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Abstract 

Background:  The selection of hybrids is an essential step in maize breeding. However, evaluating a large number of 
hybrids in field trials can be extremely costly. However, genomic models can be used to predict the expected perfor‑
mance of un-tested genotypes. Bayesian models offer a very flexible framework for hybrid prediction. The Bayesian 
methodology can be used with parametric and semi-parametric assumptions for additive and non-additive effects. 
Furthermore, samples from the posterior distribution of Bayesian models can be used to estimate the variance due 
to general and specific combining abilities even in cases where additive and non-additive effects are not mutually 
orthogonal. Also, the use of Bayesian models for analysis and prediction of hybrid performance has remained fairly 
limited.

Results:  We provided an overview of Bayesian parametric and semi-parametric genomic models for prediction of 
agronomic traits in maize hybrids and discussed how these models can be used to decompose the genotypic vari‑
ance into components due to general and specific combining ability. We applied the methodology to data from 906 
single cross tropical maize hybrids derived from a convergent population. Our results show that: (1) non-additive 
effects make a sizable contribution to the genetic variance of grain yield; however, the relative importance of non-
additive effects was much smaller for ear and plant height; (2) genomic prediction can achieve relatively high accu‑
racy in predicting phenotypes of un-tested hybrids and in pre-screening.

Conclusions:  Genomic prediction can be a useful tool in pre-screening of hybrids and could contribute to the 
improvement of the efficiency and efficacy of maize hybrids breeding programs. The Bayesian framework offers a 
great deal of flexibility in modeling hybrid performance. The methodology can be used to estimate important genetic 
parameters and render predictions of the expected hybrid performance as well measures of uncertainty about such 
predictions.
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Background
Most commercial maize breeding programs per-
form selection on inbred lines and then select optimal 
crosses among elite materials (often from divergent het-
erotic groups) to produce commercial hybrids. Single 
crosses are highly homogeneous, can express heterosis, 

have greater yield stability in marginal environments, 
and are a convenient way to stack traits controlled by 
large-effect dominant genes [1]. Furthermore, hybrids 
are appealing for seed companies because they can 
generate sustained demand for seeds. These biological 
and commercial advantages prompted the adoption of 
hybrids in many crops, being maize the most promi-
nent one.

Selecting optimal matings is a critical aspect of any 
maize hybrid breeding program. Ideally, one would 
choose crosses based on the observed agronomic 
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performance in field trials. However, evaluating all pos-
sible crosses can be extremely expensive, especially in 
the early stages of a breeding program when the number 
of candidate lines is often large. In this situation, only a 
small fraction of all the possible crosses can be evaluated 
in field experiments [2]. Genomic models can be used 
to predict the performance of un-tested hybrids; there-
fore, genomic prediction (GP, e.g. [3]), a methodology 
initially developed for selection and breeding, also arises 
as a promising approach in hybrid prediction and mate 
selection.

Most of the theoretical and applied GP studies have 
focused on prediction of traits and diseases in outbreed 
materials from either animal [4–7] and plant [8–12] 
breeding populations. Genomic models are also often 
used for prediction of agronomic traits in inbred lines 
[13–17]. More recently, some authors have considered 
using genomic models for prediction of hybrid perfor-
mance [18–25]; these studies have shown that genomic 
models can yield reasonably accurate predictions of the 
agronomic performance of hybrids.

Bayesian models offer great flexibility for the study 
and prediction of hybrid performance. The framework 
allows modeling hybrid performance using parametric 
and semi-parametric methods. Samples from the poste-
rior distributions from these models can be used to infer 
important parameters, such as the variance due to gen-
eral and specific combining abilities, that are difficult to 
estimate when the mating design does not allow for an 
orthogonal decomposition of the genetic variance into 
those components. Furthermore, in addition to the pre-
diction of expected hybrid performance, samples from 
the posterior distribution can be used to quantify the 
uncertainty of the predicted performance while account-
ing for uncertainty about other model parameters. These 
features make the Bayesian approach particularly well-
suited for analysis and prediction of hybrid performance. 
In this manuscript, we present an overview of Bayes-
ian genomic models for prediction of agronomic traits in 
maize hybrids and use the described models to evaluate 
the contribution of additive and non-additive effects for 
prediction of agronomic traits in tropical maize.

Most of the literature on the genomic analysis of hybrid 
performance in maize has focused on the study of mate-
rials produced by crossing lines from divergent heterotic 
groups. Crosses from such groups are expected to express 
less specific-combining ability than the one expected 
among crosses of lines showing a small degree of diver-
gence among heterotic groups [26, 27]. Here, we focus on 
the evaluation of additive and non-additive effects models 
when applied to predict crosses of inbred lines from a con-
vergent population.

In the hybrid prediction literature, the genetic vari-
ance is often decomposed into the general and specific 
combining ability variance (GCA and SCA, respectively, 
[28]) components. The GCA variance represents the 
amount of variance that can be explained by the differ-
ences between the average performance of the parental 
lines in crosses and the overall population mean, while 
the SCA variance quantifies the amount of variance on 
the genotypic values that cannot be explained by paren-
tal means. This component is often attributable to devia-
tions from additivity due to dominance and epistasis [29]. 
Unfortunately, in genomic analyses, additive and non-
additive contrasts are often not mutually orthogonal. For 
this reason, the variance parameters entering in genomic 
models (e.g., the additive and dominance variance) can-
not be directly used to decompose the total genetic vari-
ance into GCA and SCA components. Here, following 
ideas presented by Lehermeier et al. [30] we discuss how 
GCA and SCA variance components can be estimated 
in Bayesian models including additive and several types 
of non-additive effects, regardless of the orthogonality of 
contrasts used to accommodate those effects.

Several studies in the prediction of hybrid performance 
are based on parametric models for additive and domi-
nance effects modeling [18, 23, 25, 31], and a few stud-
ies have considered the inclusion of epistatic interactions 
(e.g., [10, 12, 21, 32]). However, the additive-by-additive 
epistatic relationship matrices often used (which relies on 
Hadamard products of additive relationship matrices) do 
not allow for a clear distinction of the contribution domi-
nance and epistasis [33]. We used ideas earlier presented 
by Martini et  al. [33] to build kernels that enable an 
explicit distinction between dominance and additive-by-
additive epistatic interaction. Furthermore, we consider 
semi-parametric alternatives (Reproducing Kernel Hil-
bert Spaces, RKHS, [34, 35]) that can capture both addi-
tive and non-additive effects.

What remains of the manuscript is organized as fol-
lows: the next section describes a general Bayesian 
framework for the hybrid prediction that encompasses 
parametric and semi-parametric methods in a unified 
setting. In this section, we also discuss methods to esti-
mate variance due to general and specific combining 
ability. Subsequently, we applied the methods described 
to a data set of hybrids from a convergent population 
and reported both variance components and predictive 
performance.

Genomic models for analysis of hybrid data
The problem of predicting the hybrid performance for all 
the possible crosses that can be generated from n lines 
can be viewed as one of smoothing phenotypic data (e.g., 
yield observed on hybrids) over a grid of crosses (Fig. 1). 
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In Fig. 1 the left panel represents all possible crosses from 
a group of inbred lines, and the right plot describes sur-
faces with different degree of genetic complexity. The 
phenotype of the kth replicate of the progeny of lines i 
and j ( yijk ) can be decomposed into a genetic component 
( gij ) plus a residual effect ( εijk ) that is yijk = gij + εijk , in 
which εijk iid∼ N

(

0, σ 2
ε

)

 . Here, gij represents the expected 
phenotypic performance (average over replicates) of 
the progeny of lines i and j that is gij = E(yijk) . Ideally, 
we would like to predict gij for all possible crosses (i.e., 
all possible (i, j) pairs for i ≠ j). This task can be achieved 
by smoothing phenotypic data with respect to geno-
types. The surface’s smoothness (right panel of Fig.  1) 
depends on the relationship among the inbred lines and 
on the types of modeled genetics effects in gij . The addi-
tive model gives the smoothest pattern (a hyperplane), 
whereas accounting for dominance and epistasis make 
this surfaces more irregular (compare the top and lower 
right plots of Fig. 1).

General and specific combining abilities
The expected hybrid performance ( gij ) is often repre-
sented as the sum of general and specific combining abili-
ties (GCA and SCA, respectively, [28]).1 The 
GCA-portion of a hybrid’s genotypic value ( GCAij ) is the 
average of the parental means, GCAij=

1
2

(

ui+uj
)

 ; 
here,ui = Ej|i

(

gij
)

 represent the average genotypic value 
of the progeny of ith parental line in respect to the sec-
ond parents (likewise, uj = Ei|j

(

gij
)

 ). Traditionally, the 
general combining ability of a line ( u ) is obtained by the 
(deviation of the) marginal mean of the parental line (rel-
ative to the population mean) in all crosses/hybrids in 
which it appears (Fig.  1a, u ). The SCA portion of the 
hybrid’s genotypic value accounts for deviations of the 
hybrid mean ( gij) relative to the average of the parental 

a b

c

Fig. 1  Prediction of hybrid performance using genomic regression models. a The grid shows all possible crosses between n lines ( i = j ) in a diallel 
mating design. b Hyper-plane generated by the general combining abilities of females and males. c Hypothetical hybrid performance surface 
influenced by both additive and non-additive effects (module)

1  For simplicity we assume that all the phenotypes are expressed as deviations 
from the overall mean. Thus, all the terms including gij, ui and uj are assumed 
to have null mean.
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means, that is δij = gij−
1
2

(

ui+uj
)

 . Thus, from the per-
spective of Analysis of Variance, the GCA represent the 
main effects of the parental lines and SCA represent 
interactions between those lines. The total genetic vari-
ance can ten be decomposed into two orthogonal com-
ponents, that is σ 2

G = σ 2
GCA + σ 2

SCA where σ 2
G = Var

(

gij

)

 , 
σ 2
GGA = Var

(

GCAij

)

 and σ 2
SCA = Var

(

SCAij

)

.
The GCA of a line depends on the allele substitu-

tion effects, thus the general combining ability involves 
not only additive but also non-additive effects [29, 36, 
37]. In genomic models, the average allele substitution 
effects can be inferred by fitting a pure additive model: 
ui =

∑p
k=1 xikαk where xik ∈ {0, 2} is the genotype of 

the ith line at the kth SNP and αk is the additive effect 
of the kth SNP. For crosses derived from very divergent 
populations (different heterotic groups), accounting for 
group-specific effects is often necesary [18, 22, 24, 38, 
39]. However, this is not needed in cases where crosses 
involve lines from convergent populations. In this case, 
the general combining ability can be expressed as:

where xijk = 1
2

(

xik + xjk
)

 is the hybrid genotype at 
the kth loci which is simply the average of the parental 
genotypes. The additive model [expression (1)] defines 
a hyperplane with respect to the general combining 
abilities (Fig. 1b). Deviations from the hyperplane (SCA 
effects) can be introduced by adding dominance and epi-
static interactions in the prediction model.

Dominance effects (i.e., within locus interaction of 
alleles, βk ) can be accommodated by adding dummy- 
variables for heterozygous loci that is

where �ijk = 1(xijk = 1) is an indicator variable for the 
kth loci that takes value 1 for heterozygous and 0 for 
homozygous loci.

Epistatic interactions can take various forms (additive-
by-additive, additive-by-dominance, dominance by dom-
inance, additive-by-additive-by-additive, etc. [29, 40]); for 
simplicity, in parametric models, we focus on first order 
interaction of alleles between loci involving additive and 
dominance effects, that is additive-by-additive and addi-
tive-by-dominance interactions. With p markers, we can 
form p(p−1)

2  additive-by-additive (A by A) interactions; 
a prediction model including additive, dominance, and 

(1)

Additivemodel (A): gij =
1

2

(

ui + uj
)

=

p
∑

k=1

xijkαk

(2)

Additive + Dominance (A+ D):

gij =

p
∑

k=1

xijkαk +

p
∑

k=1

�ijkβk;

additive-by-additive interactions ( γkl ) effects takes the 
form

Likewise, one can have a total of p(p−1)
2  additive-by-dom-

inance interactions (A by D, ωkl ) which can be combined 
with additive and dominance effects to give rise to the 
following model:

In models involving additive and non-additive effects, 
the coefficients associated to the additive portion of 
the model (the αk’s) no longer represent allele substitu-
tion effects. For this reason, the variance parameters 
associated to this coefficients cannot be directly used to 
estimate the variance due to GCA. We address the esti-
mation of GCA and SCA variance in models involving 
nonadditive effects later in this section.

Parametric kernels for additive and non‑additive effects
The number of effects entering on [1–4] can be extremely 
large. Therefore, in genomic models, effects are usually 
treated as random draws from some distribution, being 
the most common the Normal distribution.

The terms on the right side of equations [1–4] are lin-
ear combinations of effects. Therefore, if effects fol-
low normal distributions, αk iid∼ N

(

0, σ 2
a

)

 , βk iid∼ N
(

0, σ 2
d

)

 , 
γkl

iid
∼ N

(

0, σ 2
aa

)

 and ωkl
iid
∼ N

(

0, σ 2
ad

)

 , then, vectors contain-
ing additive a =

{

aij =
∑p

k=1 xijkαk
}

 , dominance d = 
{

dij =
∑p

k=1
�ijkβk

}

 , additive-by-additive aa =
{

aaij =
∑p

k=1

∑p
l>k xijkxijlγkl

}

 , and additive-by-
dominance epistatic interactions ad =

{

adij =
∑p

k=1

∑p
l>k xijk�ijlωkl

}

 will follow multivariate normal 
distributions: a ∼ MVN

(

0,K aσ
2
a

)

 , d ∼ MVN
(

0,K dσ
2
d

)

 , 
aa ∼ MVN

(

0,K aaσ
2
aa

)

 and ad ∼ MVN
(

0,K adσ
2
ad

)

 
where K a , K d , K aa and K ad are co-variance matrices for 
additive, dominance, additive-by-additive, and additive-
by-dominance effects, respectively.

The covariance matrices for additive and dominance 
effects ( K a and K d) are well established (e.g., [41–43]), 
and can be computed using cross-products of genotypes 
codes: K a = XX ′

tr(XX ′)/n
 where X =

{

xijk − 2θjk
}

 is a 
matrix of centered hybrid genotypes (here θjk is the fre-
quency of the allele counted at the kth loci) and 
K d = DD′

tr(DD′)/n
 where D =

{

1(xijk = 1)− 2θjk
(

1− θjk
)}

 

(3a)

Additive + Dominance + A− by− A(A+ D + AA):

gij =

p
∑

k=1

xijkαk +

p
∑

k=1

�ijkβk +

p
∑

k=1

p
∑

l>k

xijkxijlγkl

(4a)

Additive + Dominance + AbyD(A+ D + AD):

gij =

p
∑

k=1

xijkαk +

p
∑

k=1

�ijkβk +

p
∑

k=1

p
∑

l>k

xijk�ijlωkl
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is a matrix whose columns contain dummy variables for 
heterozygous genotypes centered around their respective 
means.

Computing the covariance structure for additive-by-
additive and additive-by-dominance effects is more chal-
lenging because the number of contrasts involved can be 
substantial. However, these covariance matrices can be 
computed using Hadamard products [44]. For instance, 
the covariance matrix for additive-by-dominance effects 
can be computed using the Hadamard product (denoted 
by “ ⊙ ”) between K a and K d (see [33, 44]); hence, 
K ad = K a⊙K d

tr(K a⊙K d)/n
 . Martini et  al. [33] showed that the 

Hadamard product K a ⊙ K a includes cross-products of 
contrasts for additive-by-additive effects and also cross-
products of contrasts for dominance (see also Additional 
file 1: Supplementary Methods 1). Therefore, the correct 
covariance structure for additive-by-additive effects can 
be obtained by subtracting the contribution of domi-

nance, that is: K aa =
(XX ′)⊙(XX ′)

′

−(X⊙X)(X⊙X)
′

tr
(

(XX ′)⊙(XX ′)
′

−(X⊙X)(X⊙X)
′
)

/n
.

The covariance structures discussed in the previous 
section can be used in Bayesian multivariate normal dis-
tributions to model the hybrid’s genetic/genotypic values. 
For instance, for expression (3), we have g = a + d + aa 
and thus

Likewise, for expression (4), we have g = a + d + ad , 
thus

Semi‑parametric procedures
The models of expressions (3b) and (4b) can be viewed as 
Bayesian multi-kernel models where different kernels are 
used to accommodate different types of effects. Each of 
these kernels also defines a different degree of smooth-
ness of genetic values with respect to genotypes, with K a 
usually giving higher smoothness (i.e., more covariance) 
than dominance or epistatic kernels. In such multi-kernel 
models, the variance parameters act as weights which 
end up defining the smoothness of g [35]. For semi-para-
metric smoothing, we can replace the parametric kernels 
with, for example, Gaussian kernels indexed with dif-
ferent bandwidth parameters ( h ). For instance, one can 
assume

This approach referred as “kernel averaging” in de los 
Campos et al. [35], can be used to infer smooth functions 

(3b)g ∼ MVN
(

0,K aσ
2
a + K dσ

2
d + K aaσ

2
aa

)

(4b)g ∼ MVN
(

0,K aσ
2
a + K dσ

2
d + K adσ

2
ad

)

(5)g ∼ MVN
(

0,K h1σ
2
1 + K h2σ

2
2 + K h3σ

2
3

)

without making parametric assumptions. Recently, 
Lyra et al. [23] and Sousa et al. [45] used a single-kernel 
regression to predict hybrid performance. Here we con-
sider multi-kernel methods based on three Gaussian 
kernels derived from an additive relationship matrix. 
The proposed approach derives a matrix of genetic dis-
tances from K a . These distances are then used as inputs 
in three Gaussian kernels with values of the bandwidth 
parameters chosen so that one of the kernels gives higher 
covariance than additive effects, another one gives lower 
covariances than additive effects, and the last one gives 
covariances smaller than the two former kernels. The 
proposed approach has a built-in standardization such 
that the values of the bandwidth parameters do not 
depend on the number of markers used. Further details 
are given in Additional file 1: Supplementary Methods 2.

Estimating total genomic variance and its components 
in multi‑kernel models
Traditionally, in the literature of hybrid prediction, the 
total genetic variance and its components (GCA and SCA) 
have been derived directly from variance parameters [18, 
22, 38]. For instance, for multi-kernel models, such those 
in equations [3a] and [3b], the total genetic variance is 
inferred using the sum of each of the variance param-
eters (e.g., σ 2

G = σ 2
a + σ 2

d + σ 2
aa) . Likewise, commonly, the 

GCA is equated to the variance associated with the addi-
tive term (e.g., σ 2

GCA = σ 2
a , [18, 22, 38]). This approach has 

at least two potential problems. First, as noted before, in 
models involving non-additive effects, the additive compo-
nent ( σ 2

a ) does not represent the variance due to the aver-
age effect of allele substitution. Thus, to fully account for 
allele substitution effects, σ 2

GCA needs to be estimated from 
a purely additive model. Second, in multi-kernel models, 
the total genetic variance cannot be estimated using the 
sum of the variance parameters because that approach 
ignores covariances between terms. For instance, in the 
model of expressions (3a) and (3b), the total variance is 
Var(G) = Var(a)+ Var(d)+ Var(aa)+ 2[Cov(a, d)+

Cov(a, aa)+ Cov(d, aa)] (see [30] for a more in-depth dis-
cussion of the topic).

As noted by Lehermeier et al. [30], in a Bayesian setting, 
samples from the posterior distribution of the total genetic 
variance that account for covariances between terms can 
be obtained from samples (from the posterior distribution) 
of effects. For instance, suppose that one has vectors con-
taining realizations from the posterior distribution of vec-
tors of additive ( as ), dominance ( ds ) and 
additive-by-additive effects ( aas ), all obtained at the sth 
iteration of a sampler from an A + D+AA model [3b]. The 
total genetic value in this model is g s = as + ds + aas . At 
this iteration, the total genomic variance is 
σ 2
Gs

= Var
(

g s
)

= Var(as + ds + aas) , where Var() is the 
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sample variance operator, σ 2

Gs
= (n− 1)−1 

∑

n

i=1

(

gis − ḡs

)2 where ḡs = n−1
∑n

i=1 gis is the average 
genomic value in the sample at the sth iteration. Likewise, 
the covariance between additive and non-additive terms 
can be computed using the sample covariance operator, 
Cov(as,ds) = (n− 1)−1∑n

i=1 (ais − ās)
(

dis − d̄s

)

 . The 
supplemental scripts (Additional File 2) provided with the 
manuscript illustrate how variance and covariance compo-
nents were estimated using the BGLR package [46].

Therefore, to fully account for allele substitution effects 
covariances between additive and non-additive effects we 
estimate the total genetic variance and its GCA and SCA 
components as follows: (1) we estimated the general com-
bining ability variance ( σ 2

GCA ) by evaluating, at each itera-
tion of the sampler, the sample variance of the additive 
effects collected using a pure additive model (Eq. [1]). (2) 
We estimate the total genetic variance by evaluating at each 
iteration of the sampler the total variance explained by a 
model including additive and non-additive effects ( σ 2

Gs
 ). (3) 

The σ 2
SCA is estimated as the difference between the total 

genomic variance (estimated using a model that includes 
additive and non-additive effects) and the additive variance 
derived from a purely additive model ( σ 2

GCA ). Finally, the 
proportion of the total genomic variance attributable to 
SCA can be estimated using D2 =

σ 2
SCA

σ 2
G

.

Application to a dataset of tropical maize hybrids derived 
from a convergent population
We used the models described above to study the perfor-
mance of hybrids obtained by crossing lines from a con-
vergent population.

Data were available for a total of 906 maize single-
crosses derived from forty-nine inbred lines crossed in 
an unbalanced diallel mating design. The average (min/
max) number of times that each inbred line appeared 
as parental in our dataset was 37 (18/48, see Addi-
tional file  3: Fig. S1). The hybrids were evaluated dur-
ing the second growing season (January to May), of 
2016 and 2017, in two locations, Piracicaba (PI; rainfed; 
22°42′23″S, 47°38′14″W, 535 m) and Anhembi (AN; irri-
gated; 22°50′51″S, 48°01′06″W, 466 m), São Paulo State, 
Brazil. At each site, the material was evaluated under 
two nitrogen (N) regimes, ideal N (IN; 100 kgNha−1 , 
70 kgNha−1 at sowing and 30 kgNha−1 on the V8 plant 
stage) and low N (LN; 30 kgNha−1 being the totality 
applied at sowing). These two treatments, in combina-
tion with the two locations, were used to define four 
distinct environments (PI.IN, PI.LN, AN.IN, AN.LN).

Field trials were organized in an unreplicated aug-
mented block design consisting of 47 (year 1) or 50 
(year 2) blocks with 16 hybrids and two commer-
cial checks evaluated in each block. Three traits 

were evaluated in each environment: grain yield (GY, 
ton ha−1 ), plant height (PH, m ), and ear height (EH,m ). 
Plots were manually harvested and GY was corrected 
to 13% moisture. EH and PH were measured from the 
soil surface until the insertion of the first ear and the 
flag leaf collar on five representative plants within each 
plot, respectively.

Phenotypes were pre-adjusted using a mixed model 
with an intercept, the fixed effect of the check, and the 
random effect of the block. We used this model to derive 
an adjusted phenotype for each trait, which consisted of 
the measured phenotype minus the estimated intercept 
minus the block effect. Finally, we averaged the adjusted 
phenotype of each hybrid from years 1 and 2 to carry out 
the genomic analyses.

Genotypes for each one of the forty-nine paren-
tal inbred lines were obtained using the Affymetrix® 
Axiom® Maize Genotyping Array of 616  K SNPs [47]. 
Markers with call rate lower than 0.90, heterozygous loci 
in at least one parental line, and all non-mapped SNPs 
were removed. Hybrids genotypes were derived from the 
parental genotypes. Allele frequencies and pairwise link-
age disequilibrium (r2) statistics were computed using 
hybrid genotypes. SNPs with minor allele frequency 
smaller than 0.05 were excluded. Afterward, the hybrids 
genotypes matrix was pruned to guarantee a maximum r2 
between SNPs smaller than 0.9. All quality control proce-
dures were made using the R package synbreed [48], and 
LD pruning was carried out using the SNPRelate R pack-
age [49]. After all quality control and LD pruning pro-
cess, 34,571 high-quality SNPs were available to further 
analysis. The pairwise linkage disequilibrium between 
loci (r2) in the parental inbred lines for each one of the 
ten chromosomes are shown in Additional file 4: Fig. S2.

For genomic analyses, we used the multi-kernel regres-
sions described above to a defined sequence of models of 
increasing complexity: from strictly additive models to 
semi-parametric regressions. Models were fitted using 
the BGLR R-package [46]. Variance components esti-
mates were obtained (using the methods described in 
the previous section) by fitting each model to data from 
each environment separately (full-data analysis). For 
each model, inferences were based on 30,000 samples 
collected after discarding 5000 samples for burn-in and 
thinning of 5. The convergence of the Markov chains and 
Monte Carlo Error was assessed using the coda R-pack-
age [50]. We inspected trace plots for each of the variance 
parameters to be sure if the burn-in period was suffi-
cient. Moreover, for each of the variance parameters, we 
checked that the effective number of independent sam-
ples was greater than 100 and the estimated Monte Carlo 
Error smaller than 1% of the estimated posterior mean.
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Subsequently, we estimated prediction accuracy by 
fitting models using training–testing partitions (TRN-
TST). In each TRN-TST partition, 75% of the data 
(approximately 680 hybrids) was randomly selected to 
constitute the training set (TRN), whereas the remain-
ing 25% of the hybrids formed the testing set (TST) and 
were employed to evaluate the model’s predictive ability. 
Since all data from each hybrid was assigned to the same 
fold, our evaluation of prediction accuracy is similar to 
the method labeled as CV1 in Burgueño et  al. [51] and 
also comparable to the T2 method presented by Technow 
et al. [22, 38]. The same training–testing partitions were 
used to fit each of the models; this allowed us to compute 
the proportion of times that one model achieved higher 
prediction accuracy than the other ones.

Predictive performance was measured using the Pear-
son’s product moment correlation between adjusted phe-
notypes and genomic estimated genetic values ( ryŷ ) in 
each of the TST sets. For each model/trait/environment, 
we carried out a total of 100 TRN-TST partitions, total-
ing 100 correlations estimates. The models’ predictive 
abilities were compared by the Tuckey’s Honest Signifi-
cance Difference test at 5% significance.

Results
The average ear height, plant height, and grain yield were 
higher in the irrigated environment (Anhembi) than in 
the rainfed one (Piracicaba). These traits also had higher 
average values under ideal nitrogen (especially in well-
watered conditions) than with low-nitrogen availability 
(Fig. 2). For all the traits and environments, the observed 
distributions of phenotypes were seemingly symmetric, 
and there were no significant differences in variances 
(except for grain yield, for this trait the variance of phe-
notypes was higher in well-watered conditions).

Genomic variance and broad-sense genomic heritabil-
ity (H2) The proportion of variance of phenotypes 
explained by the model ( H2 =

σ 2
G

σ 2
G+σ 2

ε )
 ) was highest for 

EH (ranging from 0.7 to ~ 0.8, depending on the envi-
ronment and model, Fig. 3a), intermediate for PH and 
lowest for GY (for this trait values ranged from ~ 0.3 
to ~ 0.6). The comparison across environments shows 
that the proportion of variance that can be explained by 
genetic factors was highest in the best environmental 
conditions (AN.IN) and lowest in AN.LN and with 
either low or ideal N in Piracicaba, where trials were 
not irrigated. As one would expect, the proportion of 
variance explained by the model increased when terms 
accounting for non-additive effects were included in 
the model (Fig. 3).

In general, there was a sizable increase in the pro-
portion of variance explained when dominance was 

included in the model and relatively small increases in 
σ 2
G when other effects were added to the A + D model. 

The difference in σ 2
G between the A and A + D models 

was smaller for EH and sizable for GY (Fig.  3a). The 
RKHS model showed the highest estimates of the H2 . 
However, in general, this model did not explain much 
more variance than the A + D model.

As one would expect the inclusion of non-additive 
effects reduced the estimate of σ 2

a  ; this happens because 
in models involving non-additive effects σ 2

a  no longer 
represents the total variance explained by allele substi-
tution effects (Fig. 3b, Additional file 5: Tables S1–S5).

Using samples from the posterior distribution, we 
evaluated covariances between additive and non-addi-
tive effects. We found different covariance patterns for 
the different traits (Fig. 4 and Additional file 6: Fig. S3). 
Among them, EH was the trait that appeared to be 
mostly additive (Fig.  3a), and the average covariance 
between additive and additive-by-additive variances 
and those among additive and additive-by-dominance 
were slightly positive. On the other hand, for PH and 
GY most of the covariances were close to zero, with a 
few exceptions (e.g., PH in PI.IN).

The estimated variance components ( σ 2
G , σ 2

GCA and 
σ 2
SCA ) were used to compute the proportion of variance 

explained by non-additive effects ( D2 =
σ 2
SCA

σ 2
G

 , Table  1). 
D2 was highest for grain yield (D2 values ranging 
from ~ 0.236 to ~ 0.47) and lowest for EH (D2 estimates 
ranged from ~ 0.08 to ~ 0.17). PH represented an inter-
mediate case with D2 ranging from ~ 0.12 to ~ 0.29 
(Table 1, see Additional file 7: Table S6 for estimates of 
SCAratio =

σ 2
SCA

σ 2
GCA

 ). For all traits, non-additive effects con-
tributed more to the variance under low N conditions 
relative to high N availability. The optimal environment 
(AN.IN, ideal nitrogen regime and irrigated conditions) 
showed the smallest contribution of non-additive 
effects for the three traits.

Prediction accuracy
The cross-validation analyses yielded moderately high 
prediction correlations ( ryŷ ), ranging from ~ 0.46 to ~ 0.81 
(Table  2). Prediction accuracy was highest for EH, 
smaller but still high for PH, and moderate for GY. The 
lowest mean correlations were obtained in AN.LN. For 
EH the predictive performance was very similar in the 
other three environments. On the other hand, for GY and 
PH, the prediction accuracies were smaller in stressed 
conditions (low nitrogen availability) than in the “ideal” 
ones (Table 2).

Overall, the differences in the prediction accuracy 
achieved through different models were moderate. For 
instance, for EH almost no differences were observed in 
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prediction accuracy between models. However, for GY 
and PH, there was a clear superiority of models including 
dominance and the RKHS regression relative to the addi-
tive model.

For GY, the superiority of the A + D model over the A 
model was consistent across the validation sets in more 
than 95 of the 100 sets conducted the A + D model gave 

Fig. 2  Boxplot of phenotypes by trait and environments. AN.IN: Anhembi ideal nitrogen regime; AN.LN: Anhembi low nitrogen regime; PI.IN: 
Piracicaba ideal nitrogen regime; PI.LN: Piracicaba low nitrogen regime

Fig. 3  Variance components (a) and variance parameters (b). a Estimated genetic variance explained by the model ( σ 2

G ) , and estimated error 
variance ( σ 2

e ) . b Individual variance parameters. AN.IN: Anhembi ideal nitrogen regime; AN.LN: Anhembi low nitrogen regime; PI.IN: Piracicaba ideal 
nitrogen regime; PI.LN: Piracicaba low nitrogen regime. A: Additive, D: Dominance, AA: Additive × additive, and AD: Additive × dominance effects. 
RKHS: Reproducing Kernel Hilbert Spaces model). σ 2

a  , σ 2

d  , σ 2
aa,and σ 2

ad , additive, dominance, additive by additive, additive by dominance genetic 
parameters, respectively
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higher prediction correlation than the A model (Fig. 5). 
On the other hand, the proportion of times that the A + D 
model outperformed the A model was much more mod-
est for EH. Plant height was in an intermediate situation, 

where the A + D model was in average better than the A 
model, but the superiority was not as consistent across 
CV as observed for GY. The same trend was observed in 
other environments (Additional file 8: Fig. S4).

Fig. 4  Posterior density of the covariance between the additive and non-additive genetic components of models including two genetic terms by 
environment and traits. AN and PI: Anhembi and Piracicaba. IN and LN: ideal and low nitrogen availability. Covariance between effects in the A + D 
model is represented in green ( σ 2

a–σ 2

d  ); Covariance between effects in the A + AA model is represented in red ( σ 2
a–σ 2

aa ); Covariance between effects 
in the A + AD model is represented in blue ( σ 2

a–σ 2

ad ). AN: Anhembi, PI: Piracicaba, IN: Ideal nitrogen, and LN: Low nitrogen. A: Additive effect, and D: 
Dominance effects. A: Additive effect, D: Dominance, AA: Additive-additive, and AD: Additive-dominance effects

Table 1  Posterior mean (posterior SD) of  the  proportion of  genetic variance explained by  non-additive effects (D2), 
by trait, model, and environment

A additive, D Dominance, AA additive × additive, AD additive × dominance effects. AN.IN Anhembi ideal nitrogen regime; AN.LN Anhembi low nitrogen regime; PI.IN 
Piracicaba ideal nitrogen regime; PI.LN Piracicaba low nitrogen regime. EH, GY, and PH: ear height, grain yield, and plant height, respectively

Trait Env Model

A + D A + AA A + AD A + D+AA A + D+AD A + D+AA + AD Mean

EH AN.IN 0.099(0.057) 0.088(0.058) 0.097(0.057) 0.120(0.053) 0.123(0.053) 0.135(0.052) 0.110

AN.LN 0.117(0.077) 0.104(0.078) 0.111(0.078) 0.150(0.071) 0.153(0.070) 0.172(0.068) 0.135

PI.IN 0.115(0.059) 0.094(0.060) 0.114(0.060) 0.134(0.056) 0.140(0.056) 0.150(0.054) 0.124

PI.LN 0.119(0.056) 0.097(0.058) 0.125(0.055) 0.138(0.054) 0.143(0.054) 0.154(0.052) 0.129

PH AN.IN 0.150(0.065) 0.130(0.069) 0.123(0.070) 0.172(0.063) 0.171(0.063) 0.186(0.061) 0.155

AN.LN 0.238(0.086) 0.204(0.092) 0.210(0.091) 0.269(0.082) 0.273(0.079) 0.292(0.076) 0.248

PI.IN 0.220(0.065) 0.184(0.070) 0.202(0.071) 0.243(0.062) 0.243(0.063) 0.254(0.061) 0.224

PI.LN 0.213(0.071) 0.183(0.077) 0.172(0.079) 0.236(0.068) 0.236(0.068) 0.249(0.067) 0.215

GY AN.IN 0.302(0.078) 0.284(0.085) 0.236(0.094) 0.331(0.073) 0.333(0.074) 0.352(0.071) 0.306

AN.LN 0.307(0.110) 0.326(0.105) 0.260(0.119) 0.379(0.095) 0.352(0.096) 0.399(0.088) 0.337

PI.IN 0.286(0.099) 0.253(0.103) 0.282(0.102) 0.335(0.088) 0.339(0.088) 0.361(0.082) 0.309

PI.LN 0.405(0.093) 0.380(0.098) 0.395(0.102) 0.446(0.082) 0.440(0.086) 0.466(0.079) 0.422



Page 10 of 18Alves et al. Plant Methods           (2019) 15:14 

Predicting hybrid performance for observed 
and un‑observed crosses
We used the fitted models to predict the total genetic 
value of all possible hybrids that can be obtained from 
the 49 inbred lines available (Fig.  6, Additional files 9, 
10 and 11: Figs. S5, S6, S7). In the heatmaps, the paren-
tal lines were sorted according to the mean predicted 
genetic values of its progeny (obtained from the additive 
model). Thus, variation on axis X (and Y) are due to gen-
eral combining ability. This sorting of parental lines leads 
to a relatively smooth increase on predicted genotypic 
values along the diagonal of the heatmap (values increase 
in “top-right” direction). However, when dominance was 
included the patterns in the heatmaps were less smooth 
(this is particularly clear for grain yield, Fig. 6c, d). Over-
all, the best crosses that one would choose using an addi-
tive model (i.e., those in the top-right corner of each plot) 
are also predicted to have high genotypic value under the 
non-additive model. Nevertheless, for grain yield, there 
are also a few cases where the additive model predicts 
intermediate genetic values (points in the center of the 
heat maps) and the non-additive model predicts a higher 
genotypic value (this corresponds to yellow-green points 
in the center of the heat map).

Discussion
In crops for which commercial genotypes are inbred lines 
(e.g., wheat, soybeans), F1 seeds (e.g., hybrids in maize, 
sunflower), or clones (e.g., potato, cassava, sugarcane, 
eucalyptus), advantageous gene combinations can be 
fixed and multiplied. In these cases, non-additive effects 
can be effectively exploited and maintained [32]. How-
ever, identifying the best genotypes requires extensive 
field evaluations, especially for F1 hybrids. Unfortunately, 
even for a small number of parental lines, evaluating all 
possible crosses in field trials becomes economically 
expensive and logistically complex.

Genetic similarity (derived from either pedigrees or 
molecular markers) can be leveraged to induce borrow-
ing of information between crosses, and this can be used 
for prediction of performance of un-tested crosses [18, 
24, 52]. For single crosses, hybrids’ genotypes can be 
derived from parental genotypes; thus, there is no addi-
tional genotyping cost involved when predicting yet-to-
be developed hybrids. Moreover, the computational cost 
involved to predict the performance of untested crosses 
is minimal since most of the computational burden is on 
fitting the models and this is only done using data from 
tested hybrids.

Table 2  Prediction accuracy of models by environments and traits

A additive, D dominance, AA additive × additive, AD additive × dominance effects, RKHS reproducing kernel Hilbert spaces model, AN.IN Anhembi ideal nitrogen 
regime, AN.LN Anhembi low nitrogen regime, PI.IN Piracicaba ideal nitrogen regime, PI.LN Piracicaba low nitrogen regime. EH, GY, and PH ear height, grain yield, and 
plant height, respectively. Different letters indicate statistically significant differences at 0.05 significance level according to Tuckey’s Honest Significance Difference 
test. Italics numbers indicates the highest estimates

Models Environment: AN.IN Environment: AN.LN

EH PH GY EH PH GY

A 0.805a 0.74ab 0.581d 0.710a 0.595a 0.462a

A + D 0.809a 0.750a 0.618a 0.711a 0.611a 0.481a

A + AA 0.805a 0.740ab 0.597bcd 0.708a 0.601a 0.478a

A + AD 0.804a 0.740ab 0.579d 0.708a 0.594a 0.463a

A + D+AA 0.806a 0.745ab 0.612ab 0.707a 0.607a 0.480a

A + D+AD 0.805a 0.738ab 0.583 cd 0.708a 0.600a 0.466a

A + D+AA + AD 0.805a 0.742ab 0.607ab 0.705a 0.604a 0.475a

RKHS 0.802a 0.735b 0.602abc 0.699a 0.599a 0.470a

Models Environment: PI.IN Environment: PI.LN

EH PH GY EH PH GY

A 0.791a 0.701a 0.527a 0.800a 0.676b 0.456b

A + D 0.797a 0.720a 0.543a 0.806a 0.699a 0.487a

A + AA 0.792a 0.706a 0.534a 0.799a 0.685ab 0.476ab

A + AD 0.790a 0.702a 0.526a 0.799a 0.677b 0.457b

A + D+AA 0.794a 0.714a 0.54a 0.803a 0.694ab 0.483a

A + D+AD 0.794a 0.705a 0.537a 0.803a 0.679b 0.475ab

A + D+AA + AD 0.793a 0.712a 0.539a 0.803a 0.690ab 0.483a

RKHS 0.791a 0.708a 0.539a 0.802a 0.683ab 0.484a
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In genomic models, the strength of borrowing infor-
mation between hybrids depends on two main factors: 
the genetic similarity among the inbred lines and on 
the mode of gene action. Additive effects give rise to 
a smooth surface where the expected performance of a 
hybrid is the average of the general combining ability of 
the two parental lines (Fig. 1). Deviations from this plane 
can be accommodated using parametric models for non-
additive effects (e.g., dominance or epistatic interactions) 
or using semi-parametric procedures. All these models 
can be formulated as multi-kernel regressions (e.g., [35, 
53]), where different kernels are used to model different 
types of effects.

In this study, we demonstrate how Bayesian multi-ker-
nel methods can be used to estimate the total genetic var-
iance and its components (GCA and SCA) and to derive 
predictions of un-tested hybrids under parametric and 
semi-parametric assumptions. For simplicity, we fitted 
models within environments; however, the same meth-
odology can be extended to multi-environments settings 
using models for marker-by-environment interactions 
such as those described in [54]. The application of these 
methods to hybrids generated by crossing inbred tropical 
maize lines from a convergent population lead to impor-
tant conclusions that we highlight next.

Additive effects dominate but “one-size-(does not)-fit-
all” traits/populations For the three traits analyzed, addi-
tive effects explained the majority of the genetic variance. 
The estimated variance components indicate that the 
analyzed traits have very different genetic architectures. 

EH showed the highest broad-sense heritability (~ 0.8), 
and a high proportion of genetic variance explained by 
additive effects ( D2 was only ~ 0.12). On the other hand, 
GY showed moderate broad-sense heritability (~ 0.5–0.6 
for models including non-additive effects) and a siz-
able fraction of the total heritability accounted for non-
additive effects ( D2 of 0.3–0.48). Regarding heritability 
and the relative importance of additive effects, PH rep-
resented an intermediate situation between EH and GY. 
In this respect, our results are in agreement with those 
reported by several authors [36, 55–57] who have indi-
cated that additive effects explain a very large fraction of 
genetic variance for EH and PH and a smaller fraction of 
the genetic variance of GY.

Our estimates σ 2
GCA and σ 2

SCA estimates suggest that for 
PH and EH hybrid prediction/selection based only on 
additive effects should be effective [26, 27]. These results 
have important implications for the breeding process as 
they indicate that selection in early stages of the breed-
ing process based on additive models should result in 
sizable changes in PH and EH at the hybrid level. In the 
case of GY accounting for non-additive effects appeared 
to be more critical, and our results indicate that using 
a model that accounts for additive and dominance can 
give as good, and sometimes higher, prediction accu-
racy than the one achieved by more complex models that 
accounted for epistatic interactions.

Genetic diversity affects the ratio of SCA to GCA​ Previ-
ous studies have shown that genetic divergence between 
inbred lines affects the SCAratio [22, 29, 58]. Empirical 

Fig. 5  Scatter plot of the predictive accuracies obtained by the A + D model (Additive-dominance) and A (Additive) model by trait at Anhembi 
with ideal nitrogen availability (AN.IN). Each point represents one TRN-TST partition. The same population partitions were considered across models
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evidence suggests that the SCAratio is higher for hybrids 
originated by crossing materials from genetically homo-
geneous pools (i.e., sets of inbred lines with similar 
allele frequencies) than for very divergent goups [29, 59, 
60]. Most of the published studies on maize hybrids are 
based on data originated by crossing lines from different 

heterotic groups [18, 22, 24, 31, 38]. Averaged across 
models and environments, our estimates of the SCAratio 
were 0.14, 0.28, and 0.56 for EH, PH, and GY, respec-
tively. These estimates are higher than what has been pre-
viously reported in genomic based studies for GY and PH 
[18, 25, 38]. We attribute these higher observed estimates 

Fig. 6  Heatmaps of genomic estimated genetic/genotypic values of all possible single-crosses at Anhembi with ideal nitrogen (AN.IN). a, b Ear 
height predicted using the additive and additive-dominance models; (c, d) Grain yield predicted using the additive and additive-dominance 
models. Lines and columns of each plot were sorted by the mean performance of parental inbred lines at all crosses considering the predicted 
values from the Additive model
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to the genetic composition of our parental lines, all of 
which originated from the same convergent popula-
tion that has very low levels of structure (see Additional 
file 12: Fig. S8).

Analyses and prediction of more complex hybrids Our 
results are entirely based on single cross hybrids. While 
the methodology described in this study can be used to 
analyze three- and four-way crosses, our empirical results 
cannot be extrapolated to more complex hybrids because 
the relative importance of additive and non-additive 
effects is expected to be different for more complex 
hybrids. Moreover, it is worth noting that the genotyping 
scheme needed to predict the performance of three- and 
four-way hybrids is more complex and expensive than the 
one used here.

Recently, Li et al. [61] developed a model that accounts 
for general and subpopulation-specific additive effects as 
well as dominance deviations for analysis and prediction 
of 3-way crosses. The ideas presented in this study for 
estimation of the total genetic variance and its compo-
nents (GCA and SCA) can be easily applied to the model 
proposed by Li et al. [61].

Non-additive effects appeared to be more important 
under nitrogen stress conditions In all but one of the 
trait-by-environment combinations analyzed (PH in PI), 
the environments under low nitrogen regime showed 
higher SCAratio than those under ideal nitrogen (Addi-
tional file  7: Table  S6). Similar results were reported by 
[62] and [63], who concluded that for grain yield in maize 
non-additive variation appears to be more important in 
low nitrogen growing conditions. They also reported the 
higher importance of non-additive effects under drought 
stress. Our results agree with those findings, especially 
for GY. Therefore, overall, it seems that accounting for 
non-additive effects becomes paritcularly important 
under nitrogen stress conditions.

Within model prediction accuracy was linearly related 
to heritability Our results indicate that GP of hybrid 
performance can achieve a moderately high predic-
tion accuracy. Also, for any given model, there was a 
direct relationship between the proportion of variance 
explained by the model (H2) and the prediction accuracy 
achieved in the prediction of un-tested hybrids. Interest-
ingly, within the model, this relationship was very close 
to linear (Additional files 13 and 14: Figs. S9 and S10). For 
instance, prediction accuracy was highest (~ 0.8) for EH 
(the most heritable of the three traits analyzed), interme-
diate for PH (~ 0.7) and lowest (~ 0.5) for GY. Likewise, 
environments with lower heritability (those under stress 
conditions), were the one with lower prediction accu-
racy either. These results agree with the theoretical and 
empirical evidence, which support a direct relationship 

between trait heritability and prediction accuracy (e.g., 
[64, 65]).

However, the models that fitted the data better were not 
always the ones that gave the highest prediction accuracy 
Indeed, the relationship between the proportion of vari-
ance explained and prediction accuracy was not linear 
when comparing (within a trait or environment) results 
across models (Additional file 14: Fig. S10). For instance, 
while the RKHS model was in all cases the one that had 
the highest proportion of variance explained (Fig. 3a) the 
predictive performance of this model was not the high-
est one. Overall, the best performing model across traits 
and environments was the A + D model (Table  2 and 
Fig. 3). Models including two or more non-additive (e.g., 
A + D+AA + AD) terms fitted the data better but showed 
poorer predictive performance than the A + D model. It 
seems that the A + D model offers, at least for the sample 
size considered here, a good balance between goodness 
of fit and model complexity.

Alternative parameterizations for the A + D model 
did not improve the model performance In the analy-
sis of hybrids originated by crossing lines from two or 
more heterotic groups models often account for group-
specific additive variances [18, 22, 24, 38, 52]. This was 
not needed in our case because all the inbreed lines 
originated from the same population. However, for sen-
sitivity analyses we compared the performance of the 
A + D model used in our study with two other models: 
(1) one accounting for group-specific additive variance 
(A1 + A2 + D, where A1 and A2 are the female and male 
additive effects, respectively); and (2) one in which, as 
suggested by Martini et al. [66], we use three dummy var-
iables per locus (one for each possible genotype, labeled 
as categorical model). The A1 + A2 + D and the categori-
cal model use three effects per locus, while the A + D 
uses two effects per locus. From this perspective, the 
A1 + A2 + D and categorical models are more “flexible” 
than the A + D model. However, when the categorical 
model is implemented using a single variance parameter 
this may reduce the ability of the model to fit the data. In 
our study, this did not happen once both the A1 + A2 + D 
and the categorical model fitted the data slightly better 
than the A + D model (Additional file 15: Table S7). How-
ever, none of these models had better predictive perfor-
mance than the simpler A + D model (Additional file 15: 
Table S7). Our results are similar to Technow et al. [22] 
findings, and suggest that for hybrids originated from 
crosses among lines of convergent populations the two 
degrees of freedom parameterization for A + D effects is 
sufficient to achieve high prediction accuracies.

Genomic prediction can be effectively used for pre-
screening GP could be used to select a subset of promis-
ing hybrids which can later be tested at field evaluations. 
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This approach can significantly reduce the time and costs 
involved in generating hybrids and could reduce the prob-
ability that superior hybrids do not reach the field testing 
stage [18, 67, 68]. To assess the accuracy of pre-screening 
based on GP we estimated, using cross-validation predic-
tions, the proportion of the top-5% of the hybrids (from 
the ranking based on the observed trait) that is captured 
within a set of hybrids selected using genomic predic-
tion (Fig. 7). Selecting the best 30% of the crosses based 
on genomic prediction leads to a subset of hybrids that 
contained between 85 and 95% of the top-5% of hybrids 
with the highest ear height. For PH, the best 30% of the 
hybrids in the genomic screening contained between 70 
and 80% of the top-5% best hybrids. Finally, the set con-
taining the 30% of the hybrids with the highest genomic 
prediction values for GY included between 70 and 85% 
of the hybrids with highest GY in field evaluations. These 
results are in agreement with [69], who found high con-
cordance among superior wheat lines selected by GS 
and phenotypic selection from multi-environment trials. 
We conclude that pre-screening using GP, coupled with 
field testing of top hybrids pre-selected using GP, can be 
an effective approach for incorporating GP into hybrid 
selection programs.

Using Posterior distributions to summarize uncer-
tainty about hybrid predictions All the results 
presented and discussed so far were based on the esti-
mated posterior means of hybrid performance. How-
ever, the posterior distribution from Bayesian models 
can also be used to assess the uncertainty about pre-
dicted hybrid performances. Importantly, unlike like-
lihood methods, posterior distributions from Bayesian 
models fully accounts from all sources of uncertainty, 
including uncertainty about variance parameters [70]. 
Figure  8 display the estimated posterior distribu-
tion of hybrid performance for the top- and lowest-20 
ranked hybrids (according to the posterior mean of 
hybrid performance from the A + D model) for GY 
in the Anhembi under ideal nitrogen regime environ-
ment (AN.IN, see Additional files 16, 17, 18, and 19: 
Figs. S11, S12, S13, and S14 for other traits and envi-
ronments). In almost all cases the top-20 hybrids had 
a posterior distribution that contains at least 75% of 
the mass over one standard deviation of the mean per-
formance. The blue boxplots correspond to hybrids 
that were tested in field trials, and the red ones are for 
untested hybrids. In all cases, the top-20 hybrids con-
tained many untested genotypes. As one would expect, 

Fig. 7  Proportion of the top-5% hybrids (according to phenotypic rank) that is identified by pre-screening based on (cross-validation) genomic 
prediction using the additive + dominance model at a different intensity of selection (x-axis). Each panel corresponds to an evaluated trait, lines 
within a plot represent different environments. AN: Anhembi; PI: Piracicaba; LN: Low nitrogen; IN: Ideal nitrogen
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the spread of the posterior distribution was higher for 
un-tested hybrids.

Conclusions
Genomic Prediction models can be used to predict the 
performance of tested and untested hybrids, and those 
predictions can be used to decide which hybrids should 
be further tested in field trials. We review Bayesian para-
metric and non-parametric models for additive and non-
additive effects. All the methods discussed in this study 
can be cast as kernel regressions. We show how Gaussian 
kernels for non-parametric models can be derived from 
additive relationship matrices. All the kernel regressions 
discussed in this study can be implemented in either a 
Likelihood or Bayesian framework. However, Bayesian 
models offer a great deal of flexibility and a framework 
that allows evaluating uncertainty about variance com-
ponents and hybrid performance that fully account for 
all sources of uncertainty. We discussed how samples 
from the posterior distribution can be used to estimate 
the total genetic variance and its components (SCA and 
GCA) while accounting for covariances between addi-
tive and non-additive effects. We also discuss how sam-
ples collected Monte Carlo Markov Chain algorithms 
can be used to fully assess the posterior distribution of 
predicted hybrid performance. Our results show that that 

non-additive effects play an important role in the expres-
sion of traits such as grain yield and suggest that the rela-
tive importance of non-additive effects is higher, under 
nitrogen stress conditions. In all the traits and environ-
ments considered, the A + D model achieve either the 
best or very close to the best, predictive performance.

Additional files

Additional file 1. Supplementary Methods 1 and 2: In Supplementary 
Method 1 we show that Hadamard products of additive relationship 
matrices provide a covariance structure that represents not only additive-
by-additive contrasts but also dominance and provides a straightforward 
method to construct a kernel comprising only additive by additive epista‑
sis effects. Supplementary Method 2 shows how to compute Gaussian 
kernels based on additive relationship matrices.

Additional file 2 . R-Scripts: In this additional file we show (summary of 
the) R scripts used to generate the results presented in the study.

Additional file 3. Fig. S1: Number of crosses in which each one of the 49 
inbred lines occurred.

Additional file 4. Fig. S2: Boxplots of the pairwise linkage disequilib‑
rium (r2) by distance (Kbp) for chromosomes 1 to 10 in 49 inbred lines of 
tropical maize. Red dots and black traces represent means and medians, 
respectively. Each box represents the r2 estimates inside the first and third 
quartiles (25 and 75% percentiles, respectively).

Additional file 5. Tables S1, S2, S3, S4, and S5: Posterior means of vari‑
ance parameters and broad-sense genomic heritability (SD) by traits and 
models in different environments.

Fig. 8  Boxplots of the posterior distribution of expected hybrid performance for the top- and lowest-20 ranked hybrids (left and right, respectively) 
for grain yield at Anhembi under an optimum nitrogen regime. The colors of the boxes indicate whether the hybrid was phenotyped or not (see 
legend), the label in the axis indicates the parental lines
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Additional file 17. Fig. S12: Boxplots of the posterior distribution of 
expected hybrid performance for the top- and lowest-20 ranked hybrids 
(left and right, respectively) for ear height, grain yield, and plant height at 
AN.LN. The colors of the boxes indicate whether the hybrid was pheno‑
typed or not (see legend), the label in the axis indicates the parental lines. 
AN: Anhembi; LN: Low nitrogen regime.

Additional file 18. Fig. S13: Boxplots of the posterior distribution of 
expected hybrid performance for the top- and lowest-20 ranked hybrids 
(left and right, respectively) for ear height, grain yield, and plant height at 
PI.IN. The colors of the boxes indicate whether the hybrid was pheno‑
typed or not (see legend), the label in the axis indicates the parental lines. 
PI: Piracicaba; IN: Ideal nitrogen regime.

Additional file 19. Fig. S14: Boxplots of the posterior distribution of 
expected hybrid performance for the top- and lowest-20 ranked hybrids 
(left and right, respectively) for ear height, grain yield, and plant height at 
PI.LN. The colors of the boxes indicate whether the hybrid was pheno‑
typed or not (see legend), the label in the axis indicates the parental lines. 
PI: Piracicaba; LN: Low nitrogen regime.
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models. Lines and columns of each plot were sorted by the mean per‑
formance of parental inbred lines at all crosses considering the predicted 
values predicted in the Additive model.

Additional file 12. Fig. S8: Population structure of 49 inbred lines in 
maize. a Cumulative proportion of variance explained by the principal 
components (PC). b PC2 versus PC1. c PC3 versus PC1. d PC4 versus PC1. 
e PC3 versus PC2.

Additional file 13. Fig. S9: Linearity among prediction accuracy ( ryŷ ) 
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tive effect, and D: Dominance effects

Additional file 14. Fig. S10: Cross-validation prediction accuracy ( ryy ) 
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Additive x dominance effects. RKHS: Reproducing Kernel Hilbert Spaces 
model). AN: Anhembi, PI: Piracicaba, LN: Low nitrogen, IN: Ideal nitrogen.

Additional file 15. Tables S7 and S8: Comparison of posterior means 
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Additional file 16. Fig. S11: Boxplots of the posterior distribution of 
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