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Abstract 

Background:  Selecting for drought tolerance in urban tree species can have a significant influence on survival rates, 
aftercare requirements and performance. The water potential at turgor loss point (πtlp) is gaining popularity as a trait 
to help determine drought tolerance to aid tree selection. Therefore, it is important to understand if differing methods 
used to measure or calculate πtlp deliver consistent results.

Results:  The sensitivity of three methods used to determine this valuable selection parameter were evaluated. A 
classical pressure chamber, pressure–volume (P–V) curve method was compared with vapour-pressure osmometer 
(Vapro®) and dewpoint hygrometer (WP4C) methods. These methods were evaluated using closely related cultivars 
of Acer platanoides and A. pseudoplatanus ‘Negenia’.

Conclusion:  Both the osmometer and hygrometer methods ranked genotypes with a very high similarity (Rs = 1, 
R2 = 0.96) and were able to identify significant differences between cultivars. This is the first study to demonstrate 
suitability of the dewpoint hygrometer in comparison to the vapour-pressure osmometer to measure πtlp. The P–V 
method was unable to identify differences between the cultivars tested. The Vapro and WP4C provide greater applica-
bility than the conventional P–V method to studies requiring both high throughput and high sensitivity. Consistency 
of measurement type is however highly recommended in future studies as some differences were observed between 
Vapro and WP4C.
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Background
Trees within the urban environment often experience 
abiotic stresses [1–3]; that in-turn, can increase suscep-
tibility to pest and diseases [4]. Selecting for drought 
tolerance in urban tree species can have a significant 
influence on survival rates, aftercare requirements and 
future aesthetic and environmental benefits [5–7]. Tree 
selection is often focused on aesthetic characteristics [8], 
however, when tolerance is considered it is often based 
on personal experience and observation. Data from 
plant-use literature and scientific studies is frequently 
inconsistent between sources and often lacks speci-
ficity [5, 9]. Increases in the frequency and severity of 
drought events are expected as a result of climate change 

[10–12]. Informed tree selection based on physiological 
or genetic drought tolerance traits is therefore increas-
ingly desirable, facilitating selection for current and 
future environmental demands [13]. Foliar physiological 
traits are gaining popularity as they can determine physi-
ological drought tolerance as opposed to drought avoid-
ance strategies [5]. Genotypes which avoid drought may 
shed leaves or branches in response to drought stress or 
rely on extensive root systems to gather water [14, 15], 
these strategies are not desirable for urban sites. Urban 
tree selection is clearly more nuanced than simply con-
sideration of functional traits; however, improvements 
to current tolerance information is essential to aid and 
encourage appropriate selection [16]. One physiologi-
cal trait capable of identifying drought tolerance is the 
measurement of leaf water potential at wilting or turgor 
loss (πtlp) [17, 18]. This trait is capable of characterising 
intraspecific drought tolerance [5]. Techniques are now 
available to increase the speed of this measurement [19] 
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facilitating ecological scale studies [20] and studies to 
aid appropriate tree selection between and within genera 
[5, 9, 21]. Therefore, a range of approaches are currently 
being used to determine πtlp. However, no study has eval-
uated the sensitivity of these alternative methods among 
closely related cultivars. In this study, the so-called direct 
measurements, using a vapour-pressure osmometer and 
dewpoint hygrometer to measure water potential are 
compared with a classical pressure–volume (P–V) curve 
method, measured on adjacent leaves. In this study, 
closely related genotypes are used to allow the sensitivity 
of measurement method to be evaluated.

P–V curves are the classical method of inferring a 
range of plant-water relation parameters [22] and can 
provide information on genotypic drought tolerance 
using the parameter πtlp [18, 23, 24]. A more negative 
πtlp lengthens the functional range of foliar water poten-
tial [25] and is thought to be achieved by a combination 
of osmotic adjustment (solute accumulation to increase 
cell hydration) and elastic adjustment (decreasing the 
point at which turgor loss occurs) [26, 27]. πtlp is now 
considered the dominant determining factor of drought 
tolerance [18, 27]. The production of P–V curves has 
one significant disadvantage; they are time-consuming 
to produce, meaning adequately large scale studies and 
genetic screening are impractical [26, 28, 29]. Addition-
ally, despite P–V curves being widely regarded as the 
classical method for determining water relation param-
eters, the comparative accuracy between methods has 
been frequently criticised [30, 31]. Warranting further 
studies investigating alternative methods of measuring 
water potential (Ѱ) in plant tissue [28, 32, 33].

Direct measurements (vapour-pressure osmometer 
and dewpoint hygrometer), are rapid methods used to 
determine water potential [28]. The dewpoint hygrom-
eter (such as the WP4C, decagon devices Inc. München, 
Germany) uses the chilled-mirror dewpoint technique 
[34] measuring water potential from zero to − 300 MPa 
on ca. 35 mm diameter leaf discs [35, 36]. The dewpoint 
hygrometer measures the sum of osmotic and mat-
ric potential; it has been used successfully on leaves of 
tobacco and ivy [35] and flowers of slipper orchid [37]. 
Relative difference between dewpoint hygrometer and 
pressure chamber measurements of water potential 
have been shown to be very similar (R2 = 0.84) [33]. The 
vapour-pressure osmometer (Vapro®, Wescor, Logan UT, 
USA) measures solute concentration (osmolality) which 
can be converted to water potential using the Van’t Hoff 
equation  (Eq.  1); it can measure leaf discs of ca. 8  mm 
diameter [20, 28] or expressed sap [28, 38]. Callister 
et al. [28] show osmometer osmotic potential (π) meas-
urements of expressed sap are comparable with those 
of parallel π pressure chamber readings. Bartlett et  al. 

[19] show that measurements of π on rehydrated freeze-
thawed leaf discs can rapidly determine the osmotic 
potential at full rehydration or full turgor (π0). Bartlett 
et al. [19] also demonstrated that π0 correlates to the πtlp. 
They used vapour-pressure osmometer measurements 
taken from plants which had pressure chamber derived 
P–V curves, determined within 4 weeks of each other, for 
sixteen species. However, for fourteen additional species, 
the P–V curves had been calculated within the previ-
ous 2 years [19]. Significant adjustment of πtlp is known 
to occur across a single season [5]; however, additional 
meta-analysis has also shown a good correlation between 
π0 and πtlp [18], adding further validity to the measure-
ment despite potential issue with the timing of the initial 
data collection. Sufficient evidence now exists to warrant 
large scale evaluations of πtlp, calculated from π0, using 
a vapour-pressure osmometer [5, 9, 20, 21]. However, it 
is not yet clear if a dewpoint hygrometer can be used to 
evaluate πtlp. Therefore, this study aims to evaluate the 
accuracy of osmometer and hygrometer measurements 
in direct parallel to P–V curves using very closely related 
Acer genotypes.

Method
Plant material
Thirty-two seven-year-old, 4  m tall trees were used for 
this experiment arranged across three completely rand-
omized linear rows. The following Acer genotypes were 
measured during this trial: A. platanoides ‘Drummondii’, 
A. p. ‘Emerald Queen’, A. p. ‘Royal Red’, A. p. ‘Princeton 
Gold’ and A. pseudoplatanus ‘Negenia’. All measured 
cultivars were grafted onto their respective species-
type rootstocks. Trees were potted during the winter of 
2013/14 and grown at Barcham Trees nursery, Ely, Cam-
bridgeshire, UK (52.366923°N, 0.315864°W) prior to 
being planted outside in March 2017 at the Bartlett Tree 
Research laboratory, Shinfield, Reading, Berkshire, UK 
(51.412393°N, − 0.937909°W). Encircling roots were cut 
on all trees to aid establishment during the planting pro-
cess. Trees were arranged across three rows, each meas-
ured cultivar was randomized within each row.

Sample preparation
Two visually healthy leaves were removed ca. 30  cm 
below a terminal bud on the lower limb (ca. 2  m high) 
of each tree; opposite leaves were selected to ensure the 
closest similarity in physiological age. Leaves were col-
lected between 16:00 and 17:00 on the 24th July to the 9th 
of August 2017. Leaves were removed from the tree by 
snapping at the axil union and immediately returned to 
the laboratory (within < 2 min). In the laboratory, leaves 
were immediately weighed and petioles re-cut underwa-
ter (ca. 1 cm away from the petiole base), petioles and cut 



Page 3 of 6Banks and Hirons ﻿Plant Methods           (2019) 15:34 

petiole portions were left in water to fully hydrate in the 
dark for ca. 12 h. Hydrating leaves were left in an insu-
lated container during this time kept near 100% relative 
humidity [average vapour-pressure deficit [39] equalled 
0.01 (± 0.03)]. Individual, fully hydrated leaves were 
removed from the container, patted dry and immediately 
weighted and processed using either the pressure cham-
ber P–V curve method or direct methods.

Pressure–volume curves
Pressure–volume curves were calculated in accordance 
with the sap expression method; the method was similar 
to that used by Parker and Pallardy [31]. Whole undam-
aged leaves were sealed inside a pressure chamber (model 
600D, PMS instruments Co., Albany, USA) with a piece 
of damp filter paper to reduce water loss. The average ini-
tial balance pressure was − 0.13  MPa (± 0.007). Leaves 
which did not hydrate to an initial Ѱ of > − 0.2 MPa were 
discarded [25]. Incremental pressures of 0.2  MPa were 
applied to the leaf, beginning at 0.2 MPa. P–V curves were 
halted at − 2.4 MPa or when greater than three data points 
were in the linear portion of the graph. Total expressed 
sap at each pressure was absorbed in pre-weighed 1.5 ml 
Eppendorf tubes filled with dry low-lint absorbent tissue 
paper (Kimtech Science, Kent, UK). Tubes were handled 
and opened for the minimum possible time during sap 
collection to prevent evaporation. Leaves were weighed 
immediately following the final measurement, facilitat-
ing determination of the average uncollected water (4.7%). 
Leaves were then dried for > 48  h at 60  °C. P–V curves 
were plotted as 100-RWC (relative water content) (D) on 
the x axis, against − 1/MPa (y axis). Overhydration, or pla-
teau effects were corrected where appropriate in accord-
ance with the method described by [40]. Water potential 
at the turgor loss point (πtlp) was calculated based on a 
method developed by Schulte and Hickley [41], obtained 
from: landflux.org/resources/PV_Curve_Fitting_5.6.xls. 
This method has also been used by [42–44] (Fig. 1). 

Direct measurements
Two leaf discs, 35  mm and 8  mm diameter, (dewpoint 
hygrometer and vapor pressure osmometer respectively) 
were taken between the mid-rib and margin on the lower 
quartile of the opposing leaf used in the P–V curve. Leaf 
discs were foil wrapped and submerged in liquid nitro-
gen. Prior to the measurement, leaf discs were punctured 
10–15 times with sharp-tipped forceps to improve equili-
bration times [19].

Dewpoint hygrometer (WP4C, decagon devices Inc. 
München, Germany) measurements were taken with the 
device in its continuous mode, connected to the AquaL-
ink data logging software (decagon devices) on a lap-
top computer. One measurement per leaf was recorded 
when values became stable (ca. 15–20  min.). Stability 
was assessed graphically for each leaf disc. The WP4C 
measures total water potential which is the sum total of 
gravitational, matric, osmotic and pressure potentials. 
In freeze thawed leaf discs it is putatively assumed that 
gravitational, matric and pressure potentials are all zero 
or negligible, therefore, in this study, osmotic potential is 
the considered component.

Osmometer measurements were taken with a vapour 
pressure osmometer (Vapro 5600, Wescor, Logan UT, 
USA) using the standard 10  µl chamber. Measurements 
were made in accordance with the method detailed by 
Sjöman et al. [9].

For measurements made using the Osmometer, sol-
ute concentration (mmol  kg−1) was converted to water 
potential using Van ‘t Hoff’s equation: 

Equation 1 Van ‘t Hoff equation, where C is the molar 
solute concentration (mmol kg−1), R is the universal gas 
constant (8.3144598E−0.6) in m3 MPa  K−1 mol−1, T is 
the temperature (K) [45].

Dewpoint hygrometer and vapor pressure osmom-
eter are hereafter referred to as WP4C and Vapro for 
simplicity.

Both direct measurements of osmotic potential (π) 
were converted into predicted P–V value ( π̂pv ) using the 
equation determined by Bartlett et al. [19] (Eq. 2).

Equation 2 conversion from osmometer measurement 
(π) to predicted P–V ( π̂pv ) measurement [19].

πtlp was calculated from π0 using the regression equa-
tion adapted for temperate species by Sjöman et  al. [5] 
originally calculated from Additional file 1 published by 
[18].

Equation  3 Adapted equation facilitating predic-
tion of πtlp (ѰP0) from osmometer π0 (Ѱπ100) (R2 = 0.91) 

(1)π0 = −CRT

(2)π̂pv = 0.587π − 0.546

(3)πtlp = −0.2554 + 1.1243× π0

Fig. 1  Representative pressure–volume curve. The square indicates 
the turgor loss point
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(notation in parentheses is the notation used by Sjöman 
et al. [5]. The notation used here correspond to Bartlett 
et al. [18].

Statistical analysis
Statistical analysis was performed using GenStat 17th 
edition. Following tests for normality, analysis of vari-
ance (ANOVA) was used to test for differences between 
means. Linear regression (R2) and Spearman’s rank cor-
relation coefficient (rs) was also calculated in order to 
describe the relationship between readings. Post-hoc 
analysis was performed using a Tukey’s 95% confidence 
interval.

Results
A significant effect of both genotype and measurement 
method (p ≤ 0.001 for both) was observed. However, a 
significant interaction between genotype (cultivar) and 
method was observed following a two-way ANOVA 
(p ≤ 0.001). Data was therefore compared overall with 
cultivars nested within measurement method.

Similarities between measurements was determined 
using a correlation coefficient (R2) and Spearman’s rank 
correlation coefficient (Rs). P–V measurements were 
excluded from correlation comparisons as no significant 
differences were discovered between cultivars. The Vapro 
and WP4C provided the same rank (Rs = 1) and highly 
similar correlation coefficient (R2 = 0.96). Values of π0 
provided the same comparative ranking as πtlp.

Correcting measurements using Eq. 2 is highly impor-
tant, especially if values are to be compared against P–V 
curve data. Equation 2 improved similarity to P–V curves 
by an average of ca. 5% for both Vapro and WP4C. How-
ever, in this study significant and species-specific differ-
ences occurred with both devices when compared to the 
P–V method (Fig. 2).

Discussion
In this study, the pressure chamber pressure–volume 
(P–V) curve method was unable to identify significant 
differences between the closely related cultivars tested 
(p = 0.938). However, both direct measurements tested 
(WP4C and Vapro), identified highly significant dif-
ferences between cultivars (p ≤ 0.001). This is the first 
study to our knowledge to demonstrate the suitability 
of the dewpoint hygrometer (WP4C) in comparison to 
the P–V curve and vapour-pressure osmometer (Vapro) 
methods when measuring πtlp. Significant differences 
between measurement methods were present for all cul-
tivars except A. pseudoplatanus ‘Negenia’ (p = 0.092) and 
A. platanoides ‘Princeton Gold’ (p = 0.112) despite the 
use of the correction factor described by Bartlett et  al. 
[19] (Eq. 3). No difference in rank however was observed 

between the WP4C and Vapro (Rs = 1). The Vapro 
returned results comparably closer to those from P–V 
curves. The Vapro and WP4C differed from P–V values 
at an average 0.04 MPa (± 0.055) and 0.20 MPa (± 0.057) 
respectively, these differences are not however thought to 
be practically significant for species selection. Therefore, 
either device can be utilised for tolerance studies.

As suggested by Zhang et  al. [37] and Martínez et  al. 
[33] more negative values (average − 26.5%, without cor-
rection, Eq. 3) were observed using both devices in com-
parison to the pressure chamber. Many theories exist to 
explain why thermocouple and hygrometer devices meas-
ure more negatively than pressure chambers, including 
water loss during leaf excision as well as active accumu-
lation of solutes by neighbouring undamaged tissue [33, 
46]. Zhang et  al. [37] however, also discuss simply that 
the measurement is of the air above the sample, thus a 
more negative Ѱ is returned. It is however imperative 
that the air above the sample is in equilibration with the 
sample, consequently we assume Zhang et  al. [37] dis-
cussion is based on the assumption that losses in water 
potential may occur in locations where sample water 
potential is more negative than ambient humidity. There-
fore, a decrease in sample water potential would occur 
in order to reach equilibration. If this was the case, more 
negative values would be expected from the WP4C owing 
to the greater leaf to chamber volume (0.27 mm3 ml−1 vs 
2.3 mm3 ml−1 for WP4C and Vapro respectively); in this 
trial this did not occur.

In some circumstances, utilisation of the Vapro device 
can be recommended; the larger leaf disc size required 

Fig. 2  Showing πtlp for each method, Vapro and WP4 are reported as 
πtlp (P–V) following conversion using Eq. 2. Error bars show standard 
error. Letters denote significant differences (Duncan multiple range 
test) between cultivars nested in method at the 95% confidence 
interval. A. platanoides ‘Drummondii’, A. p. ‘Emerald Queen’, A. p. ‘Royal 
Red’, A. p. ‘Princeton Gold’ and A. pseudoplatanus ‘Negenia’. Between 
species analysis for each measurement method p ≤ 0.001 for Vapro 
and WP4C, p = 0.938 for P–V πtlp
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by the WP4C, reduces the ability to evaluate plants with 
smaller or more complex leaf areas without adaptation of 
the method. Previous studies have also utilised the Vapro 
to evaluate relatively large genotypic selection [5, 9, 21]. 
In future studies, we recommend a process of cross cali-
bration with previous studies using species in common 
in order to place genotypes within the drought tolerance 
continuum.

Conclusion
The Vapro and WP4C provide greater applicability than 
the conventional P–V method to studies requiring high 
throughput and high sensitivity. Data presented here 
reveals the sensitivity of the vapour-pressure osmometer 
and dewpoint hygrometer methods to measure πtlp char-
acterising the drought tolerance of closely related geno-
types. Data identifies no difference in rank between results 
from both WP4C and Vapro. Some significant differences 
were however observed between Vapro and WP4C (Fig. 2) 
therefore consistency of measurement type is recom-
mended in future studies. Poor sensitivity was observed 
when using the P–V method, therefore, future studies 
should utilise either the vapour-pressure osmometer or 
dewpoint hygrometer in order to provide rapid and sensi-
tive genotypic drought tolerance quantifications.

Additional file

Additional file 1.All data, P-V curves raw data, WP4, Vapro, & P-V TLP 
values.
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