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Evaluation of grain yield based on digital 
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Abstract 

Background:  Rice canopy changes are associated with changes in the red light (R), green light (G), and blue light (B) 
value parameters of digital images. To rapidly diagnose the responses of rice to nitrogen (N) fertilizer application and 
planting density, a simple model based on digital images was developed for predicting and evaluating rice yield.

Results:  N application rate and planting density had significant effects on rice yield. Rice yield first increased and 
then decreased with increasing of N rates, while the rice yield always increased significantly with increasing planting 
density. The normalized redness intensity (NRI), normalized greenness intensity (NGI), and normalized blueness inten-
sity (NBI) values of the rice canopy varied among stages; however, they were primarily affected by N fertilizer rates, 
while planting density had no significant effects. Furthermore, the significant relationships of grain yield with NRI and 
NBI at the late filling stage could be fitted by quadratic equations, but there was no significant relationship observed 
between grain yield and NGI across all stages. In addition, a field validation experiment showed that the predicted 
yield based on the fitted quadratic equations was consistent with the measured yield.

Conclusion:  The NRI, NGI, and NBI values of rice canopy were mainly affected by N fertilizer rates, while the planting 
density had no significant effect. The significant relationships between grain yield with NRI and NBI at the late filling 
stage could be fitted by quadratic equations. Therefore, the canopy NRI and NBI at the late filling stage as measured 
by digital photography could be used to predict grain yield in southern China.
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Background
As one of the most important food crops in the world, 
rice feeds half of the global population, especially in East 
Asia and Southeast Asia [1, 2]. Most rice-dependent 
populations are currently in developing countries such 
as China, India, and Thailand [3, 4]. With increasing food 
demand in these and other regions, advanced technologi-
cal innovations in rice production will be critical to stabi-
lizing food security.

Rice yield is typically quantified after harvesting and 
drying. This process requires time, power, and resources. 
Therefore, the rapid and accurate estimation of rice yield 

has become an important part of rice production tech-
nology research. With the development of remote sens-
ing technology, more remote sensing tools have been 
applied to agricultural monitoring. Use of terrestrial 
hyperspectral remote sensing [5, 6] and satellite and aer-
ial imagery [7–9] to conduct rice yield assessment have 
been reported. At present, the main methods for assess-
ing rice yield primarily include spectroscopic diagnosis 
[9] and remote sensing evaluation [10], but these meth-
ods require the purchase of expensive spectrometers or 
satellite remote sensing images. Additionally, these meth-
ods are complex and give uncertain results [11], which 
makes them difficult to promote and apply.

However, owing to recent price decreases and integra-
tion with smartphones, digital cameras are now widely 
used [12]. Since the 1990s, digital cameras have been 
used as one of the most convenient tools for remote sens-
ing of the visible light spectrum (in which R, G, and B 
represent the gray values from the red, green, and blue 
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channels) in agricultural information monitoring, such 
as automatic classification of agricultural products [13], 
weed identification, and pest monitoring [14], among 
other applications. Kawashima et al. [15] reported man-
ual selection of a complete blade for crop extraction 
(RB)/(R + B) to estimate the leaf chlorophyll content. 
Adamsen et  al. [16] used a digital camera to vertically 
capture images of wheat canopies, and cut out images 
representing 1  m2 to calculate parameters such as G/R. 
That study showed that G/R and the normalized differ-
ence vegetation index (NDVI) were significantly related 
to the chlorophyll metric, which was shown by soil–plant 
analyses development; (SPAD) value. Rorie et  al. [17] 
used a digital camera to capture images of corn leaves 
under an active light source and calculated dark green 
color index (DGCI) after correction with a reference 
color, with results showing a strong correlation between 
nitrogen (N) content and yield of leaves. Li et al. [18] ver-
tically photographed wheat canopies and segmented the 
images using soil adjustment vegetation index (SAVI) 
Green > 0 and found that the extracted coverage (Can-
opy Cover) positively correlated with the leaf area index 
(LAI), plant N content, and aboveground biomass. Previ-
ous studies in rice showed that leaf color measured with 
digital cameras can characterize N and chlorophyll con-
tent in rice [19, 20]. In addition, green-channel minus red 
(GMR) can further distinguish the N diagnosis of indica 
and japonica rice varieties [21]. In summary, the R, G, 

and B values of digital photos are closely related to nutri-
ent content in rice [18, 20].

The current applications for digital cameras in rice and 
other crops are limited to nutritional diagnosis, and only 
a few studies have reported the evaluation of rice yield 
with digital cameras [22]. Using digital cameras for pre-
dicting rice yields can quickly assess rice production and 
provide decision-making basis for rice farmers and for 
governments. In this study, a field experiment was con-
ducted which included different N fertilizer application 
rates and planting densities, and the color images of the 
rice canopy in the key growth periods were measured, 
including values for R, G, and B and the normalized red-
ness intensity (NRI), normalized greenness intensity 
(NGI), and normalized blueness intensity (NBI). Moreo-
ver, the fitted regressions between grain yield with NRI, 
NGI, and NBI values were established. Field verification 
was also conducted to evaluate the practicality of the fit-
ted regression.

Results
Rice yield
N rates and planting density both had significant 
effects on rice yield (Fig.  1). Among all treatments, 
grain yield was highest in the N2D4 treatment with 
8.34 × 103 kg ha−1, while yield was the lowest in N0D1 
treatment (5.01 × 103  kg  ha−1). Compared with the no 
N application (N0), the grain yields were higher in the 
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Fig. 1  Rice yields of different treatments with varied N and D. Error bar indicates SD. Different lowercase letters indicate significant differences 
(p < 0.05). N represents nitrogen, and D represents planting density
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N fertilizer application treatments, but the yields were 
not increased when N exceeded 180  kg  ha−1 (N2). 
There was no significant relationship between N rate 
and grain yield under the same planting density, as 
demonstrated through the fitted regressions (Table  1). 
The fitted regressions showed that grain yield could be 
significantly improved by increasing planting densities 
under the same N rate (Table  2). Furthermore, these 
equations also showed that the growth rate of rice yield 
was higher in the N2 and N3 treatments than in the 
N0 and N1 treatments. The yield of the N2 treatment 
increased by 23.22% over that of the N0 treatment, but 
the yield of the N1 and N3 treatments did not differ 
significantly than that of the N0 treatment (Table  3). 
Increasing rice planting density can significantly 
improve grain yield. The highest yield was observed in 
the D4 treatment, which was increased by 34.27% over 
that of the D1 treatment. However, the yields of D2 and 

D3 treatments were not significantly increased over 
that of the D1 treatment.

Changes in the NRI, NGI, and NBI values of the rice canopy
The NRI values among all treatments gradually increased 
with the development of rice growth, which can be 
roughly divided into three periods (Fig. 2): (1) the grad-
ually increasing period was from the tillering to head-
ing stage, (2) the stable period was from the heading to 
late filling stage, and (3) the rapidly increasing period 
was from the late filling to maturity stage. NRI in the 
key growth stages of rice was primarily regulated by the 
amount of N fertilizer, and different planting densities 
have little effect (Table 3). Across different growth peri-
ods, the NRI value in the N0 treatment was the highest 
among the most key stages, although different N rates 
also caused a significant difference in NRI values. Com-
pared with the no N fertilizer treatment (Table  4), the 
NRI values in the N1 treatment were reduced by 4.86%, 
3.51%, and 5.91% in the heading, filling, and late fill-
ing stages, respectively, while those in the N2 treatment 
decreased by 5.31%, 3.88%, and 6.27%, and those of the 
N3 treatment decreased by 6.25%, 3.57%, and 6.65% 
across these same stages.

The NGI values of all treatments gradually decreased 
with increasing rice growth, and these can be divided 
into three general periods as well (Fig.  3): (1) a stable 
period was from the tillering to the jointing stage, (2) a 
gradual increase period was from the jointing to the 
heading stage, and (3) a rapid reduction period was from 
the heading to the maturity stage. Similar to trends for 
NRI, NGI during the key growth stages of rice could be 
affected by the N rates, but different planting densities 

Table 1  The fitted regression between  nitrogen (N) rates 
(x) and grain yield (y)

D represents planting density

Planting 
densities

Fitted equations R2 p

D4 y = − 0.0669x2 + 20.243x + 6473.3 0.8636 0.42793

D3 y = − 0.0475x2 + 14.651x + 5601.5 0.9629 0.16541

D2 y = − 0.0757x2 + 20.504x + 5222.3 0.9917 0.11260

D1 y = − 0.0491x2 + 13.566x + 5008.5 0.9939 0.17084

Table 2  The fitted regression between  planting densities 
(x) and grain yield (y)

N represents nitrogen

N rates Fitted equations R2 p

N0 y = 8107x + 3153.6 0.9101 0.06309

N1 y = 8881x + 4056.9 0.8804 0.17204

N2 y = 13119x + 2946.8 0.9178 9.56E−04

N3 y = 10260x + 3294.9 0.9387 0.03314

Table 3  Comparative analysis of rice yield under nitrogen 
(N) and density treatments

Different lowercase letters indicate significant differences among nitrogen (N) 
fertilizer treatments (p < 0.05). Different uppercase letters indicate significant 
differences among different planting density treatments (p < 0.05)

Treatments Yield (× 103 kg ha−1) Treatments Yield 
(× 103 kg ha−1)

N0 5.59 ± 0.67 b D4 7.51 ± 0.76 A

N1 6.72 ± 0.73 ab D3 6.38 ± 0.54 B

N2 6.88 ± 1.06 a D2 6.08 ± 0.63 B

N3 6.37 ± 0.82 ab D1 5.60 ± 0.42 B
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Fig. 2  Changes in the normalized redness intensity (NRI) of the rice 
canopy at key stages among different treatments. Error bar indicates 
SD. TS, JS, HS, FS, LFS and MS indicate the tillering, jointing, heading, 
filling, late filling and maturity stages of rice, respectively
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had little effect (Table 4). Among four N rates, the NGI 
value of the tillering stage was the highest in the N3 treat-
ment. However, in the late filling stage, the NGI values for 
the N fertilizer treatments were significantly lower than 
that of the N0 treatment (Table 5). The NGI values in the 
N1, N2, and N3 treatments decreased below that of the 
N0 treatment by 2.90%, 3.82%, and 4.26%, respectively.

Across all treatments, NBI values gradually decreased 
along with rice growth, and could be roughly divided 
into four periods, which include: (1) the gradual increase 
period was from the tillering to the jointing stage, (2) the 
rapid reduction period was from the jointing to the head-
ing stage, (3) the increase period was from the heading to 
the late filling stage, and (4) the stabilization period was 
from the late filling to the maturity stage (Fig. 4). Like NRI 
and NGI, the NBI values in the key growth stages of rice 
were also affected by N rates (Table 5), while the different 

Table 4  Comparative analysis of  the  normalized redness intensity (NRI) in  rice canopy under  nitrogen (N) fertilizer 
and density treatments

TS, JS, HS, FS, LFS and MS indicate the tillering, jointing, heading, filling, late filling and maturity stages of rice, respectively. Different lowercase letters indicate 
significant differences among nitrogen (N) fertilizer treatments (p < 0.05). Different uppercase letters indicate significant differences among planting density 
treatments (p < 0.05)

Treatments TS JS HS FS LFS MS

N0 0.317 ± 0.006a 0.309 ± 0.002a 0.355 ± 0.003a 0.371 ± 0.001a 0.381 ± 0.002a 0.460 ± 0.002a

N1 0.310 ± 0.004a 0.294 ± 0.001b 0.343 ± 0.004b 0.349 ± 0.001b 0.347 ± 0.008b 0.456 ± 0.006a

N2 0.314 ± 0.003a 0.292 ± 0.000b 0.342 ± 0.004b 0.348 ± 0.003b 0.346 ± 0.005b 0.459 ± 0.003a

N3 0.314 ± 0.008a 0.290 ± 0.001b 0.343 ± 0.003b 0.346 ± 0.002b 0.344 ± 0.003b 0.452 ± 0.002a

D4 0.322 ± 0.005A 0.297 ± 0.008A 0.347 ± 0.006A 0.353 ± 0.011A 0.356 ± 0.014A 0.456 ± 0.006A

D3 0.312 ± 0.003A 0.297 ± 0.010A 0.345 ± 0.007A 0.355 ± 0.012A 0.353 ± 0.017A 0.454 ± 0.004A

D2 0.308 ± 0.005A 0.296 ± 0.008A 0.340 ± 0.007A 0.352 ± 0.012A 0.349 ± 0.020A 0.454 ± 0.004A

D1 0.316 ± 0.006A 0.296 ± 0.008A 0.345 ± 0.007A 0.352 ± 0.013A 0.354 ± 0.020A 0.459 ± 0.003A
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Fig. 3  Changes in the normalized greenness intensity (NGI) of the 
rice canopy at key stages among different treatments. Error bar 
indicates SD. TS, JS, HS, FS, LFS and MS indicate the tillering, jointing, 
heading, filling, late filling and maturity stages of rice, respectively

Table 5  Comparative analysis of  the  normalized greenness intensity (NGI) in  rice canopy under  nitrogen (N) fertilizer 
and density treatments

TS, JS, HS, FS, LFS and MS indicate the tillering, jointing, heading, filling, late filling and maturity stages of rice, respectively. Different lowercase letters indicate 
significant differences among nitrogen (N) fertilizer treatments (p < 0.05); different uppercase letters indicate significant differences among planting density 
treatments (p < 0.05)

Treatments TS JS HS FS LFS MS

N0 0.492 ± 0.008ab 0.475 ± 0.004a 0.514 ± 0.003a 0.497 ± 0.003a 0.472 ± 0.002a 0.415 ± 0.002a

N1 0.486 ± 0.010b 0.480 ± 0.004a 0.514 ± 0.010a 0.494 ± 0.001a 0.459 ± 0.008b 0.416 ± 0.001a

N2 0.477 ± 0.015ab 0.479 ± 0.004a 0.508 ± 0.001a 0.491 ± 0.005a 0.454 ± 0.003b 0.414 ± 0.001a

N3 0.498 ± 0.005a 0.475 ± 0.002a 0.508 ± 0.001a 0.493 ± 0.004a 0.452 ± 0.002b 0.416 ± 0.002a

D4 0.479 ± 0.010A 0.478 ± 0.005A 0.509 ± 0.004A 0.496 ± 0.003A 0.462 ± 0.008A 0.417 ± 0.002A

D3 0.481 ± 0.019A 0.480 ± 0.004A 0.510 ± 0.004A 0.492 ± 0.002A 0.458 ± 0.010A 0.417 ± 0.002A

D2 0.494 ± 0.008A 0.479 ± 0.003A 0.512 ± 0.002A 0.496 ± 0.005A 0.456 ± 0.012A 0.417 ± 0.001A

D1 0.484 ± 0.008A 0.474 ± 0.000A 0.515 ± 0.010A 0.492 ± 0.006A 0.458 ± 0.009A 0.415 ± 0.001A
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planting densities had no significant effect. There was 
no significant difference for NBI in the maturity stage 
across different treatments. In the tillering stage, the 
NBI values of the N1 and N2 treatments were signifi-
cantly higher than for the N0 and N3 treatments, but in 
all other stages, the NBI values in the N0 treatment were 
the lowest. However, compared with the N0 treatment, 
the NBI values were significantly higher in the N fertilizer 
(N1, N2, and N3) treatments (Table  6). In the jointing, 
heading, filling, and late filling stages, the NBI values of 
the N1 treatment decreased below that of the N0 treat-
ment by 4.62%, 9.37%, 18.81%, and 32.18%, respectively. 
The NBI values of the N2 treatments were reduced by 
5.68%, 15.12%, 22.30%, and 35.99%, respectively, and the 
NBI values of the N3 treatments were reduced by 8.88%, 
13.90%, 21.59%, and 39.03%, respectively.

Relationships between rice yield and NRI, NBI, and NGI
Across different key growth stages of rice, the relation-
ships between yield and NRI or NBI of rice canopy digi-
tal images at the late filling stage were fitted by quadratic 
curves (Table  7), with y = − 3437.4x2 + 2465.5x − 434.79 
(R2 = 0.4853, p < 0.05); and y = − 1198.9x2 + 436.5x − 32
.612 (R2 = 0.4122, p < 0.05), respectively. However, there 
was no significant relationship between NGI and yield.

Model verification
In field validation experiments, the predicted yields were 
attained through the fitted equations with NRI and NBI 
at the late filling stage (Fig.  5). Concurrence between 
the simulated and measured values was high, with R2 
of 0.4592 and 0.7074 and RMSE of 0.5489 and 0.4010, 
respectively, with average RE values of − 0.024 and 
− 0.028. Therefore, the NRI and NBI at the late filling 
stage can be used to better predict grain yield.

Discussion
The application of digital cameras and image process-
ing technology can be used to quickly obtain crop canopy 
data, and this method is cheaper and easier to operate and 
implement than other methods, such as hyperspectral 
remote sensing and satellite imagery. The rapid increase 
in the use of smartphones (with a self-contained cam-
era function) can enable this technology to meet huge 
potential applications for rice planting. In this study, with 
increases in rice growth (from the tillering to the maturity 
stage), NRI values increased gradually, while NGI and NBI 
peaked at the heading and jointing stages, respectively, 
and then gradually decreased. This may be due to growth 
and metabolism consuming a great deal of energy, because 
NRI is directly related to available energy [23, 24]. Moreo-
ver, NRI, NGI, and NBI in key growth stages of rice were 
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Fig. 4  Changes in the normalized blueness intensity (NBI) of the rice 
canopy at key stages among different treatments. Error bar indicates 
SD. TS, JS, HS, FS, LFS and MS indicate the tillering, jointing, heading, 
filling, late filling and maturity stages of rice, respectively

Table 6  Comparative analysis of  the  normalized blueness intensity (NBI) in  rice canopy under  nitrogen (N) fertilizer 
and density treatments

TS, JS, HS, FS, LFS and MS indicate the tillering, jointing, heading, filling, late filling and maturity stages of rice, respectively. Different lowercase letters indicate 
significant differences among nitrogen (N) fertilizer treatments (p < 0.05); different uppercase letters indicate significant differences among planting density 
treatments (p < 0.05)

Treatments TS JS HS FS LFS MS

N0 0.191 ± 0.009 b 0.216 ± 0.005c 0.131 ± 0.005b 0.132 ± 0.003b 0.147 ± 0.001b 0.126 ± 0.001a

N1 0.204 ± 0.006 a 0.226 ± 0.004b 0.143 ± 0.012a 0.157 ± 0.001a 0.194 ± 0.016a 0.128 ± 0.005a

N2 0.209 ± 0.015 a 0.228 ± 0.004b 0.150 ± 0.004a 0.162 ± 0.008a 0.200 ± 0.008a 0.127 ± 0.003a

N3 0.188 ± 0.008b 0.235 ± 0.002a 0.149 ± 0.004a 0.161 ± 0.003a 0.204 ± 0.005a 0.133 ± 0.002a

D4 0.199 ± 0.014A 0.226 ± 0.005A 0.144 ± 0.010A 0.151 ± 0.014A 0.182 ± 0.022A 0.126 ± 0.005A

D3 0.207 ± 0.017A 0.223 ± 0.010A 0.145 ± 0.010A 0.153 ± 0.013A 0.188 ± 0.027A 0.128 ± 0.004A

D2 0.197 ± 0.008A 0.225 ± 0.009A 0.148 ± 0.006A 0.152 ± 0.016A 0.195 ± 0.031A 0.129 ± 0.003A

D1 0.200 ± 0.012A 0.230 ± 0.008A 0.141 ± 0.015A 0.156 ± 0.015A 0.188 ± 0.028A 0.125 ± 0.003A
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mainly regulated by N fertilizer application, rather than 
by planting density. Compared with no N application, the 
NRI values of the heading stage in the N fertilizer treat-
ments were significantly lower, but the NBI values were 
significantly higher. The R, G, B values could change as 
a result of leaf yellowing and senescence, which can be 
caused by insufficient nutrient supply [25, 26].

The R, G, and B values of plant canopies can reflect 
nutrient uptake, especially that of N content and uptake 
by crops [17–19]. Previous studies have shown that for 
rice, wheat, corn, and cotton, the R, G, B values obtained 
by a camera can reflect the N uptake capacity of plants, 
and can be further used to diagnose N deficiency and 
assess biomass and grain yield [18, 20, 22]. The current 
study also found that the relationship between NRI or 
NBI and grain yield can be fitted by a quadratic curve 
across all key rice growth stages. This result was the same 
as other studies, which all suggested that grain yield was 
closely related to NRI and NBI [27, 28]. In these field 
experiments, the rainfall and temperature that occurred 
in the second year (2017) of the verification experiments 
were similar to those of the first year (2016). The simu-
lated values of rice yield obtained by fitting equations 
were highly consistent with the measured values, with 
high estimation accuracy and low average relative error. 
NRI and NBI at the late filling stage can thus be used 

to better predict grain yield. However, rice yield could 
change as a result of the interaction of complex factors 
[29, 30], such as unusual precipitation and temperature, 
which can cause rice lodging and disease [31–33]. There-
fore, actual rice yield may differ from the yield predicted 
by NRI and NBI at the late filling stage, so these predic-
tions should be used cautiously.

Conclusion
Metrics of growth in rice canopy across different growth 
stages can be measured and assessed by changes to the 
R, G, and B parameters of digital images. The NRI, NGI, 
and NBI of the rice canopy varied significantly across dif-
ferent N fertilizer rates, though the measured rice yield 
varied depending on both N fertilizer rate and planting 
density. NRI and NBI at the late filling stage could be 
used to predict grain yield through using the fitted quad-
ratic curve equations, and these results were upheld by 
the field validation experiment.

Methods
Site description
The field experiment was conducted at Yanjia Village, 
Zhanggong Town, Jinxian County, Nanchang City, Jiangxi 
Province, China (116°′24″E, 28°15′30″N). This area 
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experiences a mid-subtropical monsoon climate, with an 
average annual rainfall of 1537 mm, annual evaporation 
of 1150 mm, annual average temperature of 18.1 °C, with 
average temperatures in the coldest month (January) and 
the hottest month (July) of 4.6  °C and 29.1  °C, respec-
tively. In the experimental years of the study (2016 and 
2017), rainfall primarily occurred in March, April, May, 
and June (Fig.  6). The proportion of rainfall received in 
this season was 61.14% for 2016 and 52.34% for 2017. The 
rice growing season (from July to November) experiences 
higher temperature and lower rainfall. Average tempera-
tures from July to November were 23.49 °C and 23.49 °C 
in 2016 and 2017, respectively, and the total rainfalls were 
435.40  mm and 812.90  mm. The altitude is 25–30  m, a 
typical low hilly area. The soil type is paddy soil devel-
oped by Quaternary red clay. Soil pH is 6.9, the organic 
carbon is 16.22 g kg−1, total N is 0.95 g kg−1, total phos-
phorus is 1.02 g kg−1, total potassium is 15.41 g kg−1, and 
alkaline N is 143.70  mg  kg−1; available phosphorus is 
10.30 mg kg−1, and available potassium is 125.10 mg kg−1.

Experimental design
In this study, the field experiment was conducted in 2016 
and 2017 for model establishment and validation, respec-
tively. The main treatment was N fertilizer rates (0, 135, 
180, and 225 kg ha−1 N) and the secondary treatment was 
density levels (0.21, 0.27, 0.33 and 0.39 million plants ha−1). 
Each treatment was three replications, and main area was 

9 × 4.5 = 40.5 m2 (the sub-area was 2.2 × 4.5 = 9.9 m2), and 
the random area group was arranged.

Chemical fertilizer was applied to treatments 
(Table  8). The application ratios for N fertilizer were 
40%, 30%, and 30% in basal, tiller, and panicle fertiliz-
ers, respectively. All treatments (including the no N 
fertilizer treatment) received application of 60 kg ha−1 
P2O5 with calcium magnesium phosphorus (12.5% 
P2O5) and 225  kg  ha−1 K2O with potassium chloride 
(60% K2O). All phosphorus and 50% of the potassium 
fertilizer were used as base fertilizer, while the remain-
ing 50% potassium fertilizer was applied as panicle fer-
tilizer. The application time for basal, tiller, and panicle 
fertilizers was 1  day before transplanting rice, 10  days 
and 45 days after transplanting rice, respectively.

The rice variety was ‘Zhengcheng 456’, which was 
sown on 25th June, transplanted on 24th July, harvested 
on 5th November. Water, weeds, insects, and disease 
were controlled as required to avoid yield loss.

Measurement index

1)	 Rice yield determination

Matured rice plants in each plot were harvested for 
threshing and measured for standard yield after drying 
(water content was 13.5%).
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2)	 Photographing rice canopy

In the tillering, jointing, heading, filling, late filling, 
and maturity stages, images of the rice canopy of rice 
in 2016 and 2017 (Additional file  1: Figs. S1 and S2) 
were obtained in the field with a Canon IXUS140 digi-
tal camera following established methods [34]. Crops 
were photographed at a vertical height of 1.2  m from 
the ground (about 1  m from the rice canopy) and at a 
60° angle to the ground. A 15 × 5 cm white plastic plate 
was used as the background for shooting in the camera’s 
automatic white balance mode. The image resolution 
was 1280 × 960, and the camera’s image of the ground 
rice canopy range was approximately 1.2 m × 1 m trap-
ezoids. Digital images were transferred to the computer 
in JPEG format.

The image was processed using Adobe Photoshop. 
“Color selection” was used to select the plant canopy part 
of the digital image (without the interference of the soil 
or water surface), and then the “histogram procedure” 
was employed to obtain data. The R, G, and B values of 
the image were measured, and the corresponding NRI, 
NGI, and NBI were calculated. The calculation of each 
normalized value is as follows:

NRI = R/(R+G+ B)

NGI = G/(R+G+ B)

3)	 Statistical analysis and model validation

The yield difference between treatments was statisti-
cally analyzed in SPSS16.0. Differences were compared 
with the Duncan method, with differences in N ferti-
lizer application rate and planting density distinguished. 
When p < 0.05, the difference was significant.

The evaluation model was constructed through linear 
relationships between grain yield and color parameters 
through data of 2016. In order to test the reliability and 
universality of the model, the established models were val-
idated using the data of 2017. The validity of the models 
was estimated from the statistical values of RMSE (root 
mean square error), RE (relative error), and RRMSE (rela-
tive root mean square error), which were calculated as:

where X0 and XS represent measured and predicted values, 
respectively. The model is available when RRMSE < 25%.NBI = B/(R+G+ B)

(1)RMSE =

√

∑

(X0 − XS)
2

n

(2)RE =
X0 − XS

XO

× 100%

(3)RRMSE =

√

1

n

∑

(

Xs − X0

X0

)2

Table 8  The nitrogen (N) fertilizer rates and planting density in different treatments

N represents nitrogen; and D represents planting density

Treatments N fertilizer rates (kg ha−1) Planting densities (million plants ha−1) Plant spacing (× 10−2 m) Line spacing (× 10−2 m)

N0D1 0 0.21 20 23.8

N0D2 0 0.27 20 18.5

N0D3 0 0.33 20 15.2

N0D4 0 0.39 20 12.8

N1D1 135 0.21 20 23.8

N1D2 135 0.27 20 18.5

N1D3 135 0.33 20 15.2

N1D4 135 0.39 20 12.8

N2D1 180 0.21 20 23.8

N2D2 180 0.27 20 18.5

N2D3 180 0.33 20 15.2

N2D4 180 0.39 20 12.8

N3D1 225 0.21 20 23.8

N3D2 225 0.27 20 18.5

N3D3 225 0.33 20 15.2

N3D4 225 0.39 20 12.8
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Additional file

Additional file 1: Fig. S1. The rice growth of tillering (A), jointing (B), 
heading (C), filling (D), late filling (E) and maturity (F) stages in 2016. Fig. 
S2 The rice growth of late filling stage in 2017.
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