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Abstract 

Background:  The traditional methods for evaluating seeds are usually performed through destructive sampling 
followed by physical, physiological, biochemical and molecular determinations. Whilst proven to be effective, these 
approaches can be criticized as being destructive, time consuming, labor intensive and requiring experienced seed 
analysts. Thus, the objective of this study was to investigate the potential of computer vision and multispectral imag‑
ing systems supported with multivariate analysis for high-throughput classification of cowpea (Vigna unguiculata) 
seeds. An automated computer-vision germination system was utilized for uninterrupted monitoring of seeds during 
imbibition and germination to identify different categories of all individual seeds. By using spectral signatures of sin‑
gle cowpea seeds extracted from multispectral images, different multivariate analysis models based on linear discri‑
minant analysis (LDA) were developed for classifying the seeds into different categories according to ageing, viability, 
seedling condition and speed of germination.

Results:  The results revealed that the LDA models had good accuracy in distinguishing ‘Aged’ and ‘Non-aged’ seeds 
with an overall correct classification (OCC) of 97.51, 96.76 and 97%, ‘Germinated’ and ‘Non-germinated’ seeds with 
OCC of 81.80, 79.05 and 81.0%, ‘Early germinated’, ‘Medium germinated’ and ‘Dead’ seeds with OCC of 77.21, 74.93 and 
68.00% and among seeds that give ‘Normal’ and ‘Abnormal’ seedlings with OCC of 68.08, 64.34 and 62.00% in training, 
cross-validation and independent validation data sets, respectively. Image processing routines were also developed 
to exploit the full power of the multispectral imaging system in visualizing the difference among seed categories by 
applying the discriminant model in a pixel-wise manner.

Conclusion:  The results demonstrated the capability of the multispectral imaging system in the ultraviolet, visible 
and shortwave near infrared range to provide the required information necessary for the discrimination of individual 
cowpea seeds to different classes. Considering the short time of image acquisition and limited sample preparation, 
this stat-of-the art multispectral imaging method and chemometric analysis in classifying seeds could be a valuable 
tool for on-line classification protocols in cost-effective real-time sorting and grading processes as it provides not 
only morphological and physical features but also chemical information for the seeds being examined. Implementing 
image processing algorithms specific for seed quality assessment along with the declining cost and increasing power 
of computer hardware is very efficient to make the development of such computer-integrated systems more attrac‑
tive in automatic inspection of seed quality.
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Introduction
Cowpea (Vigna unguiculata) known also as black-eyed 
pea and originated in Africa is a very strategic crop in the 
world having a total harvested area of 12.3 million hec-
tares with an annual dry seed production of 7.0 Mt and 
an average yield of 5676  kg  ha−1 [1]. Cowpea seed is a 
nutritious component in the human diet and livestock 
feed as it is rich in the amino acids, lysine and tryptophan 
compared to cereal grains [2]. Nowadays, there is an 
increasing concern from all governmental organizations 
to increase productivities of arable lands by providing 
seeds of high quality. Seed quality is an important issue 
for all stakeholders involved in crop production includ-
ing breeders, producers, traders, variety registration 
agencies, farmers and distributers. The growing markets 
in seed business at national and international levels have 
stimulated great interest in selecting the best descrip-
tive characterization of seed quality. The concept of 
seed quality is composed of several attributes, including 
varietal and genetic purity, viability, health, germination 
capacity, vigor and uniformity [3]. Besides morphological 
and phenotypic features, some other important parame-
ters such as biochemical, genotypic and molecular mark-
ers are very important also to fulfill. In fact, without good 
seeds the investment on fertilizers, water, pesticides, and 
other inputs will not be worth.

The growing demand for reliable details about quality 
and conditions of seed properties has induced suppli-
ers to improve the information provided about the seed 
quality traits throughout intensive seed testing scenarios. 
Some of this information is very easy to achieve; mean-
while, other information related to viability, damage, 
vigor and health is very difficult to obtain directly due to 
time and technological constraints. Seed testing is gen-
erally based on the detection of various physical, physi-
ological, biochemical and, more recently, biomolecular 
markers which correlate well with seed constituents 
[4]. The ordinary practices of seed quality evaluation 
are usually made through germination test and can be 
complemented by vigor tests and seedling growth char-
acteristic measurement, especially because germination 
test might overestimate the seed potential compared 
to the seed responses under harsh field conditions [5]. 
Seed germination capacity and viability are influenced 
by environmental conditions during seed development, 
maturity levels at harvest and environment conditions 
during storage. The physiological and biochemical deter-
mination involves conductivity measurement, staining, 

and enzyme activity determination [6]. However, all of 
these tests are time consuming, destructive and require 
experienced seed analysts and special chemicals and lab 
arrangements.

One of the main constraints in seed production is the 
heterogeneity of the seed lots used during planting stage 
which affects growing practices and the optimum har-
vest time due to differential maturity of the seeds [7, 8]. 
Moreover, seeds undergo many forms of physiological 
and physicochemical alterations during storage, called 
ageing leading to loss in seed viability. The rate at which 
the seed ages depends on its ability to resist degrada-
tion and on its protective mechanisms [9]. Seed ageing is 
now well recognized as the major cause of reduced vigor 
and viability, which involves the process of deterioration 
and culminates in complete loss of the ability to germi-
nate. Seed deterioration is accompanied by a cascade of 
physiological and biochemical perturbations resulting in 
reduced overall germination performance, lower speed 
and uniformity of germination, inferior seedling emer-
gence and growth, reduced storability, as well as suscep-
tibility to environmental and biological stresses, thereby 
resulting in a large number of abnormal seedlings and 
poor plant development. The low viability of seeds may 
also result from pest infestation or damage during dry-
ing, storage and/or any other postharvest processes. The 
ideal strategy for improving the overall quality in a seed 
lot is to screen out damaged, abnormal and non-viable 
seeds [6] to increase the seed uniformity and guarantee 
optimized plant growth protocols and yield production 
on farms. Segregating damaged, infected and diseased 
seeds from the sound ones will considerably increase the 
quality and the economic value of a seed batch. Thus, 
knowledge regarding seed vigor and viability is extremely 
significant for optimizing a future profitable production 
of cowpea.

Nowadays, the highest priority is to develop an auto-
mated and more accurate technique that minimizes 
human interference and be adaptable under different 
working conditions for quantify several seed features 
necessary for germination, viability and vigor testing in 
a wide range of crop species [4, 10, 11]. In tandem with 
chemometric approaches, spectral techniques have 
shown prospects for evaluating seed quality by predict-
ing viability [8, 12–14], detecting damages [6], assess-
ing chemical composition [15] and detection of pest 
infestation [16]. Although near infrared spectroscopy 
(NIRS) technique allows classification of individual seeds 
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according to specific attributes without altering their 
properties, availability of spatial distribution of these 
attributes within a seed is completely neglected. The con-
ventional color imaging systems can provide this absent 
spatial information with a number of essential quality 
parameters for every single seed within a seed popula-
tion such as area, perimeter, length and width, shape and 
surface color. However, color imaging systems do not 
provide detailed information about the chemical com-
position, structure, vigor and other internal features of 
the seeds [17]. Hence, spectral imaging technology was 
emerged as a multidisciplinary task to bridge spectros-
copy, imaging and machine vision technologies for simul-
taneous measurement of various seed traits. As a hybrid 
of imaging and spectroscopy techniques, spectral imag-
ing has the ability to integrate both spectral and spatial 
information for visualizing structural details of specific 
compounds within a seed. The number of wavelengths 
used during image acquisition by multispectral imaging 
system is much fewer compared with those used with 
hyperspectral imaging systems. Besides its great abil-
ity in evaluating the overall quality parameters of seed 
lots, computer-integrated multispectral imaging system 
can be used also as a tool to test and evaluate individual 
seeds. The technique has been used successfully for the 
prediction of seed viability of castor beans [18], detection 
of seed health in spinach and wheat [19, 20], cultivar and 
variety discrimination in tomato, maize and rice [21–23], 
defect detection in maize [24], detection of mold and 
insect infestation in sunflower [25] and prediction of ger-
mination ability in spinach [26].

In fact, it is a very optimistic approach to find a tech-
nology that can be implemented to determine in advance 
which seeds are able to produce normal plants and 
which ones are dead or produce abnormal plants. To the 
best of our knowledge this is the first study to integrate 
computer-vision and multispectral imaging systems in 
combination with chemometric multivariate analysis for 
non-destructive quality estimation of single/individual 
cowpea seeds. Thus, the main aim of this study was to 
employ computer vision and multispectral imaging with 
linear discriminant modeling to differentiate between 
aged and non-aged seeds and the viable and non-viable 
seeds and explore the possibility of discriminating germi-
nation speed of individual seeds as an indication of seed 
vigor.

Methods
Description of seed samples
A total of 501 cowpea (V. unguiculata) seeds produced 
in Egypt in 2017 of a variety authorized by the Egyptian 
Ministry of Agriculture and Land Reclamation were used 
in these experiments. The seeds with initial moisture 

content of 12.03% (w.b.) were kept in water-proof bags 
in a storage room with an average temperature of 10  °C 
and relative humidity of 50% till the time of image acqui-
sition in September 2018. To create various seed classes, 
seeds were divided into sub-samples and were liable 
to controlled deterioration in which seeds were artifi-
cially aged (AA) for different periods to produce enough 
nonviable seeds required for developing robust classi-
fication models and to produce seeds that germinate at 
different periods. Seeds were spread in a single layer on 
the surface of a bronze wire mesh placed on the top of 
a box (22.5 × 19 × 7  cm) containing 40  ml (1  cm deep) 
of deionized water. The boxes were then tightly covered 
with lids and then placed in an incubating chamber for 
24, 48, 72 and 96  h (AA24, AA48, AA72 and AA96) at 
45  °C and 98 ± 2% RH. After incubation at each ageing 
time, the seeds were drawn from the chamber, cooled 
down and air-dried for 5  h to bring them back to their 
original pre-aged moisture content before conducting 
spectral measurements. The aim of artificial accelerated 
ageing procedure is to decrease the activity or completely 
deactivate the growth hormones and enzymes such that 
no embryo cell division or multiplication occurs resulting 
in seeds with different viability and germination capacity.

Germination test
Seeds of different ageing periods were first placed over 
filter paper in petri dishes (25 seeds each). After adding 
40 ml of deionized water to each dish, all petri dishes were 
kept in an incubator at 25 °C for 3 h of imbibition. One 
multispectral image was acquired for imbibed seeds in 
each dish. After the acquisition of multispectral images, 
the imbibed seeds were carefully transferred from the 
petri dishes to the automatic germination tool supported 
with a computer vision system to automatically acquire 
color images of seeds every 1 h. As fully described by [27] 
and [28], the automatic computer-vision germination 
tool allows seed germination with continuous watering 
at accurately controlled temperature of 25  °C (± 0.5  °C). 
The accompanied computer vision devices along with its 
image processing routines allow recording germination 
parameters of individual seeds in terms of radicle pro-
trusion and embryonic axis elongation. Over 4 days, the 
automated germination device analyzed all the 501 indi-
vidual seeds simultaneously where the seeds with radicle 
protrusion longer than 2 mm were considered as germi-
nated seeds. Afterwards, all seeds were then transferred 
to wet pleated filter paper in standard germination boxes 
(17 cm length × 11 cm width × 14 cm height). The boxes 
were then stored in a growth cabinet adjusted at 25  °C 
and 70% RH for a 16/8 (light/dark) hour photoperiod, 
and checked daily for 8 days of growth. In accordance to 
the standard method of the International Seed Testing 
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Association (ISTA), the seedling growth status was evalu-
ated under a standard experimental environment by the 
professional personnel of the National Seed Testing Sta-
tion (SNES, GEVES, France). To be considered as a nor-
mal seedling, all seedling structures such as cotyledons, 
primary leaves, terminal bud, epicotyl, hypocotyl and 
roots should be clearly visible and intact. Seedlings which 
show damage or missing of these particular parts were 
considered as abnormal seedlings.

Seed classes
According to germination data extracted from auto-
matic computer-vision germination device as well as the 
growth data, the cowpea seeds were then classified into 
different categories based on ageing, germination status, 
seedling condition and speed of germination. Based on 
ageing process practiced initially on the seeds, they were 
first classified either into two groups (Non-aged & Aged) 
or into five subgroups (Non-aged, AA24, AA48, AA72 
and AA96) corresponding to seeds aged for 24, 48, 72 
and 96 h, respectively. Based on the data extracted from 
the automatic computer-vision germination device, seeds 
were classified into two groups (Germinated and Non-
Germinated). Also, based on the start of germination and 
commencement of radicle protrusion within 48  h after 
sowing, seeds were classified into three classes (Early ger-
minated, Medium Germinated & Dead). Finally, accord-
ing to the seedling development after growth, seeds 
were classified into two classes (Normal & Abnormal). 
The ‘Normal’ class refers to the seeds that were able to 
produce normal seedlings and the ‘Abnormal’ category 
refers to the seeds that produced seedlings with dam-
ages, shredding or missing of shoots or roots of seed-
ling structures (i.e. cotyledons, primary leaves, terminal 
bud, epicotyl, hypocotyl and roots). Although such seeds 
were able to germinate, they exhibited a lack of vigor and 
would not survive under field conditions. For this rea-
son, the abnormal and dead seeds were lumped together 
as ‘Abnormal’ class [29]. In general, all seeds were split 
into two sets: a training set (n = 401 seeds) used for 
developing the discrimination models and a validation 
set (n = 100 seeds) for validating the developed models 
(Table 1).

Multispectral imaging system
A multispectral image for a seed sample (25 seeds each) 
in each petri dish was acquired using VideometerLab3® 
device (Videometer A/S, Hørsholm, Danemark) operated 
in the reflectance mode in the ultraviolet (UV), visible 
(VIS) and shortwave near infrared (NIR) regions with a 
static horizontal orientation. The device consists of a hol-
low integrating sphere internally painted with a white 
titanium coating to provide uniform scattering, high dif-
fusing effect and minimum specular reflectance. Along 
the internal equator of the sphere, a series of monochro-
matic light-emitting diodes (LEDs) at twenty non-uni-
formly distributed wavelengths (375, 405, 435, 450, 470, 
505, 525, 570, 590, 630, 645, 660, 700, 780, 850, 870, 890, 
910, 940 and 970  nm) were mounted side by side. The 
LEDs with such a narrow-band spectral radiation inter-
mittently flashed one by one and a monochromatic image 
of the sample was acquired at a specific wavelength by a 
top-mounted CCD camera, resulting in a monochrome 
image at each wavelength with 32-bit floating point pre-
cision for each LED type. Hence, when a sample was 
illuminated successively by the twenty emitting LEDs, 
a cube image was obtained with a spatial dimension of 
2056 × 2056 pixels and 20 bands in the spectral dimen-
sion with a spatial resolution of 0.0432  mm/pixel. Gen-
erally, before acquiring multispectral images, the system 
was fully calibrated radiometrically and geometrically by 
using three successive plates: a white one for reflectance 
correction, a dark one for background correction and a 
doted one for geometric pixel position aligning calibra-
tion, followed by a light setup calibration [30].

Image preprocessing and data extraction
The main objects appeared in the acquired multispectral 
image Iijk are the 25 cowpea seeds in addition to some 
other objects, such as the Petri dish and its surround-
ing background that should be removed from the image 
before going forward in extracting spectral informa-
tion of the individual seeds. Thus, a preliminary image-
processing step was needed to segment the acquired 
image Iijk and produce an image mask Mijk where only 
the cowpea seeds were isolated from non-seed pix-
els. By careful inspection of every single band in the 

Table 1  Final number of seeds (spectra) for each class utilized in the training and validation data sets

Classification type Training set Validation set

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Ageing 81 320 19 81

Germination 288 113 76 24

Seedling condition 195 206 42 58

Start of germination 90 167 94 24 42 34
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multispectral image, it was obvious to discover that the 
cowpea seeds at band number 14 (780 nm) appeared as 
bright objects in opaque background. Hence, the image 
band at λ = 780  nm was segmented by a simple thresh-
olding producing white objects with pixel values equal to 
1 representing the seeds in black background with pixel 
values equal to 0. These white objects represent the main 
regions of interest (ROIs) that define the locations of the 
seeds achieved by thresholding the spatial dimension of 
band λ780 nm as described by Eq. (1):

where λ corresponds to a wavelength of 780  nm, and 
an empirically determined threshold T was used at this 
wavelength band. The resulting binary image was used 
as a mask to identify the seed pixels in the image as the 
main regions of interest (ROIs). This mask was applied 
for all bands (from λ375 to λ970 nm) in the multispectral 
image highlighting only the seeds in black background in 
all bands. Next, all seeds were collected in a blob data-
base from which different attributes of the seeds such as 
color, dimensions, texture, shape and main spectral fea-
tures of all individual seeds appeared in the image could 
be extracted. The extracted spectral signatures of the 
seeds represent the mean intensity of the reflected light 

(1)Mijk =

{

0 if Iij� ≤ T
1 if Iij� ≤ T

at each single wavelength calculated from all seed pixels 
in the image. Hence, the mean reflectance spectrum of 
any seed in the image was represented by 20 values calcu-
lated by averaging the intensity of pixels within the ROI 
of this seed at the 20 bands from λ375 to λ970  nm. In 
total, 501 average spectra representing the spectral signa-
tures of the 501 cowpea seeds involved in this study were 
saved and then congregated altogether in one matrix (X) 
to be correlated with their corresponding germination 
data (Y). Figure 1 shows all key steps involved in the pro-
cedure of processing multispectral images for extracting 
spectral information of the seeds and building the multi-
variate classification models.

Multivariate data analysis
To identify the patterns hidden in the extracted spectral 
data of all seeds, principal component analysis (PCA) 
was carried out as an explorative multivariate data analy-
sis technique commonly used to get an overview of the 
systematic spectral variation in the data and to explore 
the possibility of grouping the seeds of similar spectral 
profiles. Data trending, detection of outliers and the 
relationship between seeds and wavelengths (variables) 
could be easily realized using PCA [31]. Thus, spectral 
data for all seeds were arranged in a matrix X where 
the rows represent the observations (the seeds) and the 

Fig. 1  All key steps involved in processing multispectral images for extracting spectral information of the seeds, preparing germination data and 
building the multivariate discrimination models
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columns represent the variables (20 wavelengths). Hence, 
PCA was performed on this spectral data matrix and the 
resulting scores and loadings were observed and plotted 
to identify outliers and data trending.

Next, it was necessary to utilize spectral signatures of 
the seeds to develop multivariate discrimination mod-
els for seed classification to different categories based 
on their germination data. As the seeds were split into 
training and validation sets as shown in Table 1, the lin-
ear discriminant analysis (LDA) classification models 
were developed using the training (calibration) set and 
the models obtained were validated using the independ-
ent validation set, which was not used during building 
the models. To reduce the potential overfitting, the LDA 
models were developed under cross-validation using 
leave-one-out cross-validation method in which one seed 
was taken out at a time and the LDA model was built for 
the remaining seeds. The model was then used to clas-
sify the seed left out, and the same routine was repeated 
until all seeds removed once [32]. For developing a model 
using LDA method, the spectral data at all wavelengths 
of all seeds arranged in the X matrix (the predictors) 
were related with the data resulting from the germina-
tion tests saved in Y vector (the response variable). This 
vector contains dummy values that correspond to each 
seed group resulting from the germination tests. For two-
class classification (e.g. Aged vs. Non-aged; Germinated 
vs. Non-Germinated or Normal vs. Abnormal), the cat-
egorical values in Y vector take either ‘zeros’ (for Aged, 
Germinated or Normal class) or ‘ones’ (for Non-Aged, 
Non-Germinated or Abnormal class). For three-class 
classification (e.g. Early, Medium & Dead), the dummy 
values in Y vector take either ‘zeros’ for Early germi-
nated class, ‘ones’ for Medium germinated class or ‘twos’ 
for Dead seeds class. In general, the classical statistical 
approach of LDA computes the optimal transformation 
(projection), which minimizes the within-class distance 
and maximizes the between-class distance simultane-
ously, thus achieving maximum discrimination. The LDA 
model assesses new synthetic variables called “discrimi-
nant factors”, which are linear combinations of the all 
wavelengths (predictors), and allows a better separation 
of seed classes [33]. Then, the individual seeds can be 
assigned to one of the pre-defined classes. The unknown 
seed will be assigned to a certain class if it had a closer 
distance to such a class. A series of parameters can be 
used to evaluate the performance of classification mod-
els, such as sensitivity, specificity, and classification error 
[34]. In this study, the accuracy of LDA models in cor-
rectly classifying the seeds in their pre-defined classes 
was evaluated by using either reporting the number of 
misclassified seeds in each classification or by using the 
percentage of the overall correct classification (OCC). 

Thus, the recognition rates for new samples in the valida-
tion set, defined as the proportion of samples identified 
correctly to that of the total number in the validation set, 
were computed for each discriminant model using the 
following equation.

Image processing and spectral data extraction were 
performed using the VideometerLab3 software version 
1.6 (Videometer A/S, Hørsholm, Denmark) and the mul-
tivariate analyses and related statistics were performed 
using an in-house written script by Matlab® version 7.7.0. 
R2008b (The Mathworks Inc., Natick, Massachusetts, 
USA).

Results
Spectral overview of aged and non‑aged cowpea seeds
The spectrum of any pixel in the multispectral image is 
normally presented as a plot to show the intensity of such 
a pixel at different wavelengths from the UV (375  nm) 
to the shortwave near infrared (970  nm) range. Averag-
ing the spectra of all pixels belonging to one seed (only 
one ROI or one blob) represents the spectral signature of 
such a seed. Any change in this spectral signature means 
that this seed received a peculiar change in its physico-
chemical attributes. The typical average spectra of non-
aged (control) seeds and those received different periods 
of artificial accelerated ageing (AA24, AA48, AA72 
and AA96) are presented in Fig.  2a. Although the aged 
and non-aged seeds exhibited similar spectral patterns 
(peaks, valleys and shoulders) in the UV, Vis and NIR 
regions, spectral data from non-aged seeds (the control) 
showed some variations in terms of reflectance intensity 
especially in the spectral range from 505 nm to 780 nm 
compared to the aged seeds (Fig.  2a). However, the dif-
ferences between average spectra of aged and non-aged 
seeds are comparatively smaller. Despite ageing treat-
ments, the reflectance intensity for aged and non-aged 
seeds in the wavelength range of 375–470 nm are almost 
alike, but differs when higher wavelength range were 
employed. It was also obvious to notice that the reflec-
tance values of cowpea seeds decreased in the spectral 
range from 505 nm to 780 nm when the seeds were lia-
ble to different degrees of artificial accelerated ageing. 
This part of the spectrum could also contain interesting 
information about the seed properties. In the NIR region 
(i.e. from the 780 to 970 nm) the opposite was observed, 
and the aged seeds tended to present higher reflectance 
intensities compared to the non-aged seeds. The PCA 
performed on the spectral data of the seeds could be used 
to accentuate this finding. The goal of PCA was to extract 
the important information from the raw spectral data to 

(2)Accuracy =
Correctly classidied seeds

Total number of seeds
× 100%
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represent it as a set of new orthogonal variables called 
principal components, and to display the pattern of simi-
larity among seeds as points in a plot. It was noticed that 
the first three principle components explained 97.60% 
of the original variance among seed spectra with 67.31, 
21.44 and 8.85% for PC1, PC2 and PC3, respectively. As 
shown in Fig.  2b, the score plot of PCA revealed that 
the aged seeds could be easily isolated from the control 
(Non-aged) seeds. A distinct separation among ageing 
treatments could not be observed on the score plot of 
PCA, but the non-aged (control) samples were discretely 
identifiable in the score plot whereas the aged seeds were 
grouped into one cluster. Despite the ageing treatments 
experienced on the seeds, the main spectral patterns of 
germinated and non-germinated were also plotted as 
shown in Fig. 2c. However, the plot shows that the differ-
ence among these two categories is not obvious and this 
may explains why the discrimination among them using 
multivariate analysis modeling could be difficult.

Discrimination models for seed classification
As explained earlier, different linear discriminant analysis 
(LDA) models were developed for different classification 
using their spectral data at the 20 wavelengths (X-matrix) 
and predefined class grouping of the seeds (Y-vector).

Discrimination between ‘Aged’ and ‘Non‑aged’ seeds
The discrimination models developed for aged and non-
aged seeds were established to identify whether a batch 
of seeds received any kind of treatments that affects their 
viability and germination capacity. Two LDA models 
were developed in this regard: the first model was a two-
class model (Aged vs. Non-aged) developed generally to 
discriminate aged seeds from non-aged ones; and the 
second model was a five-class model developed to iden-
tify the severity of ageing by discriminating seeds hav-
ing different ageing periods (namely: Non-aged, AA24, 
AA48. AA72 and AA96). The results of predicting the 
class membership of seeds and the overall correct classi-
fication (OCC) of these two models are shown in Table 2 
for training, cross-validation and independent validation 
data sets.

The results revealed that the two-class LDA model was 
very accurate in distinguishing aged and non-aged seeds 
with an overall correct classification of 97.51, 96.76 and 
97.0% for training, cross-validation and independent vali-
dation data sets, respectively. The result of the five-class 
LDA model was reasonably good but lower than that of 
the two-class LDA model. The percentage of the overall 
correct classification in training, cross-validation and 
validation sets was 86.28, 82.04 and 87.00%, respectively. 
In the independent validation set, the model was capable 

of differentiating seeds aged for 24, 48, 72 and 96 h with 
overall correct classification of 89.47%, 71.43%, 93.75% 
and 94.74%, respectively (Table 2).

Discrimination between ‘Germinated’ and ‘Non‑Germinated’ 
seeds
As a complementary work of discriminating aged seeds 
from the non-aged seeds, it was very important to differ-
entiate between the germinated seeds (i.e. viable seeds) 
and the non-germinated seeds that could be decayed, 
dead of delayed in germination under the effect of ageing. 
The time series images acquired by the automated com-
puter-vision germination device showed clearly which 
seeds were germinated (live) and which ones failed to ger-
minate during the first 4 days after sowing. Hence, a new 
linear discriminant analysis model was built to discrimi-
nate between germinated and non-germinated seeds in 
training data set under cross validation (n = 401) and the 
resulting model was used to classify the seeds in an inde-
pendent validation set (n = 100). As shown in Table  3, 
this LDA model correctly classified the germinated seeds 
with an accuracy of 92.71, 89.93 and 93.42% in training, 
cross-validation and validation sets, respectively. Mean-
while, the performance of the model in detecting non-
germinated seeds was not good enough with an accuracy 
of 53.98, 51.33 and 41.67% in training, cross-validation 
and validation sets, respectively. However, the over-
all accuracy of the model in classifying the seeds based 
on germination criterion was reasonably good with an 
overall correct classification of 81.80, 79.05 and 81.0% in 
training, cross-validation and validation sets, respectively 
(Table 3). As the predictions of germinated and non-ger-
minated seeds in the validation set was very much similar 
to the training set, the model could be used safely in this 
task for discriminating viable from dead seeds. Gener-
ally, in all classification modeling outlined in this work, 
a posterior membership probability threshold of 0.5 was 
used to recognize the seeds’ predicted classes. A seed was 
assigned to a certain class if its membership probability 
was greater than 0.5. In case of aged/non-aged classifica-
tion, the seeds had average membership probability of 
0.996 ± 0.024 for being aged class and 0.946 ± 0.107 for 
being non-aged class. Similarly, in case of germinated/
non-germinated classification, the seeds had a member-
ship probability of 0.858 ± 0.123 for being germinated 
class and 0.737 ± 0.139 for being non-germinated class. 
Despite the membership probability calculations, the 
squared distances between the spectrum of a seed and 
the centroid of each class were calculated. A seed was 
assigned to a certain class when its spectrum had the 
minimum squared distance to this class.
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Discrimination between ‘Normal’ and ‘Abnormal’ seedlings
Table  4 shows the performance of another LDA model 
built for classifying cowpea seeds into two categories: 
(1) seeds that are able to produce normal seedlings 
and (2) seeds that produced abnormal seedlings due to 
deformed essential structures or missing one or more of 
their essential structures. The results revealed that the 
accuracy of the model was moderate with overall classi-
fication accuracy of 68.08, 64.34 and 62.00% in training, 
cross-validation and validation datasets, respectively. To 
improve the performance of such a model, more seeds 
should be involved to include all possible variation in 
considerations.

Discrimination of cowpea seeds based on starting 
of germination
Because the automated computer-vision germination 
device monitors the seed conditions every 1 h, seeds 
were categorized into three groups: seeds that ger-
minated within 48  h (vigorous or ‘Early’ germinated 
seeds), seeds that germinated within 72  h (‘Medium’ 
seeds) and ‘Dead’ seeds (unviable or decayed). This 
categorization of the seeds was saved in a dummy vari-
able (Y vector) and was linked with the original spec-
tral signatures (X matrix) of theses seeds using another 
LDA model to unambiguously determine the identity 
of every individual seed. The LDA model was built to 
classify seeds to these predefined classes based on their 
spectral data. Comparison of these assigned classes to 
the original predefined classes is an indicator of the 

discrimination accuracy. The results of the LDA model 
are shown in Table  5. It was clear to notice that the 
model can discriminate these classes with overall classi-
fication accuracy of 77.21, 74.93 and 68.00% in training, 
cross-validation and independent data sets, respec-
tively. It seems that the model significantly underper-
formed in the independent validation set (68.00%), 
although they exhibited reasonable performance during 
training. The accuracy of the model in identifying the 
‘Early’ germinated seeds was 80.00, 77.78 and 91.67% 
in training, cross-valuation and validation datasets, 
respectively.

As shown in Fig. 3, plotting the first and second dis-
criminant factors (F1 and F2) that explained 82.87% and 
17.13% of the total variance by this LDA model showed 
a clear discrimination among seeds of different vigor 
classes that started to germinate at different times. The 
plot showed that seeds of the three vigor classes were 
mostly separated and well differentiated from each 
other especially the ‘Early’ seeds (germinated within 
48  h), which entirely located on the positive scores of 
F1. The ‘Medium’ and ‘Dead’ seeds could be noticeably 
located on the negative scores of F1. The majority of 
the ‘Medium’ seeds were located on the negative scores 
of F2; meanwhile most of the ‘Dead’ seeds lied on the 
positive scores of F2. However, there were some inter-
actions between these two later classes due to partial 
variation among individual seeds in terms of their orig-
inal physicochemical properties. In general, classifica-
tion results of training, cross–validation the validation 

Table 3  Confusion matrices of the LDA model for class membership of ‘Germinated’ and ‘Non-Germinated’ cowpea seeds 
in training, cross validation and validation sets

Group Training set (n = 401) Cross-validation set (n = 401) Validation set (n = 100)

Germinated Non-
Germinated

% Correct Germinated Non-
Germinated

% Correct Germinated Non-
Germinated

% Correct

Germinated 267 21 92.71 259 29 89.93 71 5 93.42

Non-Germinated 52 61 53.98 55 58 51.33 14 10 41.67

Overall correct clas‑
sification

81.80 79.05 81.00

Table 4  Confusion matrices of  the  LDA model built for  class membership of  cowpea seeds to  produce ‘Normal’ 
and ‘Abnormal’ seedlings in training, cross validation and validation sets

Group Training set Cross-validation set Validation set

Normal Abnormal % Correct Normal Abnormal % Correct Normal Abnormal % Correct

Normal 130 65 66.67 124 71 63.59 26 16 61.90

Abnormal 63 143 69.42 72 134 65.05 22 36 62.07

Overall correct 
classification

68.08 64.34 62.00
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sample sets using all LDA models developed in this 
study are summarized in Table 6.

Discussion
The variations in the spectra of aged seeds are ascribed 
to the changes in the physical and chemical properties of 
such seeds. Compared with the non-aged seeds, the aged 

seeds presented lower reflectance (higher in absorbance) 
in the visible region and higher reflectance (lower in 
absorbance) in the NIR region. Such differences in reflec-
tance magnitudes indicate differences in color and chem-
ical composition between aged and non-aged seeds. This 
finding indicates that protein, starch, and other com-
ponents in damaged seeds have changed, thus resulting 

Table 5  Performance of  the  LDA model for  the  classification of  all sets of  seeds based on  seed vigor expressed 
by the period to commence germination

Dataset Early Medium Dead % Correct

Training (n = 401)

 Early 72 16 2 80.00

 Medium 2 137 28 82.04

 Dead 2 30 62 65.96

Overall correct classification (%) 77.21

Cross-validation (n = 401)

 Early 70 18 2 77.78

 Medium 3 135 29 80.84

 Dead 2 134 58 61.70

Overall correct classification (%) 74.93

Validation (n = 100)

 Early 22 2 0 91.67

 Medium 2 29 11 69.05

 Dead 1 16 17 50.00

Overall correct classification (%) 68.00

Fig. 3  Score plot of the LDA model for discrimination cowpea seeds based the starting of germination illustrating the separation of ‘Early’ 
germinated seeds from the ‘Medium’ and ‘Dead’ seeds. Circles around data points were used to improve the clarity of discrimination and do not 
have any mathematical significance
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in changes in the spectra [6]. The variations in the vis-
ible range (375–780 nm) can be attributed to the change 
occurred in the color of the seed, whereas the variations 
in the NIR region (780–970  nm) were due to physico-
chemical changes [35]. However, the discoloration that 
may occur in seeds due to ageing is sometime very dif-
ficult to discern with the naked eyes and it was necessary 
to develop a model to visualize this change in a simple 
form. The chemical changes occurred in cell membrane 
during seed ageing were responsible for a change in seed 
viability and vigor and generate changes in reflectance 
profile at specific spectral regions. It is believed that age-
ing is caused by a significant decrease in embryo cell divi-
sion and expansion either because of unsuitable growth 
environment and/or cell physiology. Also, the seed food 
stores (starch, proteins and lipids) that all are necessary 
for embryo development are also affected by ageing. 
Deterioration of seed membranes are accompanied by 
changes in biochemical compounds such as increases of 
ethanol and fatty acids and dramatic changes in lipids, 
sugar, protein and starch that could be tracked all in the 
visible and NIR spectra. The most influencing factor in 
seed ageing and deterioration is the water binding within 
seed cells seems [36], followed by processes of protein 
and lipid modification [37]. Owing to the overlapping 
nature of the spectra and the complex chemical compo-
sition of seeds, interpretation of absorption bands is not 
straightforward. Therefore, the spectral assignment of the 
absorption bands and their interpretation is fairly com-
plicated due to the presence of various overlapped peaks 
and complex chemical composition of the seeds [38]. 
While absorption bands at 425 nm could be assigned to 
the change in melanin content, the absorption bands at 
940 and 970 nm could be associated with lipid and mois-
ture contents, respectively [39, 40].

The discrimination results between aged and non-
aged seeds presented in Table  2 are in agreement with 
those obtained from PCA illustrated in Fig.  2b indicat-
ing that the physicochemical changes occurred in cowpea 
seeds during ageing were reflected in the spectral signa-
tures of the seeds that facilitate their discrimination. In 

fact, during accelerated ageing lipid peroxidation leads 
to deterioration of cell membranes and reducing seed 
viability. These biochemical changes may be the reason 
for a clear grouping between aged and non-aged seeds 
when performing principle component analysis and lin-
ear discriminant analysis [13]. The degree of overlap-
ping observed between aged seeds (AA24, AA48, AA72 
and AA96) could be ascribed to the differential rates of 
deterioration of individual seeds, which in turn could be 
associated to initial health, vigor and size of these seeds. 
The variability in seed size within a seed lot was the 
main source of the variation in seed deterioration during 
accelerated ageing because the smaller seeds deteriorate 
faster than larger seeds [41]. In general, the results dem-
onstrated that the visible and NIR spectral data extracted 
from multispectral images of cowpea seeds contained the 
required chemical information for rapid discrimination 
of non-aged seeds and sorting out the aged seeds. This 
result is of great significance in improving seed quality by 
excluding naturally aged seeds due to severe and unstable 
storage conditions and those seeds severely desiccated 
just before harvesting. Also, the importance of this dis-
criminant model is also very significant in predicting the 
optimum conditions required for preserving seed quality 
during storage and for making a decision on the longest 
duration of seed storage without deterioration.

The loss of seed quality and viability depends basically 
on the duration of the ageing process, conditions of stor-
age and characteristics of species itself. These factors 
affect the degree of deterioration in cellular membranes 
and damages occurred in seed structures. It is believed 
that biochemical processes of lipid peroxidation are the 
major cause of seed deterioration during ageing and 
cause a decrease in seed germination and loss of viabil-
ity. In addition to these damages, degradative changes in 
insoluble carbohydrates and protein macromolecules led 
to a reduction in seed capacity to absorb water, imbibi-
tion ability and germination capacity. The speed at which 
the seed ageing process takes place depends on the seed’s 
ability to resist such deteriorative changes, which are 
species-specific [42]. Based on the cultivar, longer ageing 

Table 6  Overall correct classification LDA models developed for different classification scenarios of cowpea seeds

No. of classes Seed grouping Overall correct classification (%)

Training (n = 401) Cross-validation 
(n = 401)

Validation 
set (n = 100)

2 Non-aged and Aged 97.51 96.76 97.00

5 Non-aged, AA24, AA48, AA72 and AA96 86.28 82.04 87.00

2 Germinated and Non-Germinated 81.80 79.05 81.00

2 Normal and Abnormal 68.08 64.34 62.00

3 Early, Medium and Dead 77.21 74.93 68.00
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period is expected to cause more severe changes in seed 
integrity and affect the seed overall quality (Table 3). By 
the way, the task of any proposed method of seed quality 
evaluation is to judge the seed integrity based on differ-
ent morphological and physicochemical parameters. This 
finding is in agreement with those obtained in different 
seed species. In this regard, multispectral imaging in the 
visible and near infrared regions (375–970  nm) with 19 
wavelength bands has been tested in viability detection of 
castor (Ricinus cummunis L.) seeds. The results revealed 
that viable seeds were distinguished from dead seeds 
with accuracy of 92 and 96% in the calibration and vali-
dation data sets, respectively. This result was confirmed 
by tetrazolium test performed on cut seeds, in which a 
similar pattern as for the whole seed was observed [18]. 
Moreover, the main challenge is to utilize the spatial 
and spectral information extracted from multispectral 
images of cowpea seeds in predicting the ability of such 
seeds to produce normal seedlings with healthy seedling 
essential structures (roots, cotyledons, primary leaves, 
terminal bud, epicotyl and hypocotyl). An abnormal 
seedling is defined when one or more of the essential 
seedling structures is impaired or missed. Such abnor-
mal seedlings are incapable of giving normal growth and 
are therefore incapable of developing into healthy plants 
in the field. In this regard, the results revealed that the 
accuracy of the LDA model designated to discriminate 
between seeds that produce normal seedling and seeds 
that developed abnormal seedling (Table  4) was mod-
erate with overall classification accuracy of 68.08, 64.34 
and 62.00% in training, cross-validation and validation 
datasets, respectively. In fact, this model needs some 
improvements by utilizing some other models such as 
quadratic discriminant model or non-linear models 
could be examined to enhance the overall classification 
accuracy. Also, extracting some textural features of the 
seeds at certain wavebands could have positive effect in 
increasing the accuracy of the classification models. In 
this regard, Shetty et al. [26] investigated the potential of 
multispectral imaging in predicting germination capac-
ity and germ length of spinach seeds. They reported that 
combining spectral data such as the mean, median, mini-
mum, maximum and standard deviation values of reflec-
tance intensities of the seeds with texture features such 
as entropy angular second moment, contrast and cor-
relation improve the accuracy of the classification mod-
els. Their results revealed also that larger seeds had not 
only higher germination potentials but also bigger germ 
length compared with smaller seeds.

The accelerated ageing process results in seeds char-
acterized by reduced ‘speed’ of germination, and poor 
seedling development. The term vigor is used to describe 
the physiological characteristics of seeds that control its 

ability to germinate ‘rapidly’ in the soil and to tolerate 
unfavorable environmental conditions. Apparently, the 
initial stage of seed growth is very significant for further 
development and survival under severe environmental 
conditions. As the extreme conditions of artificial seed 
ageing caused significant decline in germination, the high 
vigor seeds are expected to tolerate high temperature and 
humidity (i.e. ageing conditions) while retaining their 
capability to produce normal seedlings [42]. The seeds 
high in vigor generally provide early and uniform stands, 
indicating that the seeds have the potential to produce 
vigorous seedlings under favorable conditions. Therefore, 
in this study, the time taken by a seed to start germina-
tion could be considered as a parameter for seed vigor, 
and seeds that showed early germination were consid-
ered to be more vigorous [9]. In this regard, the computer 
vision system was extremely significant in identifying the 
seeds which germinated first. The computer-vision sys-
tem imaged the seeds repeatedly in the same position 
allowing algorithms to identify minor changes, and to 
disregard changes associated with mould or seed expan-
sion due to water uptake, which should not be scored as 
germination [10]. In fact, identifying the most vigorous 
seeds that early germinated within 48  h after sowing is 
very important from different prospective because quick 
formation of assimilation surface and root system in 
early stage of plant life gives these plants certain advan-
tage during later stages of development and growth. As 
some of the aged seeds germinate at later stage, this indi-
cates that the seeds usually loss their vigor as a result of 
seed degradation, followed by loss of germination and 
viability. As the ageing process of the seeds affects their 
viability, germinating capacity and vigor, it was neces-
sary to visually discriminate the aged and non-aged seeds 
in an easy way. However, visual inspection of cowpea 
seeds indicated that it was very difficult to discriminate 
between the aged and non-aged seeds based only on their 
color as shown in the first row of Fig. 4. Also, the absorp-
tion peaks of the visible NIR spectra of the seeds were 
very broad and overlapping (Fig. 2a), making discrimina-
tion impossible based on single wavelength visualization 
due to large hidden information in all spectral range. To 
exploit the full power of multispectral imaging, it was 
extremely important to recognize whether a cowpea seed 
was aged or not by transferring the discriminant model to 
every single pixel in the image to visualize the difference 
of seed categories in the images. The LDA model only 
keeps all important wavelengths necessary to distinguish 
the categories of cowpea seeds receiving different age-
ing regimes and discards the other collinear wavelengths 
that are unnecessary in discrimination. The three-dimen-
sional multispectral image cube Iijk acquired at 20 spec-
tral bands was unfolded first to a two-dimensional matrix 
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M(i×j)k in which each row represents the spectral sig-
nature of one pixel in the original image. The linear dis-
criminant function resulting from the LDA model was 
then applied to this two-dimensional matrix M(i×j)k to 
produce a one-row vector R(i×j) having distinct values 
corresponding to the predicted class for every row. A 
simple color mapping was then applied on the resulting 
values of this vector R(i×j) in which the blue color rep-
resents ‘Background’, green represents ‘Non-aged’ class 
and red represents the ‘Aged’ class. The mapped vector 
was then refolded back to a 2-D form for visualizing dif-
ferent seed classes appeared in the image. The resulting 
images were called the ‘Classification images’, which were 
very easy to understand and visually simple to interpret 
as shown in the second row of Fig.  4. The advantage of 
these developed LDA models is that they are not exclu-
sively dependent on the VideometerLab3 multispectral 
imaging system used in this study as the other built-in 
transformation tools reported by other authors [18, 20, 
22, 23], but it can be freely used in any multispectral 
imaging systems utilizing the same configuration of the 
image acquisition scenario. Although the sample size was 
different in each class, this is not necessarily to negatively 
affect the accuracy of the LDA models in every individual 
class as there is no reliable empirical evidence to support 
the claim that unbalanced data set has a negative effect 
on the performance of LDA [43]. For instance, in case of 
the LDA model developed for the discrimination of cow-
pea seeds based on the starting of germination to three 
classes (Early, Medium and Dead), one can find that the 
number of samples in these classes were unbalanced with 
90, 167 and 94 seeds in the training set and 24, 42 and 34 

seeds in the validation set (with the ‘Medium’ class hav-
ing a large number of samples compared to the other two 
classes). However, the performance of the LDA model 
was 80, 82, 65% in the calibration set and 91, 69.05 and 
50% in the validation set. Therefore, the criterion used 
in this study to evaluate the accuracy of the LDA models 
was the overall accuracy of the model in identifying the 
identity of the seeds in all classes.

In fact, showing the classification maps in this repre-
sentation is very important to easily detect seeds hav-
ing peculiar features and eliminate them from the whole 
seed lots. This could be used for high throughput imag-
ing, particularly where the identification of abnormal 
seeds is of great importance. Considering the short time 
of image acquisition and limited sample preparation, this 
stat-of-the art multispectral imaging method and chem-
ometric analysis in classifying seeds could be a valuable 
tool for on-line classification protocols in cost-effective 
real-time sorting and grading processes as it provides not 
only morphological and physical features but also overall 
information for the seeds being examined.
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