luohe). B booting, G ground, PH plant height, MGF mid grain fill, UAV unmanned aerial vehicle

https://CRAN.R-project.org/package%3dlme4
https://CRAN.R-project.org/package%3dcar
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Fig. 3  a Estimated probability of error between UAV and ground-based data sets for plots consisted dwarf and tall plants, b impact of major genes 
on plant height across the DH population, and c averaged plant height of Yangmai16, Zhongmai895 and DH. Error bars indicate standard deviation; 
lowercase letters indicate significant difference between parent cultivars; *. **, *** indicate significant differences among DH lines. B booting, DH 
doubled haploid lines, DTM digital terrain model, G ground, MGF mid-grain filling, PH plant height, UAV unmanned aerial vehicle

Table 1  Summary of statistics for both plant height data sets and developmental stages

B booting, MGF mid-grain filling, PH plant height, UAV unmanned aerial vehicle

* P  <  0.05, ** P  <  0.001 and *** P  <  0.0001

Yangmai 16 and Zhongmai 895 DH population

UAV.PH.B UAV.PH.MGF G.PH.MGF UAV.PH.B UAV.PH.MGF G.PH.MGF

SD 10.05 12.62 8.88 17.26 20.44 18.29

G (F.value) 431.21* 78.01* 58.24* 33.99*** 43.39*** 77.24***

E (F.value) 46.35* 0.19 0.54 25.61*** 27.93*** 47.55***

G × E (F.value) 0.06 3.74 0.80 0.59 1.56 1.52

h2 0.92 0.91 0.93 0.92 0.90 0.91
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Identification of QTL and their impact on phenotype
Identification of QTL was performed using UAV-based 
phenotypic data collected at the booting and mid-
grain fill stages and validated through ground truth 
data at mid-grain fill. Five QTL were identified from 
UAV and ground-based phenotypic data sets at both 
developmental stages and sites (Fig.  4a). Stable major 
QTL on chromosomes 4B and 4D were identified from 
UAV-based plant height data and were also detected 

with ground-based reference data across sites (Fig. 4b 
and Additional file  1: Table  S1). These two QTL sig-
nificantly reduced plant height in the DH population 
at both developmental stages (Fig.  3b). Genotypes of 
the DH lines are given in Additional file  1: Table  S2. 
Another two QTL for plant height on chromosome 6D 
identified at the booting stage from UAV-based data 
explained 9.0–10.2% of phenotypic variation (Fig.  4c 
and Additional file 1: Table S1).

Fig. 4  a Total and common QTL among two phenotyping data sets, developmental stages and environments. Numbers show the QTL in data 
sets, developmental stages and sites, b location of QTL with markers, c Comparison of phenotypic variance explained by QTL detected from UAV 
and ground-based data sets at two experimental sites. Squares with different colours show proportion of phenotypic variations explained by 
QTL detected in particular data set and sites on chromosomes 4B, 4D and 6D. Green spots represent the centromeres. B booting, G ground, MGF 
mid-grain fill, UAV unmanned aerial vehicle
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Validation of UAV‑based QTL results
For validation of QTL predicted from UAV-based plant 
height data, their contribution to phenotypic variance 
was compared with ground truth results at mid-grain 
fill. The phenotypic variances explained by the QTL 
located on chromosomes 4B and 4D were almost the 
same for both data sets, i.e. 61.3% for UAV-based and 
64.5% for ground-based data with very high heritabilities 
of 0.90 and 0.91, respectively (Fig. 4c). These two major 
QTL were also identified for plant height at the booting 
stage, explaining 73.1% of phenotypic variance for the 

UAV-based data. The QTL on chromosomes 4B and 4D 
corresponded to reduced plant height alleles Rht-B1b 
and Rht-D1b, respectively. Gene-specific KASP markers 
(Rht-B1_SNP and Rht-B1_SNP) for Rht-B1b and Rht-D1b 
confirmed these results. Distributions of these alleles in 
the DH population are given in Fig.  5a and Additional 
file 1: Table S1. The QTL identified on chromosome 6D 
from UAV-based observations at booting showed a simi-
lar trend in variation and explained 1.50 and 1.97% of 
the total variation in plant height at each site (Fig.  4c). 
Accuracy of booting stage data for plant height was 

Fig. 5  a Distribution of Rht genotypes across the DH population and b validation of UAV-based data set through emulating impact of these alleles 
using UAV-based phenotype data. B booting, G ground, MGF mid-grain fill, UAV unmanned aerial vehicle
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validated with markers for the Rht-B1b and Rht-D1b 
alleles (Fig. 5b).

Genomic prediction accuracy of UAV‑based data set
Genomic prediction accuracy was calculated through 
correlations between genetically estimated breeding val-
ues observed from a training population and was then 
tested by cross validation. Our results provided further 
validation of the accuracy of UAV-based plant height by 
showing similar trend regarding genomic prediction abil-
ity for both UAV and ground-based data. The correla-
tions between observed and predicted genomic values for 
UAV and ground-based data sets ranged from r = 0.47–
0.53 for UAV-based plant height at mid-grain fill, but 
slightly lower than ground-based truth observations of 
0.54 and 055 across sites. Genomic prediction accuracy 
was higher ranging from r = 0.56–0.57 at booting when 
estimated from UAV-based plant height data. Prediction 
accuracy was significantly reduced to r = 0.20 and 0.31 
when markers linked with QTL on chromosomes 4B, 4D 
and 6D were removed. Genomic prediction ability fell to 
75% and 95% when all markers on chromosomes 4B, 4D 
and 6D were removed. (Fig. 6).

Discussion
Accuracy and phenotypic variations in UAV‑based plant 
height
UAV is a promising platform to predict time-series 
development of crop canopies, and further use this data 
to understand the genetic basis of phenotypic variation 
[28]. Previously some studies have been reported differ-
ent workflows for the estimation of plant height using 

UAV platform [21, 26, 28] The UAV-platform requires 
far fewer images and less computing capacity to con-
struct the digital elevation model compared to ground-
based imaging platforms [37]. Ground-based LiDAR 
technology has been reported more accurate [38], but it 
has some limitations such as in coving large and multi-
locational trials. Aerial estimation of plant height could 
be error-prone due to low efficiency in pre- and post-
imagery processing methods such as altitude of imag-
ing platform, accuracy in DTM construction, and height 
extraction strategy from images [21, 28, 29]. High altitude 
of the UAV flight is likely to generate low pixel resolution 
of images casing increased data noise. UAV flights were 
taken at low altitude (30  m) to minimise probability of 
error due to low pixel numbers. DTM gives information 
about the elevation of the ground surface. DTM accuracy 
is an important factor, and low accuracy in DTM can lead 
to high over- or under-estimations of canopy elevation 
[21, 27]. The precision in estimating depends on number 
and distribution of bare ground patches across experi-
mental sites if the terrain is to geographically variable. In 
crops with dense canopies like wheat, it is difficult to gen-
erate accurate DTM from DSM images at later growth 
stages acquiring time-points to develop PHM from sin-
gle flights. Terrain and distribution of bare ground can 
be handled through better experimental design and man-
agement. Our trial field was well managed with enough 
spacing between and along the plots to be used to esti-
mate ground elevations across the field. DTM generated 
from both experimental sites at booting and mid-grain 
fill had low errors varying from ± 3.5 to 4.5 cm, similar 
to a previous report on a poppy crop [27] (Fig. 3b). It also 

Fig. 6  Validation of genomic prediction ability of UAV-based plant height data through with and without detected QTL at booting and mid-grain 
fill, as well as comparison with ground truth data at both sites. B booting, G ground, MGF mid-grain fill, UAV unmanned aerial vehicle
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reduced the computing load and time required for pre-
planting flights to generate DTM of bare fields as done 
in other reports [24, 27, 28]. Our method also overcame 
the problem of data noise in height extraction from PHM 
due to the detection of lower parts of the canopy such 
as elevation of leaf from gaps between plants. Using this 
method, height of a single plant from a particular posi-
tion of the experimental plot can be measured even in 
the case of a thin canopy. Higher correlations (R2= 0.96; 
5.75  cm RMSE) were estimated between ground and 
UAV data sets at mid-grain fill. Our results were better 
than previous reports where correlations were slightly 
lower between UAV-derived plant height and reference 
observations (0.85–0.90) in wheat and barley [26, 29] 
(Fig. 2). This was due to the better strategy of measuring 
pixel values from the highest points of the imaging to be 
the upper boundary of the canopy rather than mean val-
ues from the whole canopy as previously done in wheat, 
barley and sorghum [21, 24, 26]. Both data sets showed 
transgressive segregation among DH lines relative to the 
parents with significant phenotypic variation and high 
heritability. Moreover, high heritability and no significant 
G × E allowed detection of stable quantitative loci for 
plant height.

UAV‑based QTLs and their effects on phenotype
Height reducing homoeoalleles Rht-B1 and Rht-D1 on 
the short arms of chromosomes 4B and 4D are GA-insen-
sitive and major plummeting factor for wheat height by 
reduced GA response mechanism [39, 40]. Plant height 
in wheat is a developmental trait and the genetic basis 
underlying for its development over time is still being 
unmasked from a number of potential quantitative loci 
[11]. Rht-B1b and Rht-D1b were already reported in par-
ent cultivars Yangmai16 and Zhongmai895, respectively 
[41]. UAV-based plant height accuracy was confirmed 
by identification of QTL corresponding to these Rht 
genes, high correlations between ground truth data and 
UAV-based data sets, and consistent identification of the 
same QTL in both UAV-based and ground-based data-
sets (Fig. 4). UAV-based phenotype data successfully veri-
fied the dynamic presence of these two major genes as 
previously reported by Zhang et al. [41]. Two new QTL 
with minor phenotypic effect of 1.50–1.97% was identi-
fied on chromosome 6D using UAV-based booting data 
from both sites. QTL were also identified 6D at under 
heat and drought condition which help plant for adapta-
tion without confounding agronomic effects  [42]. While 
in our study, these QTL might be involved in seedling 
vigour, but further validation is required. The QTL on 
chromosome 6D at booting is likely to affect the plant 

growth. The phenotypic validation of Rht-B1 and Rht-D1 
on plant height measured by UAV confirmed the accu-
racy of this platform and proved that UAV has potential 
for genetic studies.

Accuracy of UAV‑based QTL
In quantitative genetics, erroneous phenotypic data is a 
major bottleneck [19]. Probability of error in UAV-based 
data can influence the QTL analysis and other genom-
ics studies. In our study, accuracy of QTL detected from 
both data sets was also validated from multi-location tri-
als. The identification of chromosome 4B and 4D QTL 
underpinning plant height was consistent across sites 
(Fig.  4b and Additional file  1: Table  S1). Similarly, QTL 
with less phenotypic variation ranging 1.50–1.97% at 
booting was also consistent at both sites confirming the 
accuracy of the UAV-based platform for reliable quanti-
tative genomic analysis. The new QTL on chromosome 
6D identified using UAV-based data indicated that the 
UAV platform was effective in detecting genetic varia-
tion. These results indicated the potential high efficiency 
of UAV-based remote sensing for major QTL identifica-
tion as well as temporal genetic dissection of traits.

Accuracy of UAV‑based data for genomic prediction
Genomic prediction is regarded as a relatively new 
breeding strategy to better exploit quantitative variation 
in crop breeding and in increasing selection accuracy by 
optimization of resource allocation in breeding programs 
[13, 43]. In revolutionizing phenotyping platforms for 
capture of data at lower cost, accuracy for true genomic 
selection cannot be compromised [44]. Therefore, UAV 
platforms have potential to contribute in enhancement 
of genomic prediction accuracy cos-effectively. Rutkoski 
et al. [44] used UAV-based multispectral secondary traits 
and reported their high prediction accuracy (r = 0.41–
0.56) for traits related to grain yield in wheat. Here we 
demonstrate the use of plant height data captured by a 
UAV-based aerial platform for high accuracy genomic 
selection. Similar trends in prediction ability were 
obtained with and without consideration of the QTL 
across the data sets. The prediction accuracy declined as 
markers linked with the QTL were excluded in both data 
sets. However, remaining genome-wide SNPs predicted 
accuracy ranged from r = 0.20–0.31  (Fig. 6). Our results 
indicated the presence of an additional gene with minor 
effect that was not detected in earlier QTL mapping. Our 
findings also indicate that the use of UAV platforms for 
genomic selection of quantitative traits could improve 
prediction ability by continuous capture of cost-effective 
phenotypic data from multiple environments.
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Conclusions
This study describes a UAV-based method for plant 
height estimation in wheat and its application in quanti-
tative genomic analysis and functional gene characteriza-
tion. Traditionally, plant height is measured only once, 
despite the fact that progression to final plant height 
may differ among genotypes. Our UAV-based approach 
facilitates rapid, cost-effective, high-throughput capture 
of plant height data at different growth stages. High R2 
between UAV and ground-based data sets indicated that 
UAV-platforms could be used for quantitative genomic 
analysis. This technique can also be applied in practi-
cal breeding after adjustment of UAV data according to 
the average difference (in this case, 14.03 cm) calculated 
between UAV and ground reference observations. The 
potential of UAV-based high throughput plant height 
phenotyping not only reduces the labour costs but is also 
capable of providing time-lapse reproducible data from 
large breeding trials to identify the underlying genetics 
and permit genomic selection for complex traits such as 
plant height.
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