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Background: Remote monitoring of plants using hyperspectral imaging has become an important tool for the study
of plant growth, development, and physiology. Many applications are oriented towards use in field environments to
enable non-destructive analysis of crop responses due to factors such as drought, nutrient deficiency, and disease,
e.g., using tram, drone, or airplane mounted instruments. The field setting introduces a wide range of uncontrolled
environmental variables that make validation and interpretation of spectral responses challenging, and as such lab-
and greenhouse-deployed systems for plant studies and phenotyping are of increasing interest. In this study, we have
designed and developed an open-source, hyperspectral reflectance-based imaging system for lab-based plant experi-
ments: the HyperScanner. The reliability and accuracy of HyperScanner were validated using drought and salt stress

Results: A robust, scalable, and reliable system was created. The system was built using open-sourced parts, and all
custom parts, operational methods, and data have been made publicly available in order to maintain the open-source
aim of HyperScanner. The gathered reflectance images showed changes in narrowband red and infrared reflectance
spectra for each of the stress tests that was evident prior to other visual physiological responses and exhibited con-
gruence with measurements using full-range contact spectrometers.

Conclusions: HyperScanner offers the potential for reliable and inexpensive laboratory hyperspectral imaging sys-
tems. HyperScanner was able to quickly collect accurate reflectance curves on a variety of plant stress experiments.
The resulting images showed spectral differences in plants shortly after application of a treatment but before visual
manifestation. HyperScanner increases the capacity for spectroscopic and imaging-based analytical tools by providing
more access to hyperspectral analyses in the laboratory setting.
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Background

Remote monitoring of plant physiology and biochem-
istry holds enormous potential for understanding plant
growth and development in settings ranging from the
laboratory to the field [1]. Reflectance spectroscopy
is rapidly emerging as a highly effective and practical
approach for the rapid, non-destructive estimation of

*Correspondence: ptownsend@wisc.edu

! Russell Labs, University of Wisconsin-Madison, 1630 Linden Drive,
Madison, WI 53706, USA

Full list of author information is available at the end of the article

B BMC

a wide variety of chemical, biophysical, and metabolic
plant traits in living tissue [2]. The technique uses vari-
ations in leaf optical properties that arise from the inter-
action of light and chemical bonds [3, 4]. For example,
measurement of absorbance and reflectance features
in the visible spectrum and out into the infrared (~400
to 2500 nm) have been used to directly estimate foliar
structure, plant chemical composition, water content,
and metabolic status [5-9]. Some spectral features are
known to be associated with specific chemical or stress
responses, such as the detection of plant physiological
stress using the photochemical reflectance index [10-13].
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These spectra remain a rich resource information yet to
be mined for plant studies and phenotyping, with the
potential for many additional features of plant physiology
and chemistry to be extracted [14, 15].

While such spectroscopic imaging techniques offer
huge potential, they also raise many practical issues that
currently limit applications [1]. For example, schedul-
ing collections for multiple spectroscopic measurements
across many samples and over many time points is often
logistically difficult and even prohibitively time consum-
ing, especially in the field where variable light condi-
tions affect measurements [16]. These become important
issues for the analysis of plant responses which tend to
change rapidly in response to environmental or biotic
stressors (requiring time-course data collection) and also
to vary widely between different plant species or geno-
types (requiring sampling from many individuals). To
alleviate these setbacks, researchers and private compa-
nies have developed machines to automate most if not all
of the imaging process [17-22].

The widest use of hyperspectral imaging is from sen-
sors mounted on drones or small aircraft [23, 24].
Recently, stationary machines have also been created to
scan non-moving fields or targets [1, 17, 25, 26]. In these
machines, the imaging instrument is typically mounted
to an optimal point and a motor-driven axis moves
the plants that need to be scanned, or vice versa. The
machine is controlled by software that accepts user input
such as positional and instrument control commands.
Although these machines can produce highly informa-
tive data from multiple samplings due to the non-invasive
nature of hyperspectral imaging, there are significant
drawbacks that have severely limited their accessibility to
many plant researchers [27].

The main constraints with stationary imaging machines
are high cost, often complex construction, and relatively
large size, which all impact application in the laboratory
setting [28]. For example, the LemnaTec Gmbh Lab Scan-
alyzer has a robust design and features a flexible arsenal
of sensors, but its cost is prohibitive to most researchers
[29]. Similarly, the Field Scanalyzer is suitable for field-
based research, but it is even more expensive, requires a
team of people to build, and can only be used in a large
crop setting [18]. Custom machines have been built by
researchers to provide equivalent non-invasive analysis,
but a lack of information and technical details make these
platforms relatively inaccessible and difficult to repro-
duce by most groups. In addition, differences in design
for each platform mean that comparisons of results
between studies can be harder to make and/or reproduce
[6, 30-33].

However, with the advent of open-sourced, or so-called
“maker” electronics and parts, researchers can now
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build these types of machines more easily. High quality,
inexpensive, and well-documented tools are becoming
increasingly available. Low-cost electronics and custom-
izable materials (such as 3D printed parts) have given rise
to a unique set of novel lab hardware [34, 35]. In addition,
the nature of open-source materials makes sharing these
new inventions easier as well [36, 37].

In this study, we have created HyperScanner: a non-
invasive, lab-based system for hyperspectral imaging
(Fig. 1a). Although most commercial spectrometers are
not open-sourced, the HyperScanner platform itself is
based entirely on other open-sourced systems and prod-
ucts that are also affordable. We combined an already
existing open-source Computer Numerical Control
(CNC) machine, the X-Carve, with custom software to
create HyperScanner [38]. If one already has a preferred
imaging instrument, the cost of the HyperScanner plat-
form (not including the imaging spectrometer) totals less
than 3000 USD.

HyperScanner’s hardware and software are designed
with the flexibility to tailor it to specific experiment pro-
tocols with minimal commitment of effort and time. The
large scanning area allows for many plant samples, with
a current capacity of about ~20 standard seed trays, to
be studied simultaneously. A scan of two trays each con-
taining 18 Arabidopsis thaliana plants takes approxi-
mately 5 min. In addition to HyperScanner’s versatility,
the design is fully modular: any part can be reengineered
for a different sensor or experiment [39, 40]. For exam-
ple, the dimensions of the instrument mount can be
changed and 3D printed again to house a different instru-
ment (Fig. 1b). Presently, the system is equipped with a
Headwall Photonics (Bolton, MA, USA) Nano Hyperspec
(Nano) Visible and Near Infrared (VNIR, 400—1000 nm)
detector but has the flexibility to integrate other imag-
ing modalities to provide an even deeper set of structural
and chemical data to monitor plant performance (Fig. 1b,
c). Further, the aim of this project was not only to cre-
ate a low-cost and lab-based imaging machine, but also
to provide documentation on its operation and construc-
tion with the goal of making this type of machine more
accessible to plant researchers. Details regarding techni-
cal information, construction, and software are discussed
in the methods section.

We validated HyperScanner for plant research by imag-
ing Arabidopsis plants experiencing drought or saline
stress, as both are easily imposed and controlled envi-
ronmental stresses [41]. Along with the readily available
tools to quantify plant health by means of Red—Green—
Blue (RGB) photography, Arabidopsis was chosen as the
test subject because of the extensive literature charac-
terizing its responses to a wide range of environmental
conditions [42, 43]. This broad background of knowledge
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control and saline treatment Arabidopsis 1 day after the stress point

Fig. 1 a Photo of the HyperScanner. b Modified mobile scanning head for a flat leaf experiment, equipped with the Headwall Photonics Nano
Hyperspec. ¢ Red-green-blue image of an Arabidopsis plant with a visual representation of hyperspectral data. d Visible and near infrared spectra of
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allows us to place insights from HyperScanner’s spectral
data into the broader context of physiological, biochemi-
cal, and molecular changes already characterized under
those conditions. The HyperScanner was able to identify
spectral shifts in the plant before any physiological harm
could be detected using RGB photography [44] (Fig. 1d).
If applied in the field, HyperScanner would allow the hor-
ticulturist or agronomist to amend the environment or
use stress resistant varieties to ensure robust crop yields
(45, 46].

Results

HyperScanner proved to be a consistent and reliable
tool that is able to collect reflectance data. The con-
struction of HyperScanner consisted of low-cost and
open-source materials, which resulted in a modular
design. This approach allows the system to be modi-
fied and customized to support many different kinds of
sensors and experiments. In our case, we optimized the

position of the light mounts so that they provided effec-
tive lighting for an Arabidopsis experiment (Fig. 1b).
Our custom software ensured that the operation of
HyperScanner was not only reliable but also intuitive
for the user.

We grew the plants for 19 days in preparation for the
stress period and hyperspectral analysis and used daily
time-lapse photography with an 8MP Raspberry Pi Cam-
era (RGB imaging; Raspberry Pi camera V2; Adafruit,
New York, NY, USA). Differences in plant morphology
were observed by performing this time-lapse photogra-
phy of plant growth and applying the Phenotiki analysis
package [42] (Fig. 2a).

On day 19, water was added to the control plants, the
salt stress sample was given 2 L of 500 mM NaCl solu-
tion as an osmotic and ionic stress, and the drought sam-
ple was allowed to dry out by withholding watering from
this time point onwards. The plants’ growth environment
(weight, moisture level and temperature) was monitored
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Fig. 2 a Representative images of wild type Col-0 Arabidopsis responding to drought and 500 mM NaCl stress. Plants were grown for 19 days,
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from day 13 until the final scan, and the data is available
in Additional file 1.

Analysis of plant morphology is presented in Fig. 2b—
d. The investigation of morphological traits showed a
reduction in growth rates of the drought samples and a
gradual decline of plant size in the saline group (that cor-
relates with the bleaching of the leaves) (Fig. 2a). Visual
indicators of stress response represented by trends in
reduction in rosette diameter, perimeter, and area were
detectable 1-2 days after the stress point (Fig. 2a). Sta-
tistical analysis of these parameters showed a signifi-
cant difference 1-2 days after the saline treatment and
4—6 days after the drought period began (Fig. 2b—d). On
day 23, significant effects from saline stress on all traits
occurred but only a significant effect on leaf area due to
drought could be seen. Drought effects on leaf diameter
and perimeter were significant on days 24 and 25, respec-
tively. Thus, using conventional morphometric analysis it
was possible to see a difference on day 24 for the drought
and day 21 for the saline stress.

Hyperspectral scanning began on day 20 (1 day after
the stress point) and continued until day 26. Radiance
images were converted to absolute reflectance and vec-
tor normalized. Pixels containing plants were extracted

and sample pixels (n =2000) were used for further anal-
ysis. Reflectance curves on day 20 revealed significant
contrasts between the stress and control groups and
provided a rapid indication that the plants were experi-
encing either drought or saline stress. Reflectance data
measured on day 20 are presented as Normalized Dif-
ference Spectral Index (NDSI, comparing all wavelength
pairs) heatmaps and wavelength by wavelength t-tests in
Fig. 3. NDSI correlation (r-value) heatmaps indicate sta-
tistical trends in all treatment combinations (Fig. 3a). The
NDSI heatmaps show narrowband sensitivity to drought
at ~700 to 900 nm, and saline addition at ranges ~500
to 650 nm, ~700 to 720 nm, and ~800 to 900 nm. Dif-
ferences between the drought and salinity are present
at ~580 to 650 nm and ~ 750 to 800 nm. Although each
sample combination exhibited unique trends, signifi-
cant effects on wavelengths in the red-edge and near-IR
ranges are present in all sample groups.

Wavelength by wavelength p values from t-tests on day
20 reflectance data between treatments are presented
in Fig. 3b. A log (base 10) plot of the p values illustrates
wavelengths in the reflectance spectrum with the greatest
significance for differentiating treatments (values below
the dotted lines on Fig. 3b). The resulting p values denote
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Fig. 3 Analysis of reflectance data on day 20. a NDSI correlation representations between each combinations of treatments. b Wavelength by
wavelength t-tests for each treatment combination. Each solid line is the log (base 10) of the resulting p values. Each dashed line corresponds to the
value showing statistical significance, log_10 (p=0.05): values below the line indicate significance

the specific wavelengths that changed due to stress.
Each sample combination exhibited major significance
in the 650-700 nm range and wavelengths past the red
edge inflection point (~700 nm), and minor significance
in the 500-650 nm range. Drought samples exhibited
significant effects broadly in the near infrared, related
to leaf/plant structure. Salinity samples exhibited nar-
rower features, particularly at red wavelengths (related to
effects on chlorophyll), at the red-edge (720 nm) due to
stress, and in several locations in the near infrared due
to impacts on leaf structure. As well, p values between
the two stress treatments reveal differences in the pat-
terns that all plant samples experienced. Notably, the two
treatments exhibited significantly different responses in
the green and red wavelengths, at the red-edge (greater
effects of salinity in green, red and near-infrared) and
very significant differences at 770 nm. While each treat-
ment showed significant effects relative to the control
at longer near-infrared wavelengths (>800 nm), the two
treatments were less distinguishable from each other
at these wavelengths, pointing to the utility of broad-
band versus narrow spectral data. Significant differences
between all sample groups could be observed on day 20,
i.e., several days before the morphological RGB analysis
was able to do so.

Figure 4 presents trends in the stress plants from day
20 to day 26 using reflectance ratios derived from the
hyperspectral imagery, based on significant wavelengths
identified in Fig. 3. This enables visualization of changes
in plant stress as it progresses by date. Ratios specific to
the stress type were calculated with representative wave-
lengths, 782 nm/544 nm to compare drought stress with
the control and 676 nm/743 nm to compare the salinity
stress with the control. The calculated ratios were inter-
polated into each pixel of representative plant images on
days 20, 23, 24, 25, and 26. Differences with the control
are seen on day 20 in each stress type. Generally, ratios
increased over time in stress samples and little to no
change was seen in the control. In contrast to the day 20
analysis (Fig. 3), this method allowed us to observe spec-
tral shifts in the spatial domain as well as across a period
of time.

To assess the radiometric fidelity of the Nano meas-
urements, we compared reflectance from a flat leaf
of a control plant made with an Analytical Spectral
Devices full-range contact spectrometer and calibrated
light source (ASD; FS3 350-2500; Analytical Spectral
Devices, Boulder, CO, USA) with the Nano image of
the same plant. The comparison demonstrated the con-
gruence between measurements from the two types of
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Fig. 4 a Spectral response of plants due to drought stress. Leaf reflectance ratio of 782 nm and 544 nm (i.e, R782/R544) as: trend in leaf subsets
(mean =+ SD), time series of representative control and drought stress plants. b Spectral response of plants due to saline stress. Ratio-metric
comparison (R676/R743) of leaf reflectance as: trend in leaf subsets (mean = SD), time series of representative control and drought stress plants. The
wavelengths chosen for ratios are confirmed by the significant relationships shown in Fig. 3

instruments (Additional file 2), indicating that the meas-
urement setup for the HyperScanner with the Nano (i.e.,
light source, calibration panels) is sufficient to match
leaf level reflectance from a higher Signal-to-Noise Ratio
(SNR) instrument such as the ASD.

Discussion

Plants experience a range of abiotic stresses in natu-
ral ecosystems, and in the context of an agroecosystem,
environmental stresses can lead to reductions in growth
rate and altered vegetative and reproductive develop-
ment, which often plays out as being detrimental to crop
yields. We mimicked environmental stresses common to
agroecosystems within our controlled environment [47]
to ask how well the HyperScanner could be used to rap-
idly monitor plant responses to these challenges. As the
plants sustained the effects of drought or salinity, visual
symptoms of the stress appeared (Fig. 2a). Monitoring
plant growth by means of conventional RGB photogra-
phy coupled to statistical analysis of the morphometric
data extractable from these images allowed us to define a
point when the physiological effects from the stress were
detectable as being statistically significant alterations
in leaf growth rates from the control. Thus, analysis of
rosette diameter, perimeter, and leaf area indicated that
the drought samples’ growth rates were not statistically
significant until day 23, i.e., 4 days after imposition of

drought by cessation of watering (Fig. 2). The addition of
the 500 mM saline solution affected the plants more rap-
idly than the drought stress. The salinity caused the plants
to exhibit chlorosis of the leaves [48] and statistical sig-
nificance on leaf expansion was again seen on day 22. In
both treatments, statistical significance of plant growth
responses to stress application was detected several days
after the stress application. This delay is likely due to
the limitations of visual analysis of parameters, such as
growth, on detecting the earliest responses to stress that
are likely to be through alterations in gene expression and
plant biochemistry [49]. If a farmer or horticulturist were
to be solely relying on analysis of RGB photography to
assess stress conditions in the field, significant reduction
in plant size and yield would be inevitable as these would
be tightly linked to the changes being used to detect
stress response from the imaging data.

By using hyperspectral data, the amount of information
available to a researcher dramatically increases [50, 51],
and so, the RGB analysis in Fig. 2 does not contain the
vast amount of information that the hyperspectral imag-
ing can potentially provide. Thus, statistical analysis from
the hyperspectral data provided information on plant
stress being statistically significant well before alterations
in growth were detected from the RGB data. The NDSI
analysis in Fig. 3a reveals effects on the plants 1 day after
the stress period began. When compared to the control,
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the drought stress was most significant in red edge to
near IR bands (~700 to 900 nm). The heatmap of the
salt and control revealed more significant trends (both
magnitude and quantity), reinforcing that the saline
stress was likely affecting the plants to a greater degree
(at least in terms of changes in hyperspectral signal) than
the drought stress (Fig. 2). The salt and drought NDSI
show that the two types of stress have comparable effects
on Arabidopsis 1 day after stress. Red-edge and near-IR
wavelengths show significance in both treatments when
compared to the control, but not in their own compari-
son, indicating that the two samples were affected in
the same range of wavelengths and to similar amounts.
On the other hand, correlations in the 580-650 nm and
750-800 nm ranges are present in the third NDSI and
are not seen in comparisons with the control, which sug-
gests that the stress samples changed differently in these
ranges.

Analyses of p values in Fig. 3b reveal changes along cer-
tain wavelengths in treatments and confirm our hypothe-
ses drawn from the NDSI heatmaps in Fig. 3a. Significant
p values resulting from the comparison of 580-640 nm
between the two stress treatments indicate that these
changes are unique to each stress type (Fig. 3b), namely
through greater effects on reflectance in the saline treat-
ment potentially due to differences in changes in relative
pools of accessory (non-chlorophyll) pigments between
the treatments. Similarly, wavelengths between 600 and
650 nm changed in both stresses when compared to the
control, but when the stresses are compared against each
other, major statistical differences are present, indicating
that the effect on the (most likely) chlorophyll absorption
in the red was much stronger with the saline treatment.
As well, significance in the 700-800 nm range affirms
that the NDSI correlations from that range are indeed
unique to the stress type, with a greater impact on red-
edge reflectance (an indicator of overall plant health) in
the saline treatment. T-tests between the stress types
allow for powerful conclusions to be made that are not
available with comparisons to the control. Not only can
change be seen between stresses and control groups, but
the change relative to different stresses can be analyzed.

Figure 3 also suggests that certain response mecha-
nisms were employed by the plants to each stress con-
dition. The drought samples experienced a shift in
reflectance at the ~ 520 to 530 nm wavelengths compared
to the control. This corresponds to the location of the
photochemical reflectance index band at 531 nm [10],
which has been shown to relate strongly to plant xan-
thophyll cycle pigment pools that change in response
to stress [11]. In contrast, the ~520 to 530 nm band
was not significantly changed in the saline stress, which
confirms that the associated physiological change was
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likely only experienced by the drought stress. Similarly,
the saline stress saw shifts in the sub-500 nm range that
were not present in the drought samples, perhaps due to
effects on chlorophyll-b and carotenoids that have strong
absorptance features in the blue [52]. Similar observa-
tions can be drawn on different wavelengths. In each
treatment, the most significant changes are seen after
700 nm and into the near-IR range. In the 750—-800 nm
range, both stress sample’s reflectance shifted com-
pared to the control, and the drought shifted more than
the salinity. Analysis between the treatments reinforce
this idea, as t-tests on those wavelengths resulted in the
smallest p values. In addition, bands in the near-IR range
were significant in both the drought and salinity samples;
however, the ¢ test between the two stresses shows only
a small degree of significance, demonstrating that the
plants’ reflectance changed in a similar manner.

Visualization of the hyperspectral imagery in Fig. 4
offers the capacity to track the progression of change
using reflectance-based plant experiments. Because the
response wavelength ratios can be visualized on the plant
itself, spatial trends can be analyzed over time along with
spectral trends. For instance, the effects on the drought
ratio were initially noticeable at the base of the plant but
spread through the stem and then to the leaves along the
vasculature (Fig. 4a). Interestingly, the older salt stressed
leaves experienced a reflectance change before the
younger leaves (Fig. 4b). Such analyses are not possible if
one only considers purely spectral data.

HyperScanner is easy and inexpensive to build and
suitable for many varied plants and experiments. Any
plant can be scanned as long as they can fit into the scan
area and is not taller than the height of the instrument,
although, the height of the instrument, scanning speed,
and the scanning routes can be changed to accommodate
different species of plants. For example, in addition to
Arabidopsis, we have successfully used HyperScanner on
much larger cotton plants.

Along with being able to support many different plants,
HyperScanner can support different sensors and indeed,
expansion to incorporate multiple parallel imaging
modalities is a core concept for the HyperScanner. Thus,
the 80/20 rail system combined with printing custom
mounts allows for the rapid integration of new sensors.
In this study, only the Nano was mounted as a detector
in order to efficiently test the feasibility of HyperScanner.
One notable current limitation is that the Nano is oper-
ated through the manufacturer’s software. This makes
starting the scans slightly more cumbersome. The full
integration of the Nano into our software will increase
the quality of operation.

We are also currently implementing other sensors,
including a laser rangefinder to detect and compensate
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for different plant heights [27]. Arabidopsis is very flat
and not variable enough in height for a rangefinder
to have been relevant for this study, but this will be an
important addition for larger, more 3-dimensional plants.
A parallel thermal imaging system will allow for the
assessment of changes in the critical parameters of tran-
spiration and photosynthetic capacity and a laser scan-
ner will further enable the assessment of changes in foliar
structure and biomass across future experiments [6, 14,
27, 53]. The integration of these imaging systems will be
documented in future work using the HyperScanner.

Perhaps the greatest potential for HyperScanner is in
full automation of control and analysis [54]. The control
system is currently being transformed from open-loop
to closed-loop (i.e., using internal sensors and feedback)
control. In addition, an exciting area for future develop-
ment is to incorporate neural networks for plant clas-
sification [55]. The combination of HyperScanner and
neural networks will allow for even more rapid acquisi-
tion and classification of reflectance data [28, 56]. Auto-
mated stress detection via a neural network could allow
a researcher to maintain healthy samples with minimal
interference. Indeed, the complete automation of the
HyperScanner will result in an extremely efficient system
[25].

Conclusion

The HyperScanner system was designed to collect hyper-
spectral data with minimal human effort while keep-
ing the system accessible to researchers, affordable, and
available for the addition of more instruments. The soft-
ware, data, and other relevant files are publicly available
within the article. In multiple experiments, we were able
to measure absolute reflectance in Arabidopsis stress
experiments. The data from HyperScanner showed spec-
tral differences at an earlier point during the stress than
visual observations and identified differences in stress
responses between two treatments. HyperScanner can be
used for improved detection of plant stress and holds a
high potential to be a commonplace method for studying
plants in many research settings.

Methods

Arabidopsis growth environment

A controlled growth chamber was used to grow plants
adjacent to the HyperScanner. Six 1020 seed trays
(Greenhouse MegaStore, Danville, IL, USA) each with
18 Arabidopsis Col-0 plants growing in potting soil
were maintained at 22 °C with an 18:6 h day/night cycle
(100 pmol/m?/s™%, from 4 foot fluorescent lights). Pot
weights and RGB pictures of the plants were taken daily.
Plant phenotypic response was analyzed from Raspberry
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Pi camera images using Phenotiki [42]. Hyperspectral
scans were taken each day for 7 days starting at 20 days
post germination. Two trays were used as control sam-
ples and were kept with constant water availability by
adding 500 mL every day. The remaining four trays were
split into 2 treatments. Two trays were not watered from
day 19 onwards to impose drought stress. The two other
trays were used for salt stress experiment by adding 2 L of
500 mM NaCl. To mitigate a possible border effect, edge
plants should be excluded from data analysis and uni-
form lighting across the plant tray should be ensured.

Overview of CNC and HyperScanner

HyperScanner is based on CNC technology [57]. CNC
is an automation of machine tools that utilizes computer
control, smart sensors, and stepper motors. In CNC, the
control computer executes sequential commands which
are calculated based on user inputs and the machine’s
physical properties; smart sensors provide necessary
information used to execute the computer’s control algo-
rithms. Stepper motors control the physical position of
the tools. The computer-based control of CNC allows
processes to be predetermined and also enables the
recalibration of computer commands based on external
changes. This digitization results in an automated and
high-precision system.

HyperScanner can precisely and accurately move to
a point (X, Y, Z) with a user-chosen speed. The detec-
tor (in our case, the Nano Hyperspec line scanner, see
below) is mounted to a central point which can move
along the X, Y, and Z axes. The central point moves over
the scan area underneath which facilitates the scanning
of the plants. Our software gives the user the ability to
intuitively control the movement of the machine in real
time, create pre-planned scanning routes, and execute
those routes.

Nano Hyperspec Imaging Spectrometer

The Nano is a line scanner (also known as pushbroom
scanner) designed for the VNIR range (400-1000 nm)
[58]. It consists of 640 spatial bands (pixels) and 270
spectral bands. The spectral bands are spaced at 2.2 nm/
pixel. The Nano weighs 0.544 kg and has built-in
mounting points, making it extremely suitable for the
HyperScanner.

Technical specifications of the HyperScanner

HyperScanner was built to achieve a large scan area,
variable speed, and precise movement control. Hyper-
Scanner features a scan area of 2.1 m? Due to the
constraints of imposed by the operating speed of
the Nano, HyperScanner runs at a scanning speed
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of 1 cm/s; however, this may vary when using other
detectors, and so the speed can be adjusted within the
HyperScanner interface. Additionally, as the Nano is
a line scanner, the length of the scan line is propor-
tional to the height of the Z axis. The height can be
optimized to a line that covers the sample dimensions.
For instance, a line of ~8 cm was used in this experi-
ment to cover the length of each pot. Table 1 lists the
relevant technical values.

Table 1 HyperScanner’s technical specifications

Specification S..

Dimensions (L x W x H) 18mx18mx18m

Scan/workable area 2.1 m?

X axis travelling capacity 1.35m

Y axis travelling capacity 1.55m

Z axis travelling capacity 85cm
Positioning accuracy £0.10cm
Optimal scanning speed 1cm/s
Maximum safe travel speed 8cm/s

Line scan length (mounted Nano) 0.53-45.55 cm
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Construction of the HyperScanner

HyperScanner was built using the 80/20 aluminum
rail system, and the construction is based on X-Carve’s
existing system [38]. Although detailed building instruc-
tions can be found on X-Carve’s website, many adjust-
ments were made for our purposes [40, 59]. 3D models
of HyperScanner are presented in Fig. 5a and Additional
file 3. Four 1.8 m rails are vertically placed at each cor-
ner of the machine to support eight additional 1.8 m
rails which are used to create two 1.8 m by 1.8 m hori-
zontal sections. The bottom section supports removable
platforms on which plant trays or pots can be scanned.
The top section supports the stepper motor movement
system. Two stepper motors are mounted to metal side
plates that are attached to the top section support rails
(Fig. 5a, Additional file 3). The side plates attached with
motors are mounted with wheels that allow them to slide
along two of the top section support rails (Y axis). The X
axis rail is between the side plates. A metal gantry with
wheels moves across this rail and also supports the lin-
ear actuator (Z axis). The X and Y axes operate with a
belt drive and the Z axis operates with a worm drive. The
Nano and lights are mounted at the bottom of the linear
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Fig. 5 a Isometric view of the HyperScanner: A, Y axis rails; B, X axis rail; C, Z axis linear actuator; D, Nano Hyperspec; E, plant trays; F, top section; G,
bottom section. Diagrams representing the control flow of the HyperScanner and CNC machines: b open-loop control and ¢ closed-loop control.
d Data flow from the user to HyperScanner: (1) user draws a scanning route in embedded web form. (2) Path waypoints are sent as ASCII to Python
3 script via CEFPython. (3) Python 3 script converts ASCII coordinates to binary tuples for Arduino instruction set. (4) Binary tuples are transmitted
from host computer to Arduino via UART connection. (5) Instructions are enqueued in FIFO in Arduino memory as they arrive from UART. (6)
Instructions are dequeued as previous instruction completes, and AccelStepper functions are invoked. (7) AccelStepper library computes signal
required to move stepper motors. (8) Signal sent to gShield over the Arduino GPIO ports
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actuator by using custom-made mounts. Custom made
mounts and additional support brackets were designed
within SolidWorks, and each mount was specifically
designed to match the existing hardware. The mounts
were printed using an open-source 3D printer with PLA
filament (LulzBot TAZ 5; Aleph Objects, Inc., Loveland,
CO, USA). All SolidWorks files are available for down-
load at (https://doi.org/10.7910/DVN/9DLR?7S). The bill
of materials (Additional file 4) lists all materials necessary
to the construction of the HyperScanner. Necessary tools
are not listed.

Control and wiring

The control algorithms that most CNC machines imple-
ment can be classified into two categories: open-loop
control and closed-loop (feedback) control. In open-loop
control, the process is linear, meaning that the computer
simply accepts inputs from the operator and outputs
a signal to control the system. Figure 5b shows the fun-
damental open-loop control design [57]. In closed-loop
control, sensors are placed in the system to feed back
information, which enables a higher degree of automa-
tion (Fig. 5c). HyperScanner is open-loop controlled.
HyperScanner consists of four stepper motors and one
linear actuator. The X axis is controlled by two motors;
the Y axis is controlled by one motor; the Z axis is con-
trolled by one motor and a linear actuator that allows for
precise vertical positioning. Although open-loop control
is currently implemented in HyperScanner, we intend to
integrate feedback control to achieve a more robust and
fully automated control mechanism.

HyperScanner’s basic wiring topology is included in
Additional file 5. The computer accepts user input and
transcribes it to stepper motor movements, which fol-
lows the same control structure in Fig. 5b. User input is
translated from the computer to the Arduino and then
to the gShield through custom software. The gShield is
a stepper motor driver: once the gShield receives cor-
rectly notated commands, the appropriate level of power
is driven to the motors. The Arduino is powered by the
computer through a Universal Serial Bus (USB) connec-
tion that also doubles as the serial connection. The step-
per motors, gShield, Nano, and lights are powered by a
digital-control direct current power supply. A dedicated
power source has not been implemented, as the weight
and power load on the linear actuator is constantly
changing due to the addition of various devices. Thus, the
power supply needs to be constantly adjusted.

Lighting

Custom light mounts were 3D printed along with the
Nano mount. The mounts are fitted to 20 W halogen
bulbs (MR11; Simba Lighting, Torrance, CA), and the
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bulbs are powered close to the maximum power rating.
The lights are mounted in parallel to the Nano’s scan line
so maximum even lighting is achieved. The mounts are
connected to the end of the Z axis so that the lighting
environment does not change while the scanner is mov-
ing. Additionally, the mounts are connected to 80/20 rails
that slide along the Z axis linear actuator so that their
height from the samples can be adjusted.

Due to the indoor setting, artificial lighting was one of
the most important considerations when building Hyper-
Scanner. The lighting and light mounts were reiteratively
modified until a desirable configuration was achieved,
resulting in even and consistent illumination throughout
each of the scans. The interchangeability and adjustability
of the lights’ power and position made this an easy task.

Software

A set of software tools were developed to support the
operation of the HyperScanner, both for direct interfac-
ing with the machine’s hardware and for higher-level user
functions. These tools, named Ardupy, have been made
publicly available on the University of Wisconsin EnSpec
organization’s Github page (https://github.com/EnSpe
¢/Plant_CNC_Controller) as well as on Zenodo (https
://doi.org/10.5281/zenodo.1406721) [60]. Ardupy man-
ages the conversion of movement instructions received
over the Uno’s USB serial port into appropriate gShield
instructions. Direct interfacing with the gShield is han-
dled by the Arduino AccelStepper library [61]. AccelStep-
per manages the General-Purpose Input/Output (GPIO)
outputs that are required to move a stepper motor to
an absolute position with a given speed. User control of
the AccelStepper library is achieved through a custom
instruction set established between a host computer and
the Arduino over a Universal Asynchronous Receiver/
Transmitter (UART) serial connection. The instructions
are encoded as 3-tuples of 32-bit integers that specify
AccelStepper values and parameters. A full description
of the instruction set is provided in Table 2. To prevent
incoming instructions from interrupting the execution of
previously received ones, instructions are enqueued in a
First-In, First-Out (FIFO) as they are received via UART
and dequeued when a previous instruction completes. In
the current iteration of the software, this FIFO is imple-
mented with the Arduino QueueList library [62]. A dia-
gram of the data flow between the host computer and
CNC machine is provided in Fig. 5d.

In addition, the Graphical User Interface (GUI)
Ardupy-GUI, was developed to facilitate the creation
of scanning paths. Ardupy-GUI enables an intuitive
approach to scanning. Rather than only entering values
via a console, Ardupy-GUI consists of two user-friendly
menus: a control panel that provides direct access to


https://doi.org/10.7910/DVN/9DLR7S
https://github.com/EnSpec/Plant_CNC_Controller
https://github.com/EnSpec/Plant_CNC_Controller
https://doi.org/10.5281/zenodo.1406721
https://doi.org/10.5281/zenodo.1406721

Lien et al. Plant Methods (2019) 15:6

Table 2 Instruction set supported by Arduino software
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Instruction Byte 0-4 Byte 4-8 Byte 8-12

Move to X/Y axes to absolute position 1 X position in steps Y position in steps

Set delay between each movement 2 Delay in milliseconds 0

Move X/Y axes to relative position 3 Change in X position in steps Change in Y position in steps
Move Z axis to absolute position 4 Z position in steps 0

Move Z axis to relative position 5 Change in Z position in steps 0

Set movement speed 6 Speed in steps per second 0

each of the instructions above; a route plotter that allows
the user to draw scanning paths via click-and-drag or
keyboard inputs (Additional file 6). The route plotter
generates sequences of instructions based on the cre-
ated paths. CEFPython, a set of Python 3 bindings for
the Chromium Embedded Framework, was selected as
the backend for the GUI, as it allows fast development
of cross-platform graphical applications [63, 64]. CEF-
Python provides an interface between an embedded
instance of a web browser which handles the display of
the GUI and a Python 3 script which handles communi-
cation between the host computer and HyperScanner’s
Arduino. The JavaScript library jQuery is used to bind
user actions in the GUI to function calls in the Python
3 script that backs the GUI [65]. The route drawing tool
is implemented in d3.js, a library which provides efficient
manipulation of scalable vector graphic images [66]. The
backend Python 3 script generates binary instructions
from the textual data entered into the GUI and trans-
mits them to HyperScanner’s Arduino over UART via the
PySerial module [67].

Operating procedures

The operation of HyperScanner is simple, after creat-
ing scanning routes and tuning instrument parameters
(Additional file 7). First, the Nano is attached to the
mount and connected to the computer. Scan height,
speed, and line length are calculated separately, based
on the Nano’s field of view and integration time. This
experiment used an integration time of 14 ms. Once the
power supply and lights are turned on and Ardupy has
been launched, the Nano is moved to a white panel and
calibrated. A scanning route is chosen, and the plant
samples are placed in the correct positions according to
the selected route. After the initial setup, the Nano is set
to capture, and the route is executed. One scan of two
plant trays (18 plants each) takes less than five minutes.
After the scan is completed, files can be transferred off
of the Nano or different routes and plants can be loaded.
Note that a scan of the white panel should be included for
image processing. After the all the plants are scanned, the
images can be processed.

One important element of operation requiring atten-
tion during the equipment setup is that the belt drives
must be checked to ensure they do not need to be re-
tensioned. Correct belt tension is needed for optimal
movement ability of the scanner and therefore this check
is important. Although, re-tensioning the belts is needed
very seldom.

Image processing

Hyperspectral scans were processed with ENVI 5.0
(Exelis Visual Information Solutions, Inc., Boulder, CO,
USA). Each image scan includes a calibrated 99% reflec-
tance spectralon panel (Labsphere, North Sutton, NH,
USA), which was used to calculate reflectance and esti-
mate the noise level of the hyperspectral image. Coeffi-
cient of Variation (CV) was used as the criteria for high
SNR wavelength selection. After calculating along-track
CV of the white panel image, wavelengths ranging from
477.1 to 903.42 nm, which yield low CV, are considered
for further analysis. The white reference radiance spec-
trum was estimated for the whole image from the vertical
scan line of the spectralon panel that had the maximum
median radiance. Every plant pixel was used for analysis
by delineating regions of interest within ENVI. The spa-
tial and spectral edges of the hyperspectral image cube
were excluded from analysis because it minimizes smile
and keystone effects (e.g., cross-track variation in wave-
length centers) [68]. Relative reflectance is calculated as:

.. DNjj k
Rflli,j, k] = ———
DNyhite.k
where i and j correspond to the row and column of a
pixel. kis the wavelength of the pixel. DN; ; is the radiance
spectrum of each pixel. DN, ., is the radiance spectrum
of the reference white panel. The calculation is done on a
wavelength-by-wavelength basis.

NDSI
Normalized difference spectral indices were calculated
for each of the Nano’s 270 spectral bands. The difference
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in reflectance for a pair of bands (e.g., i and j) is divided
by the sum, as in the following:

NDSI[i,j] band; — band;
Lj]=——-—2%
J band; + band;

For each pair, indices were calculated for a sample of
n=2000 pixels. Statistical tests were then done on each
NDSI combination and heatmaps were generated with
the resulting statistical data.

Additional files

Additional file 1. Daily tray moisture, tray weight, and room temperature

measurements from the controlled Arabidopsis growth environment. Line

plot of soil conductance percentage as a proxy for soil humidity. Area line

plot showing tray weight as a proxy for water content. Line plot displaying
the mean temperature (22°C+2°C).

Additional file 2. Reflectance curves obtained by the ASD and Nano from
one control Arabidopsis plant.

Additional file 3. Three additional views of the HyperScanner.

Additional file 4. A bill of materials listing the supplies used to construct
Hyperscanner. Does not list tools.

Additional file 5. A basic diagram of HyperScanner’s wiring scheme. Each
arrow represents a wired connection: A, external user input; B, returned
data from the Nano; C, Nano control signal; D, positional data from
Ardupy; E, gShield motor driver power; F, stepper motor power; G, Nano
power; H, power supply; |, Arduino Uno; J, gShield motor driver; K, stepper
motors.

Additional file 6. Screenshots of Ardupy’s manual control and route
planner menus. Users can control HyperScanner with manual control
or through creating paths by click-and-dragging waypoints on the map
panel.

Additional file 7. A flowchart describing HyperScanner’s operational
procedure.
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