
Müller‑Linow et al. Plant Methods            (2019) 15:2  
https://doi.org/10.1186/s13007-019-0386-z

SOFTWARE

Plant Screen Mobile: an open‑source 
mobile device app for plant trait analysis
Mark Müller‑Linow1*  , Jens Wilhelm1, Christoph Briese1,2, Tobias Wojciechowski1, Ulrich Schurr1 
and Fabio Fiorani1

Abstract 

Background:  The development of leaf area is one of the fundamental variables to quantify plant growth and physi‑
ological function and is therefore widely used to characterize genotypes and their interaction with the environment. 
To date, analysis of leaf area often requires elaborate and destructive measurements or imaging-based methods 
accompanied by automation that may result in costly solutions. Consequently in recent years there is an increasing 
trend towards simple and affordable sensor solutions and methodologies. A major focus is currently on harnessing 
the potential of applications developed for smartphones that provide access to analysis tools to a wide user basis. 
However, most existing applications entail significant manual effort during data acquisition and analysis.

Results:  With the development of Plant Screen Mobile we provide a suitable smartphone solution for estimating digi‑
tal proxies of leaf area and biomass in various imaging scenarios in the lab, greenhouse and in the field. To distinguish 
between plant tissue and background the core of the application comprises different classification approaches that 
can be parametrized by users delivering results on-the-fly. We demonstrate the practical applications of computing 
projected leaf area based on two case studies with Eragrostis and Musa plants. These studies showed highly significant 
correlations with destructive measurements of leaf area and biomass from both ground truth measurements and 
estimations from well-established screening systems.

Conclusions:  We show that a smartphone together with our analysis tool Plant Screen Mobile is a suitable platform 
for rapid quantification of leaf and shoot development of various plant architectures. Beyond the estimation of 
projected leaf area the app can also be used to quantify color and shape parameters of other plant material including 
seeds and flowers.
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Background
The evaluation of leaf area development addresses one of 
the most important issues in plant phenotyping, but poses 
one of the biggest challenges at the same time. This key 
parameter characterizes the interface between canopy 
and atmosphere, which regulates photosynthetic activ-
ity and transpiration processes and is used to monitor 
shoot growth and to model plant and environment inter-
actions ([1] and references therein). The high diversity of 
canopy structures at different growth stages results in a 

number of technical problems, like measurable canopy 
size, perspective limitations depending on view-angles, 
and self-occlusions within the canopy. Accordingly, a 
variety of imaging-based methodological developments 
and commercial solutions emerged in the last years (for 
a good overview, see [1–3]). They include non-invasive 
and indirect methods, which make use of radiative trans-
fer models [4] and which measure at different angles 
and levels within the canopy [5], direct non-invasive 
methods like hand-held scanners [2], and laser-scanning 
[6, 7]. Many of these methods entail specifically devel-
oped hardware and consequently potentially significant 
investment costs. Alternative approaches that are easy 
to implement and cost-efficient at the same time became 
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increasingly important. A first step in this direction were 
camera-based applications that make use of new image 
analysis tools. However, most of the published methods 
using this methodology are still invasive, i.e. they require 
the detachment of the leaves from the plant stem [8–10]. 
Leaves are then placed on an imaging plane with a suit-
able background providing optimal contrast, often using 
a reference pattern for metric conversion of pixel data. 
Such approaches facilitate leaf segmentation and reduce 
perspective effects during image acquisition, resulting 
in sufficiently precise and accurate leaf area measure-
ments of single leaves. For example, Rico-Garcia et al. [8] 
tested a Computer Aided Design (CAD)-based approach 
against their image processing suite in tomato and corn 
and obtained a maximum error of ~ 4% with a deviation 
of ~ 3%; the error was defined as the percentage of over- 
or under-estimated leaf area. However, at the same time 
these methodologies are usually restricted to smaller 
sample sizes, mainly due to the time-consuming process 
of leaf sampling and image acquisition. Many scientific 
questions require screening setups, where the growth 
of whole plants is monitored over an extended period of 
time starting at germination and seedling stages. Those 
are exactly the conditions, where non-invasive imaging 
approaches have very good opportunities for applications. 
At the same time the processing capabilities of mobile 
phones as well as the quality of built-in cameras improved 
drastically such that smartphones can now be used for 
various purposes ranging from documentation and classi-
fication of samples to quantitative analysis based on pixel 
and color information of digital pictures [11]. A number 
of beneficial features promote this current trend. Mobile 
phones do not replace just cameras, but provide capa-
bility to run the analysis tasks on-board, independent of 
additional hardware and other infrastructure like network 
connection (e.g., for upload and server-based analysis), 
or external power supply. However, the number of pub-
lished mobile phone applications, specifically developed 
for plant phenotyping tasks, is still limited to specific 
cases. Intaravanne et  al. [12, 13] developed two applica-
tions, which focus on the analysis of color properties of 
banana fruits and rice leaves to determine the ripeness 
and nitrogen content, respectively. In seed phenotyping 
smartphone applications were used for automated charac-
terization of seed morphology in crops [14, 15]. Another 
study used a smartphone for automated berry counting 
in grapevine in the field [16]. Leaf Doctor [17] is a mobile 
application, which analyzes color images to quantify the 
severity of different diseases that result in visible color 
changes of the leaf surface. Confalonieri et al. [18] applied 
the radiative transfer model and estimated the gap frac-
tion in rice plantations with a smartphone application 
that segments canopy from the sky.

With Plant Screen Mobile we contribute a new 
approach for Android-based smart phones, which uses 
both on-board camera and processing unit for the anal-
ysis of shoot and leaf images, in particular. Plant Screen 
Mobile provides a portfolio of segmentation approaches, 
which enable the user to detect the target plant even in 
the absence of a contrasting background and further-
more under various illumination conditions. It can make 
use of the internal device storage, does not require exter-
nal processing time, and is therefore suitable for studies 
in growth chambers, greenhouses, and in the field, where 
access to a network or computers is not guaranteed. The 
application completes the analysis with the possibility 
of geometric calibration and extracting traits like pro-
jected leaf are (PLA) and shape parameters like object 
size and perimeter from the images. Furthermore we 
implemented genetic parameter optimization for color 
segmentation. We tested its applicability to several test 
cases. We present an evaluation of its performance by 
comparison to measurements with typical lab camera 
setups, based on destructive measurements.

Implementation
Plant Screen Mobile (further denoted as PSM) was 
developed with Android Studio (Google Inc.) using the 
OpenCV-libraries for image processing and analysis 
tasks. It works on mobile phones with Android OS 4.0 
(Ice Cream Sandwich). All computations were performed 
on a Samsung Galaxy S6 smartphone. An overview on 
the basic processing modes of PSM is illustrated in the 
flowchart in Fig. 1.

Image acquisition and display
The main interface of Plant Screen Mobile displays a live 
image from the front camera at a maximum resolution of 
1920 × 1080px (Fig. 2a). Images are either stored for later 
processing (e.g. to speed up image acquisition) or ana-
lyzed immediately with a given parameter set (Fig. 2b, c). 
In the latter case each implemented algorithm is directly 
applied to the live image, results are displayed on-the-
fly and can be stored as masked images. In this mode 
no additional traits are computed. To reach the desired 
camera orientation PSM includes a level tool that uses 
the smartphone’s accelerometer. During adjustment tilt 
angles are continuously displayed and horizontal (top-
view) or vertical (side-view) camera orientations are 
indicated as information on the live screen. If necessary 
the smartphone illumination headlight may be switched 
on to optimize capturing conditions. Different visualiza-
tions like single channel display in RGB (red, green, blue 
color space) or HSV (hue, saturation, value color space) 
and a color information tool for the screen center pixels 
help to judge the imaging situation and to parameterize 
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the filters. If images are analyzed at a different time from 
acquisition or imported from other sources, PSM pro-
vides batch operation for multiple images with one of the 
pre-selected processing modes that will be explained in 
the following together with a pre-specified parameter set. 
Segmented image results are stored and computed traits, 
evaluation date, and time are exported to CSV files.

Image segmentation
We implemented three image segmentation methods 
based on single channel thresholding (i), greenness 
thresholding (ii) and HSV-thresholding (iii) that deliver 
binary outputs to mask the image background. Select-
ing a suitable method depends on different factors. First 
of all, the image capture conditions determine which 
method is applicable or not. In the absence of color 
information, e.g. when imaging roots, the lightness is the 
main classifier and simple gray value thresholding should 
be sufficient. This method requires less computational 
power, but tends to lower accuracy in imaging situations 
with unequal illumination. If leaves are imaged under 
controlled conditions and classification is not disturbed 
other image ‘contaminants’ like algae or weed, greenness 
thresholding would be the method of choice. Requiring 
only one thresholding value it is far easier to parametrize, 
compared e.g. to HSV thresholding, which needs 6 
parameters. Albeit higher computational costs, the last 
approach is suitable in more difficult imaging situations, 
were additional classifiers like saturation or lightness are 
needed. We tested the principal segmentation capabili-
ties and performance differences between greenness and 
HSV thresholding and highlighted results in the Addi-
tional file 1. 

	 (i)	 Single-channel thresholding When color is not the 
primary feature to distinguish between object and 
background, image segmentation via single-channel 
thresholding is a suitable method with respect to com-

Fig. 1  Flowchart of implemented processes: the main process (both 
on-the-fly and batch mode) start with the image acquisition as input 
and ends with analyzed traits. Image calibration allows to convert 
pixel metric into real-world values. Additionally, training data can be 
used to optimize parameters for HSV segmentation

Fig. 2  On-the-fly segmentation of a Virginia mallow plant (Sida hermaphrodita). a Image of a Sida plant; b live view image displaying the on-the-fly 
HSV-segmentation of the imaged seedling (live view image was taken from a slightly different angle); RGB-camera values are first converted into 
HSV color space and then binarized using the parametrization of the HSV-filter in c lower and upper thresholds of the HSV-filter are adjusted such 
that the resulting plant mask can be analyzed for projected leaf area and other plant traits
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putational time and memory. We implemented three 
threshold operations that are employed on grayscale 
representation of the RGB color space: simple threshold-
ing, adaptive thresholding, and OTSU’s method [19]. In 
simple thresholding intensity values of each image pixel 
are compared to a global threshold α resulting in a binary 
mask B with values of 1 indicating intensity values above 
α and 0 otherwise. These values are attributed to plant 
and non-plant pixels. This can be sufficient, if plants are 
homogeneously illuminated in front of a black back-
ground. In adaptive thresholding, which accounts for 
local variations in illumination, α is calculated separately 
for each pixel using the surrounding region of a preset 
size. The comparison is either based on averaged intensi-
ties (adaptive mean), or on the Gaussian weighted sum 
(adaptive Gaussian). In Otsu’s method threshold α is 
automatically calculated and applied to the entire image. 
The integral part is an estimation of α, which splits up 
the intensity distribution such that resultant distribu-
tions display low intra-variance and high inter-variance. 
If necessary, the image can be inverted before applying 
any threshold operation, e.g. to segment dark objects in 
front of a brighter background.

	(ii)	 Greenness thresholding Many plant phenotyping 
applications require the segmentation of green 
plant tissue. Various suitable approaches with low 
computational costs have been introduced and 
tested in different application scenarios that com-
pute greenness indices on the base of RGB channel 
intensities IRIG , and IB [20, 21]. We implemented 
three well-known greenness measures: the Green 
Chromatic Coordinate (GCC) [20], the Vegeta-
tive Index (VEG) [22] and the Excess Green Excess 
Red Index (ExGR) [23]. All indices can filtered by a 
single thresholding operation with parameterα. In 
these greenness definitions a pixel I
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Despite their name, greenness filters are not highly sen-
sitive to green colors only but also to the adjacent colors 
in the spectrum. In the presence of both blue-green and 
yellow-green colors these filters are rather unspecific 
and parametrization of alpha becomes increasingly dif-
ficult. In these cases we find that the HSV filter is a good 
alternative.

	(iii)	 HSV thresholding This segmentation approach is 
widely used and well established in plant pheno-
typing (for details see e.g. [24]). It usually outper-
forms RGB-based segmentations, when color is the 
key feature of interest. In the HSV color space Hue 
(H) is associated with the dominant wavelength of 
captured light, saturation (S) is inversely propor-
tional to the amount of white light mixed with hue, 
while value (V) is given by the maximum radiance 
in all RGB color channels. Because color is only 
represented by Hue, thresholding operations are 
far easier to apply and to adapt to different seg-
mentation tasks. HSV thresholding requires a con-
version from RGB to HSV color space. After that, 
thresholding operations are applied as follows with 
defined ranges for each channel in I:

	

HSV parameter optimization via a genetic algorithm
To optimize HSV-segmentation results the PSM app 
computes suitable parameter sets from example images 
using a genetic algorithm for parameter optimization 
[25, 26]. This supervised approach requires at least one 
training image together with the ground truth, which is 
a binary image, where the target object (e.g. plant pix-
els) are labelled with ones and background pixels with 
zeros. PSM does not contain tools to produce ground 
truth images, but other software is suitable for this task. 
We recommend to use a computer or tablet with a larger 
screen for this purpose. The genetic algorithm starts with 
a population of k potential solutions (individuals), each 
of them with a set of parameters G (genome). During the 
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iterative optimization process (i generations) the genome 
is altered by bio-inspired operations such as mutation, 
crossing and selection. In our case, the genome G con-
sists of 6 thresholds:

The quality of optimization is evaluated via a fitness 
function f, which needs to be customized to the problem 
and parameter set. Here, f is defined as the percentage of 
correctly classified values.

The genetic optimization algorithm consists of the fol-
lowing steps:

Step 1 create a start population of k individuals with 
random values in the ranges of H, S and V.
Step 2 calculate fitness f for each individual.
Step 3 select the n-best individuals for reproduction.
Step 4 create new offspring from every combination 
from the n-best individuals with crossing overs at 
probability PC (crossing over rate).
Step 5 mutate each gene of each individual from the 
genepool with probability Pm (mutation rate) and 
random value within range M (mutation range); con-
tinue with Step 2.

We tested this approach with sample images from 
the banana dataset (see “Results”). We split images into 
training and validation sets, each with 40 samples. We 
acquired ground truth image masks for both sets via 
HSV segmentation with individual parameter sets for 
each image and subsequent manual correction of the 
labels. In the genetic algorithm we choose a population 
of k = 20 individuals at i = 250 generations with a muta-
tion rate of PM = 0.1 and a mutation range of M = ±1% 
(of each respective channel range). The n = 5 individu-
als with highest fitness scores f were crossed with each 
other with PC = 0.5 creating new individuals for the 
next generation. To determine the best configuration for 
G we processes all training images in one turn, repeated 
this process 20 times and computed the average fitness 
function f̄  of the best performing individual. Figure  3a 
shows the performance of the best performing individual 
in comparison to the average performance of the entire 
population for the first 20 generations. After 250 genera-
tions the fitness reached a value of f̄ = 99.87± 0.02% (no 
substantial progress f̄  could be perceived). Already after 
12 generations the best performing individual reached 
a fitness of f̄ = 99.75% . In the next step the best per-
forming genome G was used to segment the validation 
images and resulting image masks were compared with 
ground truth by computing once more the fitness func-
tion f. The fitness for all 40 validation images averaged 
f̄ = 99.84 ± 0.05% . In Fig. 3 we show sample images that 

G = (Hmin|Hmax|Smin|Smax|Vmin|Vmax)

was used for training (Fig.  3b), for testing (Fig.  3c) and 
the final plant image mask (Fig.  3d). As this optimiza-
tion process requires a substantial amount of time, we 
recommend not to use more than 25 iterations. As illus-
trated above f̄  will not improve notably after a few itera-
tions. On a Samsung Galaxy S6 the processing time was 
approximately 20 min for 25 generations.

Image post‑processing and analysis
Each computed segmentation is post-processed in two 
steps. First, morphological operations (erosion and dila-
tion) are applied to close small gaps and to remove small 
fragments. Then, components with an 8-connected 
neighborhood are identified and labeled. In this way, 
multiple objects like detached leaves are counted and 
analyzed at the same time. The estimation of projected 
leaf area is the key feature of PSM and the output are 
pixels counts for each segment. To ensure comparabil-
ity between different measurements (e.g. in setups with 
a varying camera-to-plant distance) PSM allows for a 
pixel-to-area conversion. For this purpose the user needs 
to place a calibration target (e.g., checkerboard pattern 
[27]) at approximately the same distance as the plant 
object to be photographed. PSM automatically detects 
the pattern and calculates a conversion factor that is 
used to compute metric area values from pixel counts. 
Besides the estimation of projected leaf area, PSM also 
provides a number of additional measures, which are 
listed in Table 1. Analyzed traits are exported to a CSV 
file together with information on luminance (LUX) and 
GPS coordinates.

Results
We tested Plant Screen Mobile in two different applica-
tion scenarios to evaluate both versatility and perfor-
mance. In these case studies we examined plants with 
contrasting shoot architecture, banana and both Era-
grostis tef and Eragrostis pilosa. Two genotypes of banana 
plantlets were obtained from University of Hohenheim–
Institute of Crop Science (Crop Physiology of Specialty 
Crops), Germany. Khai Thong Ruang KTR (Musa AAA) 
is a drought-sensitive desert banana from Thailand, Saba 
(Musa ABB) is a drought-tolerant African plantain. In 
total we used 52 replicates, 27 KTR and 25 Saba. In the 
Eragrostis experiment we used two species, i.e. 100 rep-
licates in Eragrostis tef (teff) and 40 replicates in Era-
grostis pilosa. Teff is a monocotyledonous species used 
in many parts of Africa, India, Australia and northern 
America. Eragrostis pilosa has no economic significance. 
The examples in the Additional file 2 show typical images 
of banana and Eragrostis that were used in our experi-
ments. For the destructive measurements plant leaves 
where weighed with a high-accuracy lab balance (XS 205, 
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Mettler Toledo, United States) and measured with a leaf 
area meter (LI-3100, Licor, United States) to obtain the 
true leaf area destructively.

Each plant was imaged from 4 sides adding up to 208 
images in banana and 560 images in Eragrostis. Pro-
jected leaf area was estimated with PSM and compared 

against SVM-classified images that were acquired and 
analyzed with the SCREENHOUSE imaging system 
of IBG-2, Forschungszentrum Jülich GmbH [28]. The 
SCREENHOUSE is an automated greenhouse plant phe-
notyping platform, equipped with an imaging station for 
data acquisition under controlled light conditions. It is 

Fig. 3  Genetic optimization of HSV thresholding parameters: a Illustration of the fitness function for the whole population (blue) and the best 
performing individual (red); after 3 generations more than 99% of the pixels are classified correctly (99.75% after 12 generations). b Training image, 
which served as the input for the optimization process; c test image and d corresponding test image mask that was computed with the optimized 
HSV parameter set
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equipped with three RGB cameras (Grasshopper 2, Point 
Grey Research, 5MP) that image plants from three dif-
ferent view angles. Support vector machine (SVM) clas-
sification [29] of foreground and background pixels is a 
supervised approach based on training data sets, which 
generally yields very good solutions for linear- and non-
linear separable data regarding stability and accuracy 
and which is robust against outliers in the data. In both 
approaches the projected leaf area of each plant was aver-
aged over 4 views, in the case of PSM outside the applica-
tion using the csv output file and MS Excel.

Projected leaf area of Eragrostris and banana whole plants
In these two case studies, we compared estimations of pro-
jected leaf area of Eragrostris tef and pilosa plants as well 
as banana plants, which were imaged with a smartphone 
(Galaxy S6, Samsung Electronics) and similarly with the 
imaging system of the SCREENHOUSE. In our test sce-
nario, we used a side view perspective (perpendicular to 
the shoot axis). In order to obtain a comparable imaging 
setup, the smartphone was fixed on a tripod at about the 
same distance and orientation as the corresponding side 
view SCREENHOUSE camera. Camera settings were IS0 
100, exposure compensation − 2.0, white balance 5500 K 
and manual focus without flash in both experiments. To 
take advantage of the highest camera resolution thereby 
speeding up image acquisition, images were captured suc-
cessively and analyzed afterwards with the batch process-
ing option of PSM. All images were segmented with the 
greenness thresholding method using the ExGR Index with 
α = − 0.03 for Eragrostis and α = 0.03 for banana plants. 
Images from the SCREENHOUSE were analyzed with our 
in-house segmentation software, which uses a pre-trained 
classifier based on features from the three RGB channels 

and a polynomial SVM kernel, which showed best results 
in our test scenarios. Plant fresh weight and leaf area was 
measured destructively. Projected leaf area estimated by 
PSM shows high correlations to both reference measure-
ments (weight and leaf area, Figs. 4, 5). Taking the differ-
ences between R2-values as an indicator PSM performs 
only slightly worse in comparison to the SCREENHOUSE 
imaging system. In banana and E. pilosa there were no 
remarkable effects. In E. pilosa �R2 was 0.02 for LA and 
0.03 for weight. The difference in E. tef was slightly more 
pronounced with values of �R2 = 0.09 for both LA and 
weight. In the Eragrostis case study (Fig. 4) both species E. 
tef and E. pilosa differ in leaf architecture and could there-
fore be distinguished in the diagrams. In comparison to E. 
tef the more dense leaf display of E. pilosa results in lower 
PLA estimations especially for smaller plants. Leaf area and 
fresh weight results are comparable, which could be taken 
as an indicator for minor variations in leaf thickness. Lower 
R2-values in E. tef for PSM are mainly caused by a few data 
points that are most likely underestimated particularly in 
comparison to the SCREENHOUSE results. In the evalu-
ation of the banana experiment we did not distinguish 
between both genotypes as they displayed no significant 
difference. Therefore both results are combined in Fig.  5. 
PSM results differ only marginally from the SCREEN-
HOUSE evaluation making this plant particularly suitable 
for the analysis with the mobile application at the develop-
mental stages afforded by this study.

In the Additional file 2 we compiled various examples to 
display additional application scenarios; the first two show 
typical shoot images of Eragrostis and banana. In the fol-
lowing we tested the app also with root images (Cassava), 
blossom segmentation and seed segmentation (here: barley 
and rape seeds).

Table 1  Estimated Traits (for entire image or  single segments): if  analysis of  single segments is  enabled PSM delivers 
the number of segments (e.g. can be used for object counting) and the statistics on each single segment

Trait Definition Unit

Projected leaf area (PLA) Segment-wise pixel sum px/mm2

Perimeter Length of segment contour px

Segment width Maximum horizontal segment stretch px/mm

segment height Maximum vertical segment stretch px/mm

Red mean Average intensity in the red channel Channel intensity

Green mean Average intensity in the green channel Channel intensity

Blue mean Average intensity in the blue channel Channel intensity

Hue mean Average intensity in the hue channel Channel intensity

Saturation mean Average intensity in the saturation channel Channel intensity

Value mean Average intensity in the value channel Channel intensity
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Discussion
The segmentation process is the crucial step towards 
the quantitative estimation of leaf area or other plant 
traits. Therefore, we implemented a range of different 
approaches that use channel intensities in Gray, RGB or 
HSV color space. All these methods have in common that 
they can be processed on Android-based smartphones (of 
the last generations). We tested the smartphone App on 
African plant species with contrasting leaf architecture 

to showcase their application as an affordable phenotyp-
ing device supporting research where larger investments 
may be prohibited. In a controlled setup we could show 
that differences between PSM and an established shoot 
imaging platform like our SCREENHOUSE that uses 
powerful SVM segmentation are marginal. Banana and 
Eragrostis pilosa plants displayed barely any difference, 
while the difference ( �R2 = 0.09 ) in Eragrostis tef plants 
was the largest. Most likely these deviations are not a 

Fig. 4  Case study Eragrostis: Projected leaf area (PLA) of complete plants of two Eragrostis species estimated with the Screenhouse System (a, c) and 
Plant Screen Mobile application (b, d) was compared to measured leaf area (a, b) and measured fresh weight (c, d)
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consequence of different hardware. Differences rather 
emerge from the applied processing method. Here, the 
SVM method benefits from its better classification capa-
bilities. In PSM the PLA of a few Eragrostis tef plants was 
underestimated leading to a weaker correlation (Fig.  4). 
It must therefore be assumed that the implemented PSM 
methods work equally well if foreground and background 
features (color, intensities) are clearly separable. If this is 
not the case, e.g. if plants grow in the presence of other 
weeds or algae develop on the substrate surface, more 

sophisticated methods like the presented SVM method 
or likewise methods (e.g. Random Forest classifiers) may 
help. However, one has to consider the many cases, espe-
cially in outdoor applications, where training data has 
to be produced again and again to account for changing 
imaging conditions. Additional training time and com-
putational costs would arise that can hardly be man-
aged efficiently on a smartphone. Here the advantages of 
a more flexible application like PSM are evident, where 
the outcome can be visually controlled and changed by 

Fig. 5  Case study banana: Projected leaf area (PLA) of complete banana plants estimated with the SCREENHOUSE System (a, c) and Plant Screen 
Mobile application (b, d) was compared to measured leaf area (a, b) and measured fresh weight (c, d)
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simple re-adjustment of parameters. We displayed the 
application in a robust setup, where PSM can be used in 
batch processing mode together with genetic parameter 
optimization and a pixel-to-metric system calibration. 
If used in less controlled application scenarios (e.g. out-
doors with changing illumination) each imaging situation 
can be parameterized individually in order to achieve 
comparable results. We also highlight that PSM is not 
restricted to the detection of shoot and leaves. The HSV 
filter offers enough opportunities also to detect other 
plant parts like blossoms, fruits or seeds.

Conclusion
Estimation of plant traits by digital imaging, which 
requires the segmentation of imaged objects (plants and 
leaves as well as blossoms, fruits or seeds) is still one of 
the biggest challenge in non-invasive plant phenotyping 
approaches. There are numerous methods, which have 
been introduced in recent times, however for mobile 
solutions such as smartphones or other handheld devices 
there is still a lack of applications, especially ones that 
are generic and that make use of smartphone process-
ing power and combine other sensors data (e.g., GPS). 
Constraints are not only given by the lower processing 
capabilities, which e.g. limit the use of machine learn-
ing based methodologies, but also the evident usage of 
such devices in various application scenarios that range 
from controlled imaging conditions (like a lab or dedi-
cated imaging box) to not-controlled conditions (green-
house or outdoor). With the development of Plant Screen 
Mobile we provide a new analysis tool that exploits vari-
ous smartphone capabilities to easily quantify contrast-
ing leaf architectures with respect to projected leaf area, 
which can be used as proxy for leaf area and biomass. The 
central processing step is the separation of plants from 
imaged background. Here we included different solu-
tions that can be selected according to image acquisi-
tion conditions and desired processing speed, which also 
determines the speed of visual feedback for the user. The 
image stream is processed on-the-fly and thus the user is 
able to parametrize the analysis effectively and rapidly. 
Furthermore, we explored different application scenarios 
and we conclude that PSM is sufficiently versatile for a 
variety of plant tissues and illumination conditions.

Additional files

Additional file 1. Performance comparison between greenness and HSV 
segmentation.

Additional file 2. Application Scenarios for Plant Screen Mobile.
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