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Abstract 

Background:  Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth 
status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for mak-
ing informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) 
and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. 
However, the input variables were derived either from one type of data or from different sensors on board UAVs. 
Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve 
the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30 m flight 
altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 
2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We 
evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the 
stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, 
SVR; extreme learning machine, ELM; random forest, RF).

Results:  Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation 
accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best 
among the SMLR and three machine learning algorithms regardless of using all the original variables or selected vari-
ables by the SMLR. The best accuracy (R2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%) was obtained when applying RF 
to the combination of VIs and canopy height metrics.

Conclusions:  Our findings implied that an inexpensive approach consisting of the RF algorithm and the combina-
tion of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be 
used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estima-
tion of other growth parameters.
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Background
Aboveground biomass (AGB) is a critical indicator in 
crop growth status monitoring and grain yield prediction 
[1]. Accurate and rapid estimation of AGB is crucial for 
the assessment of crop nutrition status and the improve-
ment of crop management strategies. The conventional 
estimation of AGB is based on destructive measurements 
[2], which are not only time consuming and labor inten-
sive, but also hard to apply over large areas [3]. Remote 
sensing as a non-destructive technique has been proved 
to have great potential in AGB estimation for crops, such 
as wheat [4, 5], barley [6], maize [7] and rice [8].

The majority of previous studies on the remote esti-
mation of AGB focused on the use of remotely sensed 
data acquired from ground [4, 8], man-made aircraft [9] 
and satellite platforms [10]. For instance, Cheng et  al. 
[8] reported a R2 up to 0.81 for the relationship between 
the red-edge chlorophyll index (CIRed-edge) and rice bio-
mass using ground-based hyperspectral data. Although 
ground-based remote sensing can yield satisfactory esti-
mation accuracy for crop growth parameters, they are 
costly to acquire and unsuitable for monitoring over 
large areas [11]. In contrast, the satellite platform has 
great advantages in acquiring crop growth information 
over regional and large scales. As reported by Wang et al. 
[12], a high accuracy (R2 = 0.79) could be obtained from 
HJ-1 satellite imagery for the estimation of wheat AGB 
at the anthesis stage over four counties of Jiangsu prov-
ince, China. However, as the growth status of crop varies 
rapidly across critical growth stages, multi-temporal and 
timely acquisition of remotely sensed data is necessary 
for crop monitoring [7]. It is challenging to acquire suita-
ble satellite imagery for monitoring over multiple growth 
stages due to the frequent cloud cover and the inadequate 
spatial resolution matching relatively small field sizes in 
China, especially the lower reaches of Yangtze River [13]. 
Using manned airborne platforms may overcome these 
limitations and acquire images with high temporal and 
spatial resolutions, but it is often complex and costly to 
allocate aircraft and instrument resources.

The advent of unmanned aerial vehicles (UAVs) 
makes it possible to acquire high temporal and spatial 
resolution remotely sensed data in an affordable way. 
In recent years, multiple types of cameras for acquiring 
RGB, color-infrared (CIR), multispectral, and hyper-
spectral images have been mounted on various UAV 
platforms for monitoring crop growth status [14–16]. 
Particularly, much attention has been paid to low-
cost UAV systems consisting of RGB or modified CIR 
cameras and light-weight drones. The low-cost UAV 
systems were widely used due to the most significant 
advantages in affordability, ease of operation, and sim-
plicity in image processing [11, 17–19]. People often 

use the visible or CIR images collected with these low-
cost UAV systems to generate orthophotos and point 
cloud data for crop growth monitoring. While the for-
mer type of data could be used to extract vegetation 
indices (VIs) for estimating crop biophysical and bio-
chemical parameters with moderate accuracies, such 
as biomass [1, 20], the latter could be used to construct 
crop surface models (CSMs) for estimating crop struc-
tural parameters with high accuracies, such as plant 
height (PH) [21, 22].

Previous studies have demonstrated that both VIs and 
canopy height metrics (e.g., height percentiles) derived 
from UAV images are critical variables for estimating 
crop biomass [1, 7]. However, the majority of those stud-
ies utilized either VIs [19, 23] or canopy height metrics 
alone [21] for model establishment [24]. While the VIs 
composed of visible or CIR bands characterized the 
spectral properties of the top canopy, the height metrics 
reflected the vertical structure properties of the entire 
canopy. Although these two types of variables were used 
to extract different sources of information about the 
crop canopy, the performance of either type of variables 
for biomass estimation might be limited by the insensi-
tivity of VIs at high biomass conditions and the stabil-
ity of plant height at reproductive stages [1, 25, 26]. The 
estimation of crop biomass from UAV images might be 
improved by using the two complementary data sources 
simultaneously.

In recent years, there are some attempts to improve 
the estimation of crop biomass by combining VIs and 
canopy height metrics (Table  1). For instance, Ben-
dig et  al. [6] combined the GnyLi index derived from 
ground-based hyperspectral data and canopy height 
metrics acquired from a low-cost UAV system to obtain 
a R2 of 0.82 for barley biomass estimation. Tilly et  al. 
[1] also achieved a high accuracy with the fusion of 
ground-based hyperspectral data and canopy height 
acquired from terrestrial LiDAR data. Nevertheless, 
these studies focused on the combination of VIs and 
canopy height metrics derived from two different sen-
sors, which may limit the applications over large areas 
due to the high cost of an expensive sensor. In con-
trast, Li et  al. [7] reported the fusion of VIs and can-
opy height metrics acquired from a low-cost UAV 
system for the estimation of maize biomass with three 
regression techniques (simple linear regression, step-
wise linear regression and random forest regression), 
but they did not explicitly compare the performances 
among VIs, canopy height metrics and their combina-
tion. Therefore, it remains unclear whether the com-
bined data generated from a single sensor could lead to 
improved estimation of biomass without any additional 
cost in instrumentation. In addition, their data only 
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cover one growth stage of maize and they are inade-
quate for assessing the performance of those input vari-
ables over all critical growth stages.

For the use of the comprehensive information in multi-
ple types of remotely sensed data, multivariate regression 
techniques could be an essential approach for establish-
ing direct relationships between remotely sensed vari-
ables and crop parameters [32], including multiple linear 
regression (MLR) [33], stepwise multiple linear regres-
sion (SMLR) [34] and partial least squares regression 
(PLSR) [5]. However, these regression techniques are 
more suitable for the data that exhibit linear or exponen-
tial relationships between remotely sensed variables and 
crop biophysical/biochemical parameters [35, 36]. More-
over, the VIs and canopy height metrics derived from a 
consumer-grade camera may be redundant and highly 
autocorrelated. In contrast to conventional regression 
techniques, machine learning regression algorithms such 
as random forest (RF) [37], support vector regression 
(SVR) [38] and extreme learning machine (ELM) [39] are 
typically better at handling high-dimensional data and 
the non-linear relationships [40, 41]. Recent studies have 
also found that machine learning algorithms could yield 
higher accuracies for biomass estimation than conven-
tional ones [7, 42].

To the best of our knowledge, few studies have exam-
ined machine learning techniques for the estimation 
of wheat AGB by combining the canopy spectral infor-
mation and vertical structure information from UAV-
derived VIs and canopy height metrics. Since such 
combined data could be obtained from a RGB camera on 
board a small UAV, it becomes necessary to investigate 
the performance of a consumer-grade level UAV system 
at an even lower cost. Thus, the objectives of this study 
were: (1) to examine the feasibility of combining spectral 
indices and canopy height metrics from a RGB camera 
mounted on a consumer-grade UAV for the improved 
estimation of AGB in wheat; (2) to evaluate the perfor-
mance of three machine learning regression techniques 
over critical growth stages and spatial resolutions in 
comparison to the traditional SMLR.

Methods
Experimental design
Two experiments were conducted in the experimen-
tal station of the National Engineering and Technology 
Center for Information Agriculture (NETCIA) located 
in Rugao, Jiangsu province of eastern China (120º45′E, 
32º16′N) (Fig.  1). A total of 36 plots were used for the 
experiments spanning two wheat growing seasons. The 

Table 1  Summary of  published studies on  the  estimation of  plant height and  biomass of  crops from  RGB imagery 
acquired from unmanned aerial vehicles (UAVs)

CC Canopy cover, ER exponent regression, GPM genomic prediction modeling, LR linear regression, MLR multiple linear regression, MNLR multiple non-linear 
regression, MSLR multiple stepwise linear regression, PCA principal components analysis, PH plant height, RF random forest, SfM structure from motion, VIs vegetation 
indices

Reference Crop type UAV Sensors Regression 
method

VIs/SfM Canopy 
characteristic

Best accuracy

Bendig et al. [21] Barley MK-Oktokopter Panasonic Lumix GX1 
(RGB)

ER – Biomass R2 = 0.82

PH R2 = 0.92

Watanabe et al. [27] Sorghum USM-S1 Powershot ELPH 
110HS

GPM – PH r = 0.84

Schirrmann et al. [28] Wheat Hexacopter (P-Y6) Sony Nex 7 LR – Biomass r = 0.68

PCA PH r > 0.80

Iqbal et al. [22] Poppy Oktokopter Canon 550D DSLR LR SfM PH R2 = 0.71

Volume R2 = 0.71

Roth et al. [17] Winter wheat ARF Mikrokopter 
Okto XL

Canon EOS 100D LR None Biomass R2 = 0.74

PH R2 = 0.80–0.84

CC

Bendig et al. [6] Barley MK-Oktokopter Panasonic Lumix GX1 
(RGB) + FieldSpec3

MLR VIs + SfM Biomass R2 = 0.84

MNLR

Kim et al. [29] Cabbage DJI F550 Hexa-rotor Powershot S110 RGB MLR – PH R2 > 0.90

Li et al. [7] Maize Rotor-wing UAV Sony A6000 MSLR VIs + SfM Biomass R2 = 0.78

RF PH R2 = 0.88

Holman et al. [30] Wheat DJI Wookong M Sony Nex 7 – SfM PH RMSE = 3.00 cm

Growth rate

Madec et al. [31] Wheat Hexacopter Sony ILCE-6000 – SfM PH RMSE = 3.50 cm
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plots with a size of 6 × 5 m2 covered different wheat cul-
tivars, planting densities and nitrogen (N) rates. In order 
to avoid the complexity of soil N levels, we applied the 
same N level as that in the preceding rice growing sea-
son for each plot. The detail of experimental design can 
be found as follows.

Experiment 1 was conducted in the winter wheat 
season of 2015–2016 with the sowing date of October 
30, 2015. One wheat cultivar with the erectophile leaf 
type, ‘Yangmai 18’, was used for all plots. Four N rates 
(0, 80, 150, 220  kg  N  ha−1) and three planting densities 
(2.0 × 106 plants ha−1, 1.3 × 106 plants ha−1 and 1.0 × 106 
plants ha−1, corresponding to 0.2 m, 0.3 m and 0.4 m row 
spacings) were applied with three replications. These N 
levels and planting densities could cover the possible 
rates used in local agronomic practices and lead to vari-
ations in AGB, canopy cover and background materials 
between plots. The N fertilizers were applied in 50% as 
basal fertilizer at the sowing day and 50% at the jointing 
stage.

Experiment 2 was conducted in the winter wheat sea-
son of 2016–2017 with the sowing date of November 15, 
2016. Two winter wheat cultivars with different canopy 
structures, ‘Yangmai 15’ and ‘Yangmai 16’, were selected 

to represent planophile and erectophile leaf types, 
respectively. Three N rates (0, 150, 300 kg N ha−1) with 
two planting densities (1.6 × 106 plants ha−1 and 1 × 106 
plants ha−1, corresponding to 0.25 m and 0.4 m row spac-
ings) were applied with three replications. 50% of N fer-
tilizers were applied at the sowing day and 50% at the 
jointing stage.

Data collection
The UAV system for image collection was the DJI Phan-
tom series (Edition 3 in 2015 and Edition 4 in 2016 with 
added obstacle avoidance for flight safety and slight 
upgrade in camera specifications as shown in Table  2), 
both of which represent a low-cost UAV system con-
sisting of a four-rotor drone and a digital camera (SZ 
DJI Technology Co., Shenzhen, China). Before the ini-
tial flight, we set 25 ground control points (GCPs) with 
marked signs on the concrete roads across the study site 
to georeference the UAV images from different growth 
stages. The geographic coordinates were obtained from 
RTK-GPS (Real-Time Kinematic Global Positioning 
System, CHC X900 GNSS) with horizontal and vertical 
errors within 1  cm and 2  cm, respectively. In our cam-
paigns, the UAV was set to automatic flying mode and 

Fig. 1  Location of the experimental site and layout of the field plots randomly distributed with treatments in nitrogen level, wheat variety and 
sowing density. The orthophoto on the right was captured with the UAV system at the anthesis stage of wheat on April 22, 2017. Note: GCP 
ground control point, SP sampling region; D1 = 0.25 m, D2 = 0.4 m, N0 = 0 kg N ha−1, N1 = 150 kg N ha−1, N2 = 300 kg N ha−1, V1 = ‘Yangmai 15’, 
V2 = ‘Yangmai 16’
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followed pre-defined flight plan to acquire imagery with 
approximately 80% forward overlapping and 60% side 
overlapping. The images were captured in an automatic 
mode at 1 frame per 5 s with the JPEG format. The ISO 
of camera was set to 100 and the best exposure was set 
based on the weather condition. The aperture of camera 
was the default with f/5. The same flight path and camera 
setup excluding exposure time were applied to the whole 
season. The UAV was flown over the study site at criti-
cal growth stages (Table  3) at the height of 30  m above 
ground level. The speed of UAV was set at 0.5  m/s and 
it took about 12  min cover the whole study area. Each 
flight campaign was carried out at 11:00  am–14:00  pm 
local time during sunny day and acquired approximately 
58 images with a spatial resolution of 1.66 cm. In order to 
generate digital terrain model (DTM) of the study site, an 
extra flight campaign was conducted after wheat sowing 
on November 16, 2016.

Field sampling of AGB from the 36 plots were con-
ducted within 1  day of the UAV campaigns. Since the 
destructive sampling was conducted four times in each 
growing season, only a total of 30 plants were randomly 
harvested from each sampling region in Fig.  1 to rep-
resent each of the homogenous plots. The plants from 
each plot were harvested from above the ground and 
then separated into leaves, stems and panicles (for post-
heading stages only). All components were oven-dried at 
105 °C for 30 min and afterwards at 80 °C for about 48 h 
until a constant weight. The dry biomass of wheat organs 
(leaves, stems and panicles) was weighted, respectively. 

Moreover, the number of plants per unit ground area 
was also counted manually in the experimental fields. 
The AGB in tons per hectare (t/ha) was determined as 
the product of the dry weight per sampling plant and 
the number of plants per area. The basic statistics of the 
field-measured AGB was shown in Table  4. The plant 
height was measured with a ruler as the distance from 
the bottom to the top of wheat canopy. Five plants were 
randomly selected to represent the canopy height of each 
plot.

Generation of orthophotos and crop surface models
The UAV images were processed within the software 
Agisoft Photoscan 1.2.6 (Agisoft LLC, St. Petersburg, 
Russia) to generate orthophotos and digital surface mod-
els (DSMs). The key processing steps included image 
alignment, camera calibration, construction of dense 
point clouds, and generation of orthophotos and digital 
elevation models (DEMs). Firstly, the software automati-
cally aligned the overlapping images using a feature point 
matching algorithm. Secondly, seven of the twenty-five 

Table 2  Technical specifications of the cameras used in the two consecutive UAV editions for the two wheat seasons

Edition of camera Field of view Image size Focus length Image format

Phantom 3 94° 4000 * 3000 f/2.8 JPEG; DNG

Phantom 4 84° 4864 * 3648 f/2.8–f/11 JPEG; DNG 
(RAW); 
JPEG + DNG

Table 3  Summary of field campaigns for the wheat experiments

Experiment Sowing date Date of UAV flights Date of field sampling Growth stage

#1 October 30, 2015 March 22, 2016 March 22, 2016 Jointing

April 8, 2016 April 9, 2016 Booting

April 17, 2016 April 17, 2016 Heading

April 22, 2016 April 21, 2016 Anthesis

#2 November 15, 2016 November 16, 2016 – –

March 17, 2017 March 18, 2017 Jointing

March 27, 2017 March 28, 2017 Booting

April 12, 2017 April 12, 2017 Heading

April 22, 2017 April 22, 2017 Anthesis

Table 4  Basic statistics of  the  field-measured 
aboveground biomass (AGB, t/ha) of wheat

Year Min. Max. Mean SD

2016 0.75 15.88 5.23 2.89

2017 0.62 12.12 3.86 2.60

Pooled 0.62 15.88 4.55 2.82
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evenly distributed GCPs were used to georeference each 
image. The camera internal parameters were estimated 
in Agisoft Photoscan based on image alignment and the 
GCPs positions. The estimated parameters were then 
used to compensate a linear model misalignment while 
georeferencing the model. Since the top of wheat can-
opy is sharp and small, we chose ‘Mild’ depth filtering 
recommended for reconstructing small details to build 
dense point cloud. Lastly, the orthophotos and DEMs 

used as crop surface models (CSMs) were generated after 
building mesh and texture with default parameters and 
exported as a TIFF image format for subsequent analy-
sis. The details of processing steps and parameter settings 
can be found in Table 5.

Calculation of spectral indices
This study examined ten published VIs for the estimation 
of wheat AGB (Table  6). Most of the selected VIs have 
been related to crop biophysical and biochemical param-
eters, such as LAI [43], vegetation fraction [44], grain 
yield [45], biomass [1, 7], and nitrogen accumulation [11]. 
These VIs were directly calculated using digital numbers 
from the orthophotos. In addition, a region of interest 
(ROI) was delineated from each plot within the ortho-
photos using ArcGIS 10.2.2 (Esri, Redlands, CA, USA) 
to exclude the border effect and the sampling region. The 
mean VIs of each ROI were extracted to represent the 
values of each plot.

Determination of canopy height metrics
To estimate the AGB of wheat, eight canopy height met-
rics (mean, median, standard deviation, coefficient of 
variation and percentiles 25%, 50%, 75%, 95%) were cal-
culated from each canopy height model (CHM) (Table 7). 
The CHM was determined as the difference between 
CSM and DTM excluding outliers for each flight survey. 
The DTM for the entire season was determined from 
the images acquired during the post-sowing flight on 
November 16, 2016, while the CSM was derived from the 
UAV images for each growth stage to reflect crop growth 
dynamics. The same ROIs used for VI calculation were 
applied to the CHMs to extract plot-level canopy height 
metrics within ArcGIS 10.2.2 (Esri, Redlands, CA, USA).

Table 5  Processing steps with  corresponding parameter 
settings in  Agisoft Photoscan software for  generation 
of orthophotos and DEMs from UAV imagery

Task Parameter setup

Aligning image Accuracy: high

Pair selection: generic

Key points: 40,000

Tie points: 4000

Building mesh Surface type: height field

Source data: dense cloud

Face count: high

Positioning guided marker Manual positioning of markers 
on the even 7 GCPs for all the 
photos

Optimizing cameras Default settings

Building dense point cloud Quality: high

Depth filtering: mild

Building texture Mapping mode: Generic

Blending mode: Mosaic

Texture size/count: 4096

Building DEM Surface: Mesh

Other parameters: default

Building orthomosaic Surface: Mesh

Other parameters: default

Table 6  Summary of vegetation indices derived from the aerial orthophotos for the estimation of aboveground biomass 
in wheat

R, G and B represent the digital number of red, green and blue channels, respectively. r = R/(R + G + B), g = G/(R + G + B), b = B/(R + G + B)

Index Name Formulation References

VARI Visible Atmospherically Resistant Index VARI =
g−r

g+r−b
Gitelson et al. [46]

ExG Excess Green Index ExG = 2 * g − r − b Woebbecke et al. [47]

ExR Excess Red Vegetation Index ExR =
1.4R−G
G+R+B

Meyer et al. [48]

ExB Excess Blue Vegetation Index ExB =
1.4∗B−G
G+R+B

Mao et al. [49]

ExGR Excess Green minus Excess Red ExGR = ExG–ExR Neto et al. [50]

GRVI Green Red Vegetation Index GRVI =
G−R
G+R

Tucker et al. [51]

MGRVI Modified Green Red Vegetation Index MGRVI =
G2

−R2

G2+R2
Bendig et al. [6]

GLI Green Leaf Index GLI =
2∗g−r−b
−r−b

Louhaichi et al. [52]

RGBVI Red Green Blue Vegetation Index RGBVI =
G2

−B∗R
G2+B∗R

Bendig et al. [6]

IKAW Kawashima Index IKAW =
R−B
R+B

Kawashima et al. [53]
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Regression techniques
Machine learning algorithms are widely used to han-
dle the strong non-linearity between crop biophysi-
cal/biochemical parameters and remotely sensed 
variables. Compared to parametric regression tech-
niques, machine learning algorithms are well suited 
for establishing predictive models with multiple input 
variables. To establish individual models for AGB esti-
mation using ten VIs, eight canopy height metrics and 
their combination, we used three machine learning 
techniques implemented with the caret package in R 
x64 3.4.0 environment software (R Development Core 
Team, 2017).

RF is an ensemble learning method that combines a 
large number of decision trees to improve the accuracy 
of classification and regression trees (CART) [37]. Each 
tree is built with a deterministic algorithm by selecting 
a random set of variables and a random sample from 
the calibration dataset. RF regression not only handles 
a large number of input variables, but also obtains a 
reasonable prediction accuracy using a small subset of 
variables [10]. In addition, RF regression is beneficial to 
overcome the over-fitting problem of simple decision 
trees. For implementation, the two significant param-
eters (mtry and ntree) need to be optimized to obtain 
the best predictive power.

ELM is a single-hidden layer feed forward neural net-
work (SLFN), whose learning speed is relatively faster 
than the conventional feed forward network [39]. ELM 
is composed of an input layer, a hidden layer, and an 
output layer. Unlike traditional neural network algo-
rithms, ELM aims to reach the smallest training error 
and the smallest norm of output weights [54]. The 
weights of its hidden layer can be randomly generated 
without iterative optimization, which makes it suit-
able for real-time training. In addition, ELM is capable 
of handling complex data and is robust for regressions 
with multiple highly inter-correlated variables. Its 
potential in crop monitoring has been demonstrated in 

a recent study on the estimation of soybean biophysical 
and biochemical parameters from fused multi-sensor 
data [42].

SVR is an effective predictive tool based on the statisti-
cal learning theory [55]. The advantage of SVR is the abil-
ity to handle high-dimensional data and a small number 
of training samples [38]. Many studies in remote sens-
ing have used SVR to estimate crop biophysical and bio-
chemical parameters [56, 57]. As the critical parameter, 
kernel function was set as the radial basis function (RBF) 
to account for the nonlinear relationships in the wheat 
data.

Since the variables derived from UAV images might be 
inter-correlated, simple linear regression as measured by 
Pearson’s correlation coefficients were conducted for the 
relationships between individual variables and their rela-
tionships with AGB. In addition, SMLR was used as the 
reference for evaluating the performance of the machine 
learning algorithms relative to traditional techniques.

Accuracy assessment
Since the goal was to build global models with various 
regression techniques across multiple treatments, growth 
stages, and seasons, we pooled the data from 2 years and 
all growing conditions to form a comprehensive dataset. 
Global models are more practical than local ones since 
frequent model calibrations for different growing con-
ditions could be avoided. The pooled dataset was split 
into two parts with 70% for model calibration and the 
remainder 30% for model validation. The accuracy of 
model calibration was evaluated with the coefficient of 
determination (R2), the Root Mean Square Error (RMSE) 
and akaike information criterion (AIC). The estimation 
accuracies were assessed by the R2, RMSE and the rela-
tive RMSE (rRMSE) with validation data.

Results
Determination of wheat canopy height model
Figure  2 shows a comparison of measured and DSM-
derived elevation for the 25 GCPs as an assessment of the 
DSM elevation accuracy. The RMSE of the GCP elevation 
estimated with UAV images was 0.02  m for the pooled 
data from 2016 to 2017. Subsequently, the PH for the 
field plots derived from the CHM matched well with the 
field measurements (Fig. 3), exhibiting a R2 value of 0.89 
and a RMSE value of 0.06 m for the 2 years. Overall, the 
CHM-derived PH was slightly lower than the measured 
PH (Bias = 0.06 m).

Correlation between UAV‑derived variables
Figure  4 shows a matrix of Pearson’s correlation coef-
ficients (r) for the relationships between UAV-derived 

Table 7  Summary of  canopy height metrics used in  this 
study for the estimation of aboveground biomass in wheat

Input variable Name Formulation

Hmean Mean height
Hmean =

1

n

n
∑

i=1

hi

Hmedian Median height Hmedian = median of hi

Hpercentile Percentile height 25%, 50%, 75%, 95%

Hstd Standard deviation of 
height Hstd =

√

1

n

n
∑

i=1

(hi − Hmean)

CV Coefficient of variation CV =
Hstd
Hmean
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variables and their relationships with AGB. For the 
VI group, eight of the ten VIs showed highly positive 
or negative correlations with extreme r values up to 1 
(GRVI vs. MGRVI, GLI vs. RGBVI, and GLI vs. ExG) 
or -1 (MGRVI vs. ExR and GRVI vs. ExR). VARI and 
ExB were the most strongly and weakly correlated to 
AGB, respectively (VARI: r = 0.79, p-value < 0.0001; 
ExB: r = 0.19, p-value < 0.005). For the height metric 
group, six of the eight metrics showed highly positive 
correlations with the maximum r value up to 1 (P50 vs. 
median, P50 vs. mean, median vs. mean, and std vs. cv). 
The highest correlations with AGB were found for P95 
and P75 (r = 0.83, p-value < 0.05), with the lowest for cv 
(r = 0.07, p-value > 0.05). Generally, these correlations 
were stronger than those of VIs with AGB.

Comparison of AGB estimation performance with the SMLR 
and machine learning techniques
Table  8 shows a comparison of the SMLR and three 
machine learning techniques for the estimation of AGB 
over the critical growth stages. Using the VIs alone, RF 
achieved best calibration (R2 = 0.70, RMSE = 1.51  t/ha, 
AIC = 369.23) and validation (R2 = 0.69, RMSE = 1.61  t/
ha, rRMSE = 34.06%) performance among the three 
regression techniques, while the SMLR achieved the 
similar accuracy (validation: R2 = 0.70, RMSE = 1.58  t/
ha, rRMSE = 34.49%). When using the canopy height 
metrics, the best performance was still found for RF and 
close performance for SVR and ELM. Compared with 
the SMLR, the performance of SVR and ELM was lower 
than the SMLR, while RF achieved the highest accuracy. 
Moreover, this accuracy for RF (Calibration: R2 = 0.73, 
RMSE = 1.44  t/ha, AIC = 398.32; validation: R2 = 0.74, 
RMSE = 1.39  t/ha, rRMSE = 30.95%) was even higher 
than that obtained using the VIs, with an increment of 
0.05 in R2 and 0.22 t/ha in RMSE for the validation data.

The combination of VIs and canopy height metrics 
yielded further improvement for all regression tech-
niques. Their accuracies were significantly higher than 
those achieved with the traditional approach of merely 
using VIs, with a uniform increment of 0.09 in valida-
tion R2 for all three regression techniques. Consist-
ently, RF yielded the highest accuracy in calibration 
(R2 = 0.76, RMSE = 1.34  t/ha, AIC = 369.23) and valida-
tion (R2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%). The 
scatter plots in Fig. 5 shows the data points are generally 
closer to the 1:1 line by combining the VIs and canopy 
height metrics but a small portion of them associated 
with high values of measured AGB are located under the 
diagonal.

Performance for individual growth stages
Figure 6 shows that the performance of AGB estimation 
was inconsistent across individual growth stages for 
the three types of input data and three regression tech-
niques. The accuracy was generally a degradation trend 
from the highest to lowest for jointing to anthesis stage. 
The degradation of estimation accuracy from boot-
ing to heading was the most prominent change for all 
neighboring stages. In addition, the booting stage was 
stable for observing AGB for all three machine learn-
ing algorithms. Among the three regression techniques, 
RF was mostly the best performing one and SVR was 
the most sensitive to growth stage. In contrary to the 
multi-stage situation, using the VIs as the input data 
for RF yielded better accuracies than using the canopy 
height metrics. However, the combination of VIs and 
canopy height metrics consistently performed better 

Fig. 2  Comparison between measured and DSM-derived elevation 
for the GCPs throughout the study site

Fig. 3  Comparison between measured PH and the PH derived from 
DSMs generated with UAV images. The diagonal represents the 1:1 
line. The data points from 2016 and 2017 are denoted in triangles 
and solid circles, respectively. Red, green, blue and magenta symbols 
represent jointing, booting, heading and anthesis stages, respectively
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than either type of input data alone. A similar change 
trend was observed when assessing the accuracies with 
RMSE.

Effect of spatial resolution on AGB estimation
The performance of AGB estimation for a number 
of image resolutions is displayed in Fig.  7. Generally, 
the accuracies were more variable for smaller pixel 
sizes and the comparable accuracy was obtained for 
13.28 cm using canopy height metrics or the combined 
data as input for RF. Canopy height metrics performed 
better than VIs over the series of pixel sizes for AGB 
estimation at each critical growing stage. By combin-
ing the VIs and canopy height metrics, the performance 
was less sensitive to pixel size and their combination 
performed slightly better than the use of VIs and can-
opy height metrics alone.

Discussion
Comparison of SMLR and the machine learning techniques
SMLR is a commonly used method for selecting explana-
tory variables in multivariate regression and is prone to 
overfitting in quantifying vegetation parameters [34]. 
Our results demonstrated that the performance of SMLR 
was worse than that of RF and comparable to those of 
SVR and ELM, which was consistent with the findings in 
Li et al. [7]. The stable regression performance of SMLR 
was probably attributed to the relatively small number of 
input variables (no more than 18) as compared to hun-
dreds or thousands of bands in spectroscopy analysis 
[58]. To evaluate its performance in variable selection, we 
tested the machine learning regression techniques with 
the variables selected by SMLR as the input data. The 
calibration and validation accuracies with selected vari-
ables (Table 9) were not consistently higher across three 
groups of input variables than those with all the original 

Fig. 4  Pearson’s correlation coefficient (r) between AGB and individual UAV-derived vegetation indices and canopy height metrics. The underlined 
numbers represent statistical non-significance (p > 0.05)
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variables (Table  8), which means the variable selection 
did not help improve the regression performance signifi-
cantly. In fact, variable selection for the machine learn-
ing algorithms would not only increase the complexity 
of data processing, but also bring the uncertainty due to 
the deficiency of high inter-correlated variables. Using all 
the 18 variables for the combined data would make a big 
burden since the machine learning algorithms are able to 
handle high-dimensional data. Since variable selection 
may be useful for reducing the data volume in case of 
large data sets, future research may include searching for 
advanced selection procedures other than SMLR.

The improvement from the combination of VIs and canopy 
height metrics
The use of VIs represents a widely used approach to esti-
mating crop AGB from UAV images, but its performance 
remains to be improved, especially when only RGB 
images are available. The reasons for the lower accuracy 
obtained by using VIs alone can be attributed to three 
aspects. Firstly, the VIs were derived only from the RGB 
bands and the lack of near-infrared (NIR) bands pre-
cluded the enhancement of contrast in vegetation vigor 
[19, 59]. Secondly, VIs were prone to saturate in high 
biomass conditions [60]. Thirdly, VIs were directly calcu-
lated from digital number (DN) images and it was hard 
to convert DNs to reflectance due to the wide spectral 
ranges of visible bands and inaccurate spectral response 
functions [11]. Moreover, the spectral information in 
the VIs was mainly from the leaves or panicles in the top 
layer of wheat canopies. Since the AGB in wheat encom-
passed the biomass of leaves, stems and panicles, the VIs 

might not reflect the information from stems that have a 
higher proportion of AGB compared to leaves in the mid-
dle to late growing season.

Canopy height is an important metric for character-
izing vertical structure. Previous studies have shown a 
moderate relationship between canopy height and bio-
mass for barley [1], grassland [61], maize [7]. This was 
confirmed by the good performance of canopy height 
metrics in the current study, even though the CHM-
derived plant height was slightly lower than the field 
measurements (Fig.  3). Similar underestimations were 
also reported by Bendig et  al. [21]. The reasons for the 
underestimations could be explained in two aspects. 
Firstly, recurring wind in the field might blow the leaves 
in the canopy so that the position of the same leaves 
would change in overlapping images. Secondly, the top of 
a wheat plant was sharp and it was challenging to capture 
the canopy top at the spatial resolution of 1.66 cm in the 
UAV images.

The VIs and canopy height metrics used in this study 
were separately derived from orthophotos and CSMs, 
which were both generated with overlapping RGB images 
acquired from a consumer-grade UAV system. The 
orthophotos recorded canopy surface spectral properties 
in three visible bands [7], while the CSMs characterized 
canopy vertical structure [59, 62]. Combining VIs and 
canopy height metrics as the input data for regression 
techniques enabled the use of two types of information 
sources which are spectral information and structural 
information. Our results suggest that the use of combined 
information exhibited better performance for AGB esti-
mation than the use of spectral or structural information 

Table 8  Accuracy assessment for the estimation of AGB in wheat from vegetation indices, plant height metrics and their 
combination with SMLR and three machine learning techniques

The accuracy metrics were calculated from calibration data and validation data separately. The number in bold for each column represents the maximum R2, minimum 
RMSE, minimum AIC and minimum rRMSE, respectively

Input variables Technique Calibration (N = 201) Validation (N = 85)

R2 RMSE (t/ha) AIC R2 RMSE (t/ha) rRMSE (%)

VIs SMLR 0.69 1.52 742.63 0.70 1.58 34.49

SVR 0.69 1.53 696.27 0.64 1.75 38.13

ELM 0.69 1.52 759.25 0.64 1.73 37.27

RF 0.70 1.51 423.87 0.69 1.61 34.06

Canopy height metrics SMLR 0.68 1.53 747.72 0.72 1.54 33.61

SVR 0.68 1.56 708.20 0.70 1.55 33.71

ELM 0.65 1.65 751.30 0.71 1.55 33.63

RF 0.73 1.44 398.32 0.74 1.39 30.95

VIs and canopy height metrics SMLR 0.72 1.43 717.41 0.75 1.46 31.77

SVR 0.71 1.50 592.05 0.73 1.51 33.10

ELM 0.72 1.45 733.02 0.73 1.51 32.77

RF 0.76 1.34 369.23 0.78 1.34 28.98
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alone. Li et al. [7] investigated the combination of spec-
tral and structural information for AGB estimation in 
maize, but they did not provide an explicit comparison 
among the three types of input data. Their study only 
covered one growth stage in maize and did not consider 
the performance of the combined information for multi-
ple growth stages. Our study used a combination of ten 
VIs and eight canopy height metrics to estimate wheat 
AGB for the critical growth stages for 2  years. Such a 
number of input variables for the regression techniques 
provided sufficient spectral information about the top 
canopy and the structural information about the canopy 
vertical gradient.

The optimal spatial resolution for AGB estimation
This study used the RGB imagery acquired with a low-
cost UAV system to estimate AGB and obtained a R2 
up to 0.78 for the multiple growth stages with the RF 

regression technique. Such high resolution images 
(1.66 cm pixel−1) would have to be collected at low alti-
tudes with that system, which may be a limiting factor 
for the efficiency of image collection over large areas 
[63]. This problem can be overcome by using a higher 
resolution camera or flying at a higher altitude. Nev-
ertheless, a higher resolution camera may lead to the 
increase in cost and weight, which may shorten the 
UAV flight duration compared with a lightweight and 
consumer-grade camera. Therefore, the sensitivity of 
AGB estimation accuracy to image spatial resolution 
was an important reference for the configuration of a 
UAV flight altitude. As indicated in Zarco-Tejada et al. 
[63], a relatively lower image resolution may still yield 
an acceptable accuracy. Our results suggested that it 
was feasible to adjust the flight altitude and maintain 
comparable performance at the same time (Fig. 7).

Fig. 5  Scatterplots of measured AGB (t/ha) in wheat and the AGB estimated with three machine learning techniques (left: SMLR, second column: 
SVR, third column: ELM, right: RF) from the VIs alone (a–d), canopy height metrics alone (e–h) and the combined data (i–l). The data points 
displayed in each plot represent the validation set. The dashed diagonals represent 1:1 lines and the solid lines represent the fitted linear functions
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The results demonstrated that the image resolu-
tion at 13.28  cm  pixel−1 was the optimal for AGB 
estimation. Compared with original resolution of 
1.66  cm  pixel−1 acquired at 30  m, the shape of wheat 

canopy changed slightly but it was still easy to be 
identified at 13.28 cm pixel−1 (Fig. 8). However, when 
degrading to the lower resolutions, the mixed pix-
els from soil background and wheat led to the lower 

Fig. 6  The performance of AGB estimation from three types of input data (left column: VIs; middle column: canopy height metrics; right column: 
combination of VIs and canopy height metrics) for individual critical growth stages with three machine learning techniques. The top and bottom 
rows represent validation assessment in R2 and RMSE, respectively

Fig. 7  The performance of AGB estimation from three types of input data (left column: VIs; middle column: canopy height metrics; right column: 
combination of VIs and canopy height metrics) for a series of pixel sizes with the RF technique. The top and bottom rows represent validation 
assessment in R2 and RMSE, respectively. The top number represents the flight altitude of UAV, while the number label of x-axis is the image 
resolution consistent with flight altitude
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Table 9  Accuracy assessment for the estimation of AGB in wheat from the selected input variables with SMLR and three 
machine learning techniques

The input variables for each technique were selected with SMLR. The accuracy metrics were calculated from calibration data and validation data separately. The 
number in bold for each column represents the maximum R2, minimum RMSE, minimum AIC and minimum rRMSE, respectively

Input variables Technique Calibration (N = 201) Validation (N = 85)

R2 RMSE (t/ha) AIC R2 RMSE (t/ha) rRMSE (%)

VIs SMLR 0.69 1.52 742.63 0.70 1.58 34.49

SVR 0.72 1.49 696.91 0.65 1.70 37.19

ELM 0.68 1.56 758.14 0.68 1.64 35.77

RF 0.70 1.49 438.29 0.64 1.73 36.93

Canopy height metrics SMLR 0.68 1.53 747.72 0.72 1.54 33.61

SVR 0.70 1.52 697.85 0.73 1.49 32.66

ELM 0.69 1.50 747.92 0.72 1.54 33.72

RF 0.72 1.46 431.34 0.76 1.40 30.76

VIs and canopy height metrics SMLR 0.72 1.43 717.41 0.75 1.46 31.77

SVR 0.74 1.38 679.36 0.73 1.51 33.07

ELM 0.72 1.44 714.49 0.73 1.50 32.77

RF 0.76 1.33 375.06 0.78 1.34 29.31

Fig. 8  Spatial degradation of orthophotos from the original 1.66 cm pixel−1 resolution (a) to 3.32 cm pixel−1 (b), 6.64 cm pixel−1 (c), 9.96 cm pixel−1 
(d), 13.28 cm pixel−1 (e), 26.56 cm pixel−1 (f), 53.12 cm pixel−1 (g) and 106.24 cm pixel−1 (h) used for the calculation of spectral vegetation indices. 
The corresponding digital surface models (DSMs) are displayed in i–p 
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accuracy for AGB estimation (Fig.  7). Therefore, we 
suggest that UAV campaigns be carried out at 240 m to 
achieve the resolution of 13.28 cm pixel−1. That means 
we might be able to increase the efficiency to eight 
times with the same UAV system without a compro-
mise of the estimation accuracy. The images at lower 
resolutions (e.g., 13.28  cm  pixel−1) could be obtained 
by either increasing the flight altitude or using a 
lower-definition camera. Flying at 240 m is technically 
feasible and currently allowed by the local aviation 
regulation policy. Considering the difficulties in locat-
ing GCPs on the 13.28 cm pixel−1 image, one solution 
for future work would be to use new UAV systems with 
embedded RTK unit and avoid the use of GCPs.

Comparison of RF to SVR and ELM for AGB estimation
Machine learning techniques have proved to be pow-
erful for non-linear regression between remotely 
sensed data and biomass [64, 65]. This study evaluated 
the performance of three machine learning techniques 
with VIs, canopy height metrics and their combination 
as the input variables for AGB estimation, respectively. 
The results demonstrated that RF outperformed ELM 
and SVR consistently. In relevant studies on the esti-
mation of crop AGB, RF was also found to be superior 
to SVR and artificial neural network (ANN) for wheat 
[7] and to stepwise multiple linear regression (SMLR) 
for maize [7, 12] and wetland vegetation [10].

RF regression is considered as one of popular ensem-
ble learning algorithms for combining a large set of 
regression sub-models [66]. It is capable to model a 
large number of inter-correlated input variables and 
is not sensitive to noise or over-fitting [37, 67]. SVR 
tries to fit a hyperplane with calibration data as many 
as possible based on statistical learning principle. The 
estimate accuracy of SVR depends on a proper meta-
parameters settings and selection of the kernel func-
tion. The optimal parameters can be obtained by grid 
search and iterative tuning. ELM is an efficient and 
rapid learning algorithm without much human inter-
vention and does not need any kernel function. In 
this study, most of these variables derived from the 
UAV images were inter-correlated. RF is more suit-
able for dealing with two or more variables correlated 
with each other due to its insensitiveness to collin-
earity [12]. Previous studies have also proved that it 
is more likely to achieve high accuracy with RF due 
to its stability and robustness for complex and non-
linear regressions [12, 64, 66]. The performance of RF 
for AGB estimation in wheat still needs to be validated 
with data sets from more study sites and varieties.

Conclusions
This study compared the performance of the SMLR and 
three machine learning techniques for AGB estima-
tion with VIs, canopy height metrics and their combi-
nation derived from high overlapping imagery acquired 
with a low-cost UAV system. Results demonstrated that 
the combination of VIs and canopy height metrics with 
all regression techniques improved the estimation accu-
racy over the use of VIs or canopy height metrics alone. 
In addition, RF yielded the most accurate estimations 
among the four regression techniques. Using RF, we dem-
onstrated that a comparable accuracy for AGB estimation 
was obtained at the resolution of 13.28 cm pixel−1, which 
was reduced to one-eighth of the original orthophotos.

The findings imply that a consumer-grade camera 
mounted on a lightweight UAV could yield an accu-
racy of R2 up to 0.78 and a RMSE up to 1.34 t/ha for the 
AGB estimation in wheat. We proposed an inexpensive 
approach consisting of the RF algorithm and the combi-
nation of VIs and canopy height metrics derived from a 
low-cost UAV system at the consumer-grade level. This 
approach can be assessed for the efficient and economic 
monitoring of other growth parameters such as leaf area 
index in future research.
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