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PhenoFly Planning Tool: flight planning 
for high‑resolution optical remote sensing 
with unmanned areal systems
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Abstract 

Background:  Driven by a huge improvement in automation, unmanned areal systems (UAS) are increasingly used 
for field observations and high-throughput phenotyping. Today, the bottleneck does not lie in the ability to fly a 
drone anymore, but rather in the appropriate flight planning to capture images with sufficient quality. Proper flight 
preparation for photography with digital frame cameras should include relevant concepts such as view, sharpness 
and exposure calculations. Additionally, if mapping areas with UASs, one has to consider concepts related to ground 
control points (GCPs), viewing geometry and way-point flights. Unfortunately, non of the available flight planning 
tools covers all these aspects.

Results:  We give an overview of concepts related to flight preparation, present the newly developed open source 
software PhenoFly Planning Tool, and evaluate other recent flight planning tools. We find that current flight planning 
and mapping tools strongly focus on vendor-specific solutions and mostly ignore basic photographic properties—
our comparison shows, for example, that only two out of thirteen evaluated tools consider motion blur restrictions, 
and none of them depth of field limits. In contrast, PhenoFly Planning Tool enhances recent sophisticated UAS and 
autopilot systems with an optical remote sensing workflow that respects photographic concepts. The tool can assist 
in selecting the right equipment for your needs, experimenting with different flight settings to test the performance 
of the resulting imagery, preparing the field and GCP setup, and generating a flight path that can be exported as 
waypoints to be uploaded to an UAS.

Conclusion:  By considering the introduced concepts, uncertainty in UAS-based remote sensing and high-through-
put phenotyping may be considerably reduced. The presented software PhenoFly Planning Tool (https​://shiny​.usys.
ethz.ch/Pheno​FlyPl​annin​gTool​) helps users to comprehend and apply these concepts.

Keywords:  High-throughput phenotyping, Flight planning, Low-altitude remote sensing, Mapping from imagery, 
Viewing geometry, Ground control point (GCP)
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Background
Unmanned areal systems (UAS) are increasingly used 
as platforms to monitor vegetation by means of optical 
remote sensing [1, 2]. Recent UAS and sensor technolo-
gies allow ground sampling distances (GSD) in the cen-
timeter [3], millimeter [4] or even sub-millimeter range 
[5]. This development enables identification of details 
on the plant or even plant organ level. Especially in crop 
monitoring, the trend for finer resolved photos has led 
to an increasing number of applications [6]. GSDs ≤ 
0.1 m were sufficient for empirical estimations of gen-
eral crop characteristics such as leaf area index [3, 7, 8], 
crop nitrogen content [3, 7–9], and ripening processes 
[10], or weed detection [11, 12]. GSDs ≤ 0.02 m served 
as base for structure-from-motion (SfM) processing fol-
lowed by plant height extraction [13–18]; a method that 
was used to subsequently estimate plant biomass, lodg-
ing, yield, and other plant height related parameters. The 
segmentation of images in pixels related to either plants 
or soil demands comparable GSDs ≤ 0.01 m and allowed 
to measure canopy cover, leaf area index [19] and crop 
density [4, 19, 20]. On the very extreme, GSDs < 0.001 m 
paved the way for recent works that estimated seed emer-
gence [5, 21].

Nevertheless, beside this remarkable achievements, 
reports about failed remote sensing missions with 
UASs are frequent. It is not enough just to buy a high-
resolution camera, set it to automatic mode and fly 
at low altitude: proper flight preparation is essential 
[22] and refraining from doing so is the main source 
of failure in UAS based remote sensing [23]. Based on 
our own experience and a literature review, we spotted 
two main error sources: inadequate settings of camera 
parameters, and sub-optimal settings of the mapping 
mission. Even in successful studies, crucial param-
eters were frequently not reported and might not 
have been considered. For example, flight speed and 
camera settings are essential to prevent motion blur 
if performing high-resolution optical remote sens-
ing. Nevertheless, only three of the mentioned studies 
provided values for flight speed [7, 19, 21], and only 
four provided camera parameters including shutter 
speed and aperture settings [3, 15, 16, 19]. Regrettably, 
our own publications form no exception [e.g.  miss-
ing flight speed and/or shutter speed in 7, 16, 18]. Pre-
sumably the most common cause for this sub-optimal 
performance is the tendency of UAS pilots to set cam-
eras to automatic settings “to minimize experiment 
complexity” [20].

Proper camera and flight mission settings are in our 
opinion essential to reduce uncertainty in optical remote 
sensing with UASs. With this publication, we like to pro-
vide a tool to master the aforementioned complexity. We 

thereby assume that the difficulty arises mainly from the 
decoupling between UAS, camera system, and processing 
software. A very comprehensible introduction in camera 
settings for areal surveys was given by [24]. For the avail-
able flight planning software on the other hand, most 
tools are specifically designed for certain all-in-one UAS 
solutions or for photogrammetric products. Neverthe-
less, UAS and camera systems for vegetation monitoring 
are rarely out-of-the-box solutions, and high costs may 
still talk in favor for custom-build alternatives. In addi-
tion, we believe that the requirements—based on the tar-
geted objects to measure—should drive the purchase, not 
otherwise.

The scope of this publication therefore includes major 
relevant concepts and parameters in optical remote sens-
ing and mapping with UASs, and we start with a brief 
overview of them. We then link and integrate the men-
tioned concepts in a vendor- and software package inde-
pendent flight planning tool called PhenoFly Planning 
Tool. We furthermore contrast the presented software 
with other comparable tools. In a last step, we demon-
strate a practical implementation of a close-range map-
ping flight using PhenoFly Planning Tool in combination 
with recent UAS and photography technology.

Photography with digital frame cameras
The main component in photography is the imaging 
device. It may capture a two-dimensional image (digital 
frame camera), a one-dimensional image (pushbroom 
scanner) or a point image (flying spot scanner) [22]. 
In this publication and the presented software Pheno-
Fly Planning Tool, we focus on digital frame cameras 
equipped with a lens system. In the following, only the 
most relevant parameters are briefly introduced (Table 1). 
Further physical and technical background can be found 
in the corresponding literature [e.g. 25].

Sensor
According to [25], major intrinsic characteristics of 
a digital frame camera are determined by the sensor, 
namely by its size ( Sx′ × Sy′ ) and number of recorded pix-
els ( Sa × Sb ) (Fig.  1a). The distance between pixel cent-
ers ( Sδ ) is defined as the ratio between sensor size and 
number of recorded pixels. In the following, we assume 
a common pixel aspect ratio of one [25]. Therefore, Sδ is 
defined as

Ideally, large distances between pixel centers correspond 
with larger physical pixels and therefore increase pho-
ton gain, providing a higher signal-to-noise ratio and 

(1)Sδ =
Sx′

Sa
=

Sy′

Sb
.
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dynamic range. Smaller distances between pixel centers 
on the other hand allow higher numbers of recorded pix-
els per sensor axis and therefore increase the total num-
ber of recorded pixels [25]. One may therefore tend to 
combine large pixel sizes with large sensor sizes to opti-
mize both number of recorded pixels and signal-to-noise 
ratio and dynamic range properties. Nevertheless, larger 
sensor sizes require bulkier lens systems and therefore 
contradict the need for small payloads for UASs.

For an imaging system in remote sensing, sharpness 
is crucial. In photography, the concept of the circle of 
confusion is used to describe an acceptably sharp image 
(Fig. 1a, b). The circle of confusion is the spot that point 
source rays form on an image when the lens is not per-
fectly in focus. While in artistic photography, the circle 
of confusion limit (c) is defined as the largest blur spot 
that a human eye perceives as a single point in the final 
product [26], for image processing it is defined as the 
distance between pixel centers, the ultimate limit of the 
sensing system. It is therefore proposed that the circle 

of confusion limit should be smaller than or equal to the 
distance between pixel centers [27],

An additional parameter to consider is the image file for-
mat. RAW file formats offer full functionality to preserve 
the quality of the signal captured by a sensor, but have 
the drawback of a lack of standardization [25]. Standard-
ized, lossless compressed formats such as TIFF, Lossless 
JPEG or PNG on the other hand ensure interchangeabil-
ity and accessibility of data, but may reduce the informa-
tion content of remote sensing images, for example by 
reducing color depth to 8 bit, demosaicing a Bayer-type 
sensor image, or performing irreversible color balance 
adjustments (often called white balance) [25]. Formats 
using lossy compression such as JPEG may not represent 
a valid option for remote sensing applications, as the level 
of image degradation increases with increasing compres-
sion [25].

Lens
For most common frame cameras, a lens compound 
complements the sensor to an imaging device. Lens com-
pounds may be categorized in lenses where the thickness 
is negligible (thin lenses) and those where the thickness 
is not negligible (thick lenses) [22]. In the following, for 
simplicity we focus on thin lenses only. A thin lens is 
characterized by its focal length (f) and aperture f-num-
ber (N) [25]. Focal length and aperture may be immuta-
ble or mutable, depending on the lens type. Often lens 
specifications refer to a “35 mm equivalent focal length” 
or a “crop factor”, terms that relate lens characteristics to 
analogue 35 mm film cameras [24]. In the following, we 
use the term focal length to refer to the effective, physical 
focal length.

The lens aperture f-number and focal length in com-
bination with the sensor result in an additional charac-
teristic of the lens—the hyperfocal distance (H). The 
hyperfocal distance is defined as the focus distance 
beyond which all imaged objects are not restricted by the 
circle of confusion limit and therefore regarded as sharp 
[25],

The hyperfocal distance varies as a function of the lens 
aperture. The other two parameters (sensor-specific cir-
cle of confusion limit and the focal length of the lens) are 
fixed constants of the camera system.

Another function of the lens aperture represents 
the diffraction limit: for very small apertures, the small 
opening may deflect incoming rays and therefore reduce 

(2)c ≤ Sδ .

(3)H =
f 2

N · c
+ f .

Table 1  List of  terms and  corresponding symbols used 
in  photography with  digital frame cameras and  related 
input and  output categories in  the  software PhenoFly 
Planning Tool 

Term Symbol → Input/← output

Sensor

 Sensor size (x/y-axis) Sx′ , Sy′ → Sensor/lens

 Number of recorded pixels (x/y-
axis)

Sa , Sb → Sensor/lens

 Distance between pixel centers Sδ ← Sensor/lens

 Circle of confusion limit c ← Sensor/lens

Lens

 Focal length f → Sensor/lens

 Aperture (f-number) N → Sensor/lens

 Angle of view (x/y-axis) AOVx , AOVy ← Photography

 Hyperfocal distance H ← Photography

 Diffraction limit d ← Photography

View

 Flight height h ↔ Imaging

 Ground field of view (x/y-axis) Gx , Gy ← Photography

 Ground sampling distance GSD ↔ Imaging

Sharpness

 Focus distance s ← Photography

 Depth of field (near/far) DN, DF ← Photography

Exposure

 Exposure value EV → Imaging

 Shutter speed It → Imaging

 Film speed ISO ← Imaging

 Maximum photo trigger frequency If ,max → Sensor/lens
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sharpness due to light diffraction. The diffraction limit 
(d) is calculated as

where � is the wavelength of light [24]. The imaging 
device is diffraction limited if N is chosen in a way that 
the diffraction limit is bigger that the circle of confusion 
limit, d > c.

View
The imaging geometry of a digital frame camera strongly 
depends on the orientation of the camera. In the follow-
ing, we assume that the camera is oriented in a nadir 
view and that the terrain is perfectly planar, a common 
simplification in remote sensing [22].

If combining the focal length with the sensor size, one 
can derive the angle of view (AOV) (Fig. 2) [25] as

(4)d = 2 · 1.22� · N ,

(5)

AOVx = 2 · tan−1

(

Sx′

2 · f

)

, AOVy = 2 · tan−1

(

Sy′

2 · f

)

.

In nadir orientation, the view of a frame camera is deter-
mined by the distance to the object, which corresponds 
to the flight height (h) over ground. A certain flight height 
results in a specific ground field of view (G) (sometimes also 
called spatial support), the area that is visible in one photo,

The corresponding ground sampling distance (GSD) if 
assuming a pixel aspect ratio equal one is defined as

Leachtenauer and Driggers [28] and represents the area 
on the ground covered by one pixel. GSD is an indica-
tor for the minimum size of a detail that is still resolved 
in an image, and low GSDs may prevent successful fea-
ture extraction in images. Torralba [29] demonstrated 
that humans can recognize up to five objects with 80% 
accuracy in thumbnails of only 32 × 32 pixel. Based on 

(6)Gx = Sx′ ·
h

f
, Gy = Sy′ ·

h

f
.

(7)GSD =
Gx

Sa
=

Gy

Sb
,

a

b

Fig. 1  Concepts in digital frame camera photography: a Thin lens model and corresponding depth of field with focus distance (s), near and far 
depth of field limits ( DN/DF ) and imaged points (red, brown and green) on schematic drawing of sensor with size ( Sx′ ) and number of recorded 
pixels ( Sa ) on x-axis, distance between pixel centers ( Sδ ) and circle of confusion limit (c). b Same lens as in a but with closed aperture (N)
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this finding, [24] recommend that the features to extract 
should have a sizes of at least 5 × GSD. We experienced 
that for segmentation in plant and soil, leaf sizes of 3 × 
GSD may already be sufficient [19].

Sharpness
Imaged objects are only regarded as sharp if the circle 
of confusion limit is respected (see section ‘Sensor’). For 
a specific focus distance, one can calculate the depth of 
field, characterized by the minimum and maximum dis-
tance of objects that are still regarded as sharply imaged 
(Fig. 1a). The depth of field is calculated as

where s is the focus distance, DN is the near limit and 
DF the far limit of the depth of field [30]. For UAS based 
photography, it is favorable to have a depth of field that 
expands equally before and beyond the distance to 
the ground and spans the vertical extend of objects of 
interest,

Therefore, if combining Eqs.  8 and  9, one can calculate 
the optimal focus distance as

(8)DN,F =
s ·H
H ± s

,

(9)h =
DN + DF

2
.

Exposure
The exposure of a frame camera is controlled by the shut-
ter speed ( It ), the aperture f-number (N) and sensor sen-
sitivity, for example expressed as film speed ISO [25]. In 
the following, we focus on main concepts related to cor-
rect exposure. For a more thorough discussion of expo-
sure and its influence on signal-to-noise ratio, dynamic 
range, depth of field, motion blur, and diffraction, we 
refer to [24].

A common way to summarize and compare expo-
sure configurations is to use exposure values (EV) [26], 
defined as

The aperture setting strongly influences the depth of view 
(see section ‘Sharpness’), but also the resolving power of 
the lens [24, 26]. Therefore, the aperture should be set 
independently from the lighting situation in a way that 
the setting is close to the optimal aperture opening (spe-
cific for each lens), but also provides an adequately sized 
depth of field suitable for the remote sensing purpose.

The shutter speed on the other side is in close relation 
to the flight speed: we experienced that wrong shutter 
speed settings are a major cause of motion blur. There-
fore, to prevent motion blur, the shutter speed should be 
in alignment with the flight speed (see following section 
‘Mapping areas’). Nevertheless, if increasing the shutter 
speed one may also need to open the aperture to com-
pensate for the shorter integration time.

As a consequence, the remaining adjustable parameter in 
Eq. 11 is the sensor sensitivity ISO. If measuring the expo-
sure value needed for a certain situation, one can derive the 
optimal ISO setting with

Nevertheless, one should consider the maximal tolerable 
signal-to-noise ratio and therefore maximum tolerable 
ISO setting of the sensor. Recommendation from bench-
mark tests are often publicly available [24, e.g.  https​://
www.dxoma​rk.com]. If the maximum tolerable ISO value 
is exceeded, one has to reduce shutter speed and, to pre-
vent motion blur, flight speed, or increase the aperture 
opening.

A common practice is to validate exposure settings before 
the mapping flight by positioning the UAS over a represent-
ative scene (e.g. the center of a field experiment) and display 

(10)s =
H
√
h

√
H + h

.

(11)EV = log2
N 2

It
+ log2

100

ISO
.

(12)ISO =
25N 2 · 22−EV

It
.

Fig. 2  Concepts in digital frame camera photography: angle of 
view (AOV), ground field of view (G) and ground sampling distance 
covered by a sensor pixel (GSD) depending on flight height (h) and 
sensor size (S)

https://www.dxomark.com
https://www.dxomark.com
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the intensity histogram of the camera. If no accumulation 
of counts in border bins is visible while the intensity peaks 
are located at center bins, one may regard the exposure as 
optimized. This practice assumes that the dynamic range of 
the sensor is large enough to cover the extremes of the scene 
(dark regions as well as bright spots), so that no information 
is lost due to under- or overexposure.

Mapping areas with unmanned areal systems
Mapping areas using aerial photography is a well estab-
lished task in photogrammetry. For further details on the 
topic please visit the corresponding literature [e.g. [22]]. In 
the following, we focus on parameters that are specific for 
UAS photography (Table 2).

Mapping areas
For simplicity, we restrict this publication and the soft-
ware PhenoFly Planning Tool to squared mapping areas. 
A squared mapping area is defined by its width and depth 
( Ax × Ay ). In UAS based photography, this area is typically 
substantially larger than the ground field of view (G) of 
the imaging device. As a consequence, the mapping flight 
includes sequential exposure stations and results in multi-
ple photos per mapping area. Photogrammetry techniques 
allow to align adjacent photos to determine the exact expo-
sure position, and to produce a digital mosaic [22]. Basic 
perquisites for these techniques are overlaps between pho-
tos, expressed as overlap between flight lines (percent side 
lap, S% ) and overlap in flight direction (percent end lap, 
E% ). These overlaps can be transformed in spacing between 
exposures (E) and spacing between flight lines (S),

where GE is the ground field of view in flight direction 
and GS across flight direction. Depending on the orienta-
tion of the camera, GE and GS are defined as

for Sy′ in flight direction and

for Sx′ in flight direction. The requirement for over-
laps depends on the intended use—while in classical 
areal photography, end laps between 55 and 65% and 
side laps of 30% are recommended [22], SfM package 

(13)E = GE

(

1−
E%

100

)

,

(14)S = GS

(

1−
S%

100

)

,

(15)GE = Gy,

(16)GS = Gx,

(17)GE = Gx,

(18)GS = Gy,

manufacturer usually recommend values beyond 85% for 
end laps and 70% for side laps [e.g. 31].

Overlap in the SfM process is needed for feature-
based and dense matching of images [32]. Feature-based 
matching allows a bundle adjustment of images to deter-
mine exposure positions and optionally intrinsic camera 
parameters [33]. Dense matching allows the generation of 
a dense point cloud based on exposure positions, intrin-
sic camera parameters and image content [34].

For the bundle adjustment, a theoretical minimum of 
three matching features between adjacent images (tie 
points) is needed [22]. Although small, this requirement 
may already represent a limit if mapping very homogeneous 
fields with few detectable and reliable features, for example 
bare soil with weak texture or artificial surfaces (Fig. 3a, d). 
Nevertheless, according to our own experience, variation in 
ground coverage in field experiments offer sufficient detect-
able features (Fig. 3b, c, e–g) if using recommended overlaps 
of SfM package manufacturer. Still, poor image quality may 
influence the success of feature-based image matching.

For the dense point cloud generation, images with a 
high overlap allow very dense resulting point clouds [32]. 
Nevertheless, [34] showed that complex vegetation as 
well as surfaces with homogeneous texture lead to sparser 
areas in dense clouds, calling for even higher overlaps 
than recommended by SfM package manufacturer.

In addition to overlap values, one should also ensure 
that the required overlaps cover the whole mapping area, 
including the extremes. As a consequence, one needs to 
extend the mapping area in both dimensions and direc-
tions by half of the corresponding ground field of view. 
The resulting number of exposures per flight line ( En ) 
and number of flight lines ( Sn ) is calculated as

where ceil(x) is a ceiling function that maps x to the least 
integer greater than or equal to x. The number of photos 
per mapping area is therefore defined as

and should not exceed the maximum storage capacity of 
the imaging device.

When the number and spacing of flight lines is known, 
one can approximate the minimum flight speed ( Fv,min ) 
required to complete the flight in the maximum allowed 
flight duration ( Ft,max),

(19)En = ceil

(

Ay + GE

E

)

,

(20)Sn = ceil

(

Ax + GS

S

)

,

(21)In = En · Sn,

(22)Fv,min =
Sn · (Ay + GS)+ Ax + GE

Ft,max
.
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While the flight duration determines the minimum 
flight speed (Fv,min) , the maximum flight speed( Fv,max ) 
is determined by the fastest photo triggering frequency 
( If ,max ) that the optical system supports,

The chosen flight speed ( Fv ) should therefore range 
between the two mentioned limits,

Another factor to consider is motion blur ( δ ), usually 
denoted in percentage of the size of a pixel and caused 
by moving objects during one exposure [25]. A long 
shutter time in combination with a fast flight speed may 
force motion blur. O’Connor et al. [24] proposed to keep 
motion blur < 150% . Nevertheless, based on positive 
experiences with motion blur values < 50% for plant and 

(23)Fv,max = If ,max · E.

(24)Fv,min ≤ Fv ≤ Fv,max.

soil segmentation in [19] and motion blur values < 10% 
for automatic GCP detection in present, unpublished 
own research, we recommend to keep motion blur as low 
as possible, but at least < 50% . The flight speed should 
then be chosen based on the maximum tolerable motion 
blur,

while also considering the limits based on Eq. 24.

Ground control points
Ground control points (GCPs) are used to gain informa-
tion about exposure orientation and position of photos 
[22]. GCPs are an implied standard to process digital 
frame camera photos made with UASs [18, 35–39]. The 

(25)Fv =
GSD · δ

It
,

Table 2  List of  terms and  corresponding symbols used in  mapping areas with  unmanned areal systems (UASs) 
and related input and output categories in the software PhenoFly Planning Tool 

Term Symbol → Input/← output

Mapping areas

 Mapping area (width/depth) Ax , Ay → Mapping

 Ground field of view (along/across flight dir.) GE ,GS ← Mapping

 Spacing between exposures E ↔ Mapping

 Spacing between flight lines S ↔ Mapping

 Percent end lap E% ↔ Mapping

 Percent side lap S% ↔ Mapping

 Number of exposures per flight line En ← Mapping

 Number of flight lines Sn ← Mapping

 Photo trigger frequency If ← Mapping

 Number of photos In ← Mapping

 Exposure position of photos IPos ← Mapping

 Flight speed Fv ← Mapping

 Flight duration Ft ← Mapping

 Motion blur δ → Mapping

 Plot center position (x/y-axis) pPos,x , pPos,y ← Mapping

Ground control points (GCPs)

 Number of GCPs (x/y-axis) GCPn,x , GCPn,y → GCPs

 Position of GCPs (x/y-axis) GCPPos,x , GCPPos,y ← Mapping

 GCP arrangement pattern → GCPs

 GCP recover frequency in photos νGCP(k) ↔ Mapping

Viewing geometry

 Positioning precision (standard deviation) σIPos → Mapping

 Zenith angle frequency νθ (θ) ← Viewing geometry

Way-point flight mapping missions

 Maximum flight duration Ft ,max → Sensor/lens

 Start location (Lat, Long) PStart → Location

 Mapping area edge location (Lat, Long) PEdge1 → Location

 Flight direction location (lat, long) PDir → Location

 Maximum number of way-points Pn,max → Location
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number ( GCPn ) and placement pattern ( GCPPos ) of 
GCPs thereby determines the frequency of GCP recover-
ies in photos ( νGCP).

Depending on the purpose of the mapping campaign, 
the requirements on recover frequencies may differ: [35] 
demonstrated that one visible GCP per image is sufficient 
for accurate georeferencing if performing aero-triangula-
tion with manual tie points. Mesas-Carrascosa et al. [40] 
and Gerke and Przybilla [38] could show that for SfM 
products, the distribution pattern and spacing of GCPs 
is of major importance too. Harwin et al. [37] noticed a 
stronger degradation of the vertical precision than of the 
horizontal precision of SfM products if reducing GCPs 
from approximately one GCP per image to one GCP 
every second image. Based on these contrasting find-
ings, one may conclude that further research is needed. 
Thereby, the prediction and description of GCP visibility 
is essential.

One way to describe GCP visibility in images is the 
recover frequency of GCPs for k visible GCPs ( νGCP(k) ), 
determined by the ground field of view (G), the exposure 
stations of the camera ( IPos ) and the position of the GCPs 
( GCPPos),

For the spatial arrangement of GCPs, we differentiate 
between two common arrangements: squared and cross-
wise. The squared arrangement is favorable in situations 
where the number of rows that a GCP may be placed in is 
restricted. The crosswise arrangement has its advantage 
in increasing the recover frequency while at same time 
reducing the number of needed GCPs.

Viewing geometry
In close-distance remote sensing, viewing geometry 
effects may influence the resulting photos significantly 
[19, 39, 41–43]. The viewing geometry depends on spac-
ing between flight lines and exposure stations, but also 
on the design of the examined area, e.g. the number 
and spacing of plots in an agricultural field experiment. 
A field experiment with a rectangular design may be 

(26)

νGCP(k) =
1

In

In
�

i=1





GCPn
�

j=1

�

GCPj,Pos ∈
�

Ii,Pos ±
G

2

��

= k



,

for k = 0, 1, . . . ,N .

Fig. 3  Detected tie points for a section of Experiment 3. a Driving lane of field experiment. b Experimental wheat plot. c, d Street. e Meadow. f 
Drainage. g Tilled soil
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specified by the centers of plots ( pPos,x , pPos,y ). To control 
viewing geometry effects and reach a high frequency of 
pixels in a desired view (e.g. close nadir views) in relation 
to these plot centers, one may calculate the recover fre-
quency of plot centers for each pixel,

where σIPos represents the standard deviation of the posi-
tioning precision, pn the number of plots, and f1 and 
f2 the positioning precision distribution of the UAS. 
For the positioning of flight lines, one may assume a 
standard normal distribution ( f1(x) = X ∼ N

(

0, σ 2
)

 ). 
For the positioning of exposure stations along flight 
lines, a uniform distribution may be more appropriate 
( f2(x) = X ∼ U(− σ

2 ,
σ
2 ) ), based on the assumption that 

an initial positioning error at the start of a line is propa-
gated from exposure to exposure.

The zenith angle for pixels in relation to observed plot 
centers may be calculated as

Equations 30 and 31 will therefore yield a distribution of 
zenith angle frequencies νθ (θ),

Way‑point flight mapping missions
A common way to map an area with an UAS is to per-
form way-point flights while sequentially trigger the 
camera. This technique allows to capture photos in-
flight, which significantly saves flight time in comparison 
to flights where each exposure station is represented by 
a way-point where the UAS hovers to capture a photo 
[40, 44]. Therefore, in this we focus on in-flight capture 
techniques.

The location-independent parameters of a map-
ping flight where defined in section ‘Mapping areas’. To 
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νp(a, b) for all θ(a, b) ∈ [θi, θi + 1), θi ∈ N0.

perform a way-point flight at a specific location, three 
additional location parameters are required: PStart repre-
sents the point where the UAS takes off. For most UAS, 
this point additionally defines the reference altitude. 
PEdge1 represents one edge of the mapping area, while 
PDir defines the flight direction: PEdge1 and PDir form a 
primary flight direction baseline which all flight lines are 
aligned with.

Mapping an uneven ground may significantly influ-
ence the resulting GSD: UASs usually hold a flight eleva-
tion that is relative to the elevation of the starting point 
( PStart ), which results in varying flight heights in relation 
to the ground. As a consequence, recent way-point flight 
tools allow to perform follow-terrain-flights. While a 
true follow-terrain-flight would require a device to meas-
ure the distance to the ground [45], tools like Litchi (VC 
Technology Ltd, London, England) simulate the same 
behavior by adapting individual heights of way-points 
using a digital elevation model. Prerequisite for such fol-
low-terrain flights is that the number of way-points along 
the flight route is sufficient to capture terrain differences. 
This requirement is in contradiction to the artificially 
introduced limitation of number of way-points ( Pn,max ) 
for some UASs, e.g. the maximum of 100 way-points for 
UASs from DJI (SZ DJI Technology Co. Ltd., Shenzhen, 
China).

Implementation
Architecture
PhenoFly Planning Tool is programmed in R [46] using 
R Shiny [47] as web application framework. The tool 
depends on the public available packages ggplot2 [48], 
gridExtra [49], NMOF [50, 51], RJSONIO [52], rlist [53], 
rgdal [54], readr [55], zoo [56], data.table [57] and ras-
ter [58]. PhenoFly Planning Tool therefore runs on every 
platform that supports R—it was tested to run locally 
on both windows and linux systems. Using an R Shiny 
server to provide the app to users completely overcomes 
operating system borders and offers full functional-
ity to any client running a web-browser that supports 
JavaScript.

Graphical user interface
The graphical user interface (GUI) is divided in a side 
panel to allow the user to specify input values (Fig.  4a) 
and a main panel to show calculated output values, 
graphical illustrations and summaries (Fig. 4b). The input 
values are grouped according to Tables  1 and  2 in tabs 
named Sensor/Lens, Imaging, Mapping, GCPs and Loca-
tion. The content of the output tabs Photography, Map-
ping Properties, Viewing Geometry and Mission Briefing 
are described in detail below.
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Photography
The photography output tab presents a graph illustrat-
ing the relationship between flight height and result-
ing GSD (Eqs.  6,  7) (Fig.  5a). The aperture f-number 
is fixed according to the input tab Sensor/Lens, allow-
ing to display additional information about optimal 
focus distance (Eq.  10) and resulting depth of field in 
relation to the ground (Eq. 8). Additional information 
about lens intrinsic parameters—angle of view (Eq. 5) 
and hyperfocal distance (Eq.  3)—are noted aside the 
graph.

Mapping properties
The mapping properties output tab displays informa-
tion on the implementation of a mapping mission with a 
way-point flight (Eqs. 14–20). On the first page, a sche-
matic graph shows the mapping area, the flight path and 
the GCP arrangement (Fig.  5b). Aside the graph, map-
ping parameters for the implementation—photo record-
ing speed and photo trigger interval (Eq. 23), flight speed 
(Eq. 25), minimum flight duration (Eq. 22), and number 
of photos (Eq. 21)—are noted.

On the second page, the flight path is presented in a 
geospatial context showing the to-implement way-point 
flight with start point, edge of mapping area and flight 
direction (Fig.  5h). PhenoFly Planning Tool partially 

supports follow-terrain functionality: the tool intersects 
flight lines with additional way-points while as same time 
respecting a limit of Pn,max way-points.

The third page allows the users to optimize their GCP 
arrangement to reach the required recover frequency: the 
GCPs are automatically placed on the mapping area to 
best suite the given GCP recover frequency. The place-
ment algorithm thereby favors equal distances between 
GCPs and penalizes high number of required GCPs. 
After the automatic placement, the user can further cus-
tomize the arrangement by changing the arrangement 
pattern or manually increase and decrease the number 
of GCPs in both directions. A graph and table show the 
recover frequency of GCPs in images based on the cho-
sen settings (Eq. 26) (Fig. 5g).

Viewing geometry
The viewing geometry output tab is divided in two parts: 
the left part is denoted to a sensor-centered view, while 
the right part represents a plot-center-centered view. The 
sensor-centered view presents a graph showing the fre-
quency of plot centers imaged on certain pixel positions 
(Eq. 30) (Fig. 5c and d for the two sensor axis, Fig. 5f for 
individual pixels). The plot-center-centered view presents 
the frequency of plot views having a certain zenith angle 
(Eq. 32) (Fig. 5e).

Fig. 4  PhenoFly Planning Tool graphical user interface (GUI) layout with a side panel for inputs and b main panel for outputs
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a b

c d e

f g h

Fig. 5  The graphical user interface (GUI) output components of the PhenoFly Planning Tool for the following tabs: photography: a influence 
of flight height on ground sampling distance, focus distance and depth of field. b Mapping properties: schematic mapping area. c–f Viewing 
geometry: frequency of plot center recover for sensor width (x-axis, c), sensor height (y-axis, d) and individual sensor pixels (f), and resulting zenith 
angle frequency for plot centers (e). g GCP: ground control point recover frequency distribution. h Way-point flight: Geospatial implementation of 
mapping flight
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Mission briefing
The mission briefing tab summarizes all fight-relevant 
information. The tab additionally provides the user with 
the possibility to download a report containing all graphs 
and a JSON file containing all entered parameters for 
documentation purpose. To continue the flight campaign 
workflow in an third-party-tool, two export possibilities 
are provided: first the possibility to export the mapping 
area as KML file for sub-sequential import in tools that 
allow to map an area based on a shape (e.g. DJI GS Pro) 
and second a possibility to export the way-points as way-
point CSV file for import it in a tool that allows to import 
way-point flights (e.g. Litchi, VC Technology Ltd, Lon-
don, England).

Results
Comparison with other recent mission planning tools
To contrast the presented software PhenoFly Planning 
Tool with comparable tools, we performed a systematic 
evaluation of current available mission planning and 
way-point flight tools. We focused on classical ground 
station software packages that are able to generate map-
ping flights. A selection of ten tools is listed in [59], based 
on which we performed an intense internet research to 
validate and update this list.

Thereby, we evaluated the functionality using two tech-
niques: (1) For software that was available for an afford-
able fee (open source, free of charge or small fee of less 
than $25 USD), we did the evaluation based on the soft-
ware itself. This category included the following tools:

•	 Aerobotics flight planner tower v4.0.1 (https​://githu​
b.com/Droid​Plann​er/Tower​)

•	 Altizure v4.1.0 (https​://www.altiz​ure.com/mobil​e)
•	 DJI GS Pro v1.8.1 (https​://www.dji.com/groun​d-stati​

on-pro)
•	 Drone Harmony Mission Planner v0.8.1 (http://drone​

harmo​ny.com)
•	 DroneDeploy v2.69.0 (https​://www.drone​deplo​

y.com/app.html)
•	 Litchi v4.4.0 (https​://flyli​tchi.com)
•	 Map Pilot for DJI v2.8.0 (https​://www.mapsm​adeea​

sy.com)
•	 MikroKopter Tool v2.20 (http://wiki.mikro​kopte​r.de/

en/Mikro​Kopte​rTool​)
•	 Mission Planner v1.3.55 (http://ardup​ilot.org/plann​

er/index​.html)
•	 Pix4Dcapture v3.0.0 (https​://pix4d​.com/produ​ct/

pix4d​captu​re)
•	 QGroundControl v3.3 (http://qgrou​ndcon​trol.com)

For software that was priced higher than $25 USD, but 
the documentation was publicly available, we evaluated 
the functionality based on the documentation. This cat-
egory included:

•	 Autopilot for DJI Drones v4.4 (http://autof​light​.hanga​
r.com)

•	 UgCS v2.13 (https​://www.ugcs.com/)

We did not consider software that was priced higher than 
$25 USD if the documentation was not publicly available. 
Software that was available only as integral part of an 
UAS/software package without a freely accessible docu-
mentation was handled in the same category. This cat-
egory included (non-exclusive):

•	 DroneLogbook (https​://www.drone​logbo​ok.com)
•	 eMotion (https​://www.sense​fly.com/softw​are/emoti​on)
•	 MAVinci (http://www.mavin​ci.de/de/mavin​ci-syste​

m/missi​on-contr​ol-softw​are)
•	 mdCockpit App v2018.07.h2 (https​://www.micro​

drone​s.com/de/mdair​craft​/softw​are/mdcoc​kpit-app/)
•	 Skyward (https​://skywa​rd.io)
•	 Unifly Pro (https​://www.unifl​y.aero/produ​cts/unifl​y-pro)

The evaluation was divided in three parts: (1) Type of 
tool, (2) calculations and (3) features. In the type of tool 
classification part (1) we categorized the tools by their 
mean purpose. If a tool matched a certain category, it was 
marked with the rating “x”.

In the calculation evaluation part (2) we assessed the 
tools regarding their informativeness. More precisely, we 
analyzed whether a tool considered a specific parameter 
or not, and if this was the case, whether the tool handled 
the parameter as user input or provided the user with a 
calculated output value. If a parameter was handled as 
input, it was rated with an “I”, if it was handled as calcu-
lated output with an “O”. Implementations where the user 
could choose whether to handle a parameter as input or 
calculated output were rated as “I/O”.

In the features evaluation part (3), we classified the 
tools regarding useful features that may increase their 
utility in comparison with others. If a feature was imple-
mented, we rated the category as “x”. The rating “no 
information” indicated that we where—based on the 
documentation—not able to determine whether a feature 
was implemented or not. For the supported UAS and 
operation system categories, we listed the specific sys-
tems using number and letter keys.

The results of the evaluation are summarized in the 
overview Table 3. In the following, we discuss this results 

https://github.com/DroidPlanner/Tower
https://github.com/DroidPlanner/Tower
https://www.altizure.com/mobile
https://www.dji.com/ground-station-pro
https://www.dji.com/ground-station-pro
http://droneharmony.com
http://droneharmony.com
https://www.dronedeploy.com/app.html
https://www.dronedeploy.com/app.html
https://flylitchi.com
https://www.mapsmadeeasy.com
https://www.mapsmadeeasy.com
http://wiki.mikrokopter.de/en/MikroKopterTool
http://wiki.mikrokopter.de/en/MikroKopterTool
http://ardupilot.org/planner/index.html
http://ardupilot.org/planner/index.html
https://pix4d.com/product/pix4dcapture
https://pix4d.com/product/pix4dcapture
http://qgroundcontrol.com
http://autoflight.hangar.com
http://autoflight.hangar.com
https://www.ugcs.com/
https://www.dronelogbook.com
https://www.sensefly.com/software/emotion
http://www.mavinci.de/de/mavinci-system/mission-control-software
http://www.mavinci.de/de/mavinci-system/mission-control-software
https://www.microdrones.com/de/mdaircraft/software/mdcockpit-app/
https://www.microdrones.com/de/mdaircraft/software/mdcockpit-app/
https://skyward.io
https://www.unifly.aero/products/unifly-pro
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according to the categories type of tool, calculations and 
features.

Type of tool
All but the PhenoFly Panning Tool are so called “online-
tools” in the meaning of being able to control an UAS 
using autopilot functionality [59], while four of them are 
additionally part of a photogrammetry software package 
(Table  3). PhenoFly Planning Tool on the other hand is 
the only tool that does not provide such autopilot func-
tionality and may therefore be called an “offline-tool”. 
Two tools (Autopilot for DJI Drones and Litchi) are pure 
autopilot apps, while all other tools additionally support 
mapping flight generation.

The finding that PhenoFly Panning Tool is the only 
offline-tool version of all evaluated software tools sup-
ports our hypothesis that current developments are 
strongly bound to specific vendors and operating sys-
tems. Despite that offline-tools were presented by dif-
ferent authors over time [e.g. 60, 61], the availability of 
executable binaries or even source code for those tools is 
very restricted. This limitation also applies to the evalu-
ated third-party tools: in particular tools that support DJI 
systems tend to be closed-source software, while tools 
that support the Mikrokopter and ArduPilot universe are 
almost exclusively open source tools. PhenoFly Panning 
Tool therefore adds to the urgent need for vendor-neu-
tral, well-documented evaluation and flight preparation 
tools.

Calculations
PhenoFly Planning Tool includes critical photogram-
metric properties for flight planning and supports input 
parameters of all frame-camera and thin-lens combina-
tions, which contrasts other tools: only three out of 14 
evaluated tools (DJI GS Pro, UgCS and DroneDeploy) do 
consider shutter speed settings and therefore may con-
trol image quality by setting a maximum motion blur 
value (Table  3). Unfortunately, for all of the three men-
tioned tools, image quality control only works in combi-
nation with dedicated specific cameras. As motion blur is 
a factor influencing image quality severely (see results of 
Experiment 2 in section ‘Ground sampling distance and 
motion blur’), this lack of control is a major drawback of 
the evaluated tools.

Regarding mapping parameters, all tools are very com-
parable to PhenoFly Planning Tool, with the exception of 
Autopilot for DJI Drones and Litchi, which are by defi-
nition pure autopilot tools and therefore do not support 
mapping flights per se. Two tools stand out with extended 
side and end lap calculation support based on percentage 
values as well as exact spacing values (MikroKopter Tool 
and QGroundControl). It may be noted that certain tools 

do not show values in the GUI that were obviously cal-
culated in the back-end: Aerobotics flight planner tower, 
Pix4DCapture and DroneDeploy for example do not dis-
play a photo trigger interval but most probably use the 
value to trigger the UAS camera in autopilot mode. An 
adjustment of flight mission parameters based on restric-
tions of the imaging system is therefore unfeasible in 
these tools.

GCPs and viewing geometry are only considered by 
PhenoFly Planning Tool. As mentioned in section ‘Map-
ping areas with unmanned areal systems’, GCP recover 
frequency has a major influence on the georeferencing 
precision of resulting photogrammetric products, while 
viewing geometry effects may bias information extrac-
tion from mapping campaigns.

Features
The scope of provided features differs largely among 
tools. The image quality control functionality of Pheno-
Fly Planning Tool, DJI GS Pro and Map Pilot for DJI are 
comparable, with the advantage of the two later tools to 
have the possibility to directly implement a flight using 
the internal autopilot. Autonomous flight features are 
largely supported among tools. Most tools are able to 
perform photo triggering by time or position, although 
many tools only support either triggering by time or dis-
tance. Follow terrain functionality becomes more and 
more common: almost half of all evaluated tools sup-
port terrain corrected flights based on digital elevation 
models.

Regarding interchangeability, some tools stand out with 
extensive import and export possibilities (e.g. DroneDeploy 
and Aerobotics flight planner tower), while others have no 
open interface at all (e.g. Map Pilot for DJI and Altizure). 
The support for certain operating systems and UAS ven-
dors varies widely: some tools support several operating 
systems (e.g. QGroundControl and UgCS), but most tools 
are restricted to one specific operating system for desktop 
computers (e.g. Mission Planner) or tablets (e.g. DJI GS 
Pro). All presented tools are specific for one or two UAS 
vendors, with the exception of the universal tool UgCS.

Application demonstration
To validate the usability of the described concepts and 
the PhenoFly Planning Tool in real-world conditions we 
performed different field trials using a Matrice 600 Pro 
(SZ DJI Technology Co. Ltd., Shenzhen, China) (approxi-
mated maximum flight time: 15 min.) as UAS and a 
Sony α9 (ILCE-9, Sony Corporation, Tokio, Japan) (sen-
sor size: 35.6 × 23.8 mm, number of recorder pixels: 6000 
× 4000, maximum photo trigger frequency: 2 s−1 , maxi-
mum tolerable ISO: 4000) combined with a Sonnar® T* 
FE 55 mm F1,8 ZA lens (Sony Corporation, Tokio, Japan) 
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Table 3  Evaluation results, divided in the categories (1) type of tool, (2) calculations and (3) features
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as RGB imaging device. The camera was connected to 
the UAS using a Ronin-MX (SZ DJI Technology Co. Ltd., 
Shenzhen, China) gimbal to prevent off-nadir views and 
rotation blur effects caused by abrupt movements of the 
UAS.

In Experiment 1, we performed flights at varying flight 
heights in sunny and windless weather conditions to vis-
ualize the effect on GSD and visibility of details in images 
(Table 4). The flight speed was kept at a constant rate of 1 
m s −1 . Shutter speed was set to 1/2500 s, ISO to 350 and 
aperture to f/6.7.

In Experiment 2, we performed flights at constant 
height with varying flight speeds in overcast but wind-
less weather conditions to visualize motion blur effects in 
low-light conditions (Table 5). Flight height was set to 46 
m, shutter speed to 1/500 s, ISO to 320 and aperture to 
f/8.0. For both Experiment 1 and 2, we imaged UV coated 
GCP prints with the size of 0.2 × 0.2 m, a DIN A4 sized 
IT 8.7 color checker panel (http://www.targe​ts.color​aid.
de, Wolf Faust, Frankfurt, Germany) with 10 × 10 mm 
sized color boxes, and an experimental wheat plot (Triti-
cum aestivum L.) in BBCH stage 31/32 [62].

In Experiment 3, we planned and performed a com-
plete mapping flight on a wheat experiment, including 
GCP placement. The base requirements were to map an 
area of 40 × 35 m with a resulting GSD of 3 mm, a max-
imal tolerable motion blur of 5%, and one or more vis-
ible GCP in more than 75% of all images. Targeted image 
overlaps were proportional to plot sizes (3 × 1.5 m over-
lap versus 1 × 1.5 m plot sizes). The wide sensor side ( Sx ) 
should point in flight direction. The mapped area was not 
flat but curved with a height difference > 4 m between 
the highest and lowest point. In addition, the area was 
bordering an obstacle with a height of 25 m at one corner, 
i.e. the winch-tower of the field phenotying platform of 
ETH Zürich (FIP) [63]

PhenoFly Planning Tool proposed a mapping flight 
at 28 m height with a flight speed of 1.8 m s −1 if setting 
shutter speed to 1/16,000 s, ISO to 2500 and aperture 
to f/5.6. The calculated focus distance was 25.7 m. Esti-
mated flight duration was 8 minutes, estimated number 
of photos to take was 741. A crosswise GCP arrangement 
with 6 × 3 GCP led to the targeted percentage of 75% 
photos with one or more GCP per photo. The mapping 
flight was performed using DJI GS Pro (SZ DJI Technol-
ogy Co. Ltd., Shenzhen, China) as autopilot.

Captured photos were processed using structure-
from-motion (SfM) and image projection techniques 
to determine exposure stations and viewing geometries 
of images. Details of the method can be found in [19]. 
In brief, Agisoft PhotoScan Professional 1.4.2 (Agisoft 
LLC, St. Petersburg, Russia) was used to process indi-
vidual photos, delivering a digital elevation model 
(DEM), but also exposure station, GSD, flight height 
and image overlap estimations. Thereafter, images were 
projected to the DEM using ray-tracing techniques, 
and masked using individual plot masks for each image. 
This process resulted in viewing geometry information 
(zenith angle) for all visible plots and GCPs on pro-
cessed images.

Flights were performed on April 20 (Experiment 1, 
GSD), Mai 2 (Experiment 2, motion blur) and March 25 
(Experiment 3, mapping flight), 2018.

Ground sampling distance and motion blur
Experiment 1 (various flight heights in sunny conditions) 
resulted in photos with differing GSDs, but also level of 
visible details (Fig.  6a): for a GSD of 2 mm, individual 
color fields of the color checker panel image were clearly 
visible. Individual leafs in the wheat vegetation image 
were distinguished and clearly separated from the back-
ground. For a GSD of 3 mm, borders between color fields 
in the color checker panel image softened, and the sepa-
ration between individual plant leafs in the wheat vegeta-
tion image vanished. For a GSD of 5 mm, the increase 
of mixed pixels hampered a clear separation in plant 
and background segments, and for a GSD of 10 mm, the 
majority of pixels were mixed pixels and a separation in 
plants and soil therefore not possible. The drastic drop in 
level of visible details with increasing GSD stresses the 
importance of an adequate equipment and the determi-
nation of a suitable flight height in flight preparation.

Experiment 2 (low-light conditions with varying flight 
speed but constant flight height) resulted in photos with 
comparable GSD, but differing visible motion blur effects 
(Fig.  6b). Due to lower lighting conditions, the contrast 
in photos was remarkably lower than in Experiment 1. 
Strong blurring effects became visible in both GCP and 
vegetation photos starting at δ > 400% . Nevertheless, at 

Table 4  Parameters for  the  GSD experiment (Experiment 
1): effects of  flight height on  ground sampling distance 
(GSD) and  motion blur in  pixel % for  a  constant flight 
speed of 1 m s−1 and a shutter speed of 1/2500 s

Flight height 19 m 28 m 46 m 93 m

GSD (mm) 2 3 5 10

Motion blur (%) 20 13 8 4

Table 5  Parameters for  the  motion blur experiment 
(Experiment 2): effects of  flight speed on  motion blur 
in  pixel % for  a  flight height of  46 m and  shutter speed 
of 1/500 s

Flight speed 4 m/s 8 m/s 10 m/s 15 m/s

Motion blur (%) 160 320 400 600

http://www.targets.coloraid.de
http://www.targets.coloraid.de
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Fig. 6  Ground sampling distance (GSD) and motion blur dependency on flight speed, shutter speed and flight height
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Fig. 7  Realized path of the mapping flight for Experiment 3. Indicated are exposure stations (stars), ground control points (GCPs) (green circles), 
winch-tower in the right corner of the mapping area (brown polygon) and examined field plots (brown squares)
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δ > 160% , deformation effects—visible by the stretched 
white space of the GCPs—were already detectable. In 
vegetation photos, blurring effects in photos with a 
motion blur < 400% were only to a small extend visible. 
This finding emphasize the need to determine and con-
trol motion blur in flight preparation, as quality con-
trol mechanism on resulting images may be difficult to 
implement.

Mapping flight
Experiment 3 (complete mapping flight using DJI GS 
Pro as autopilot) resulted in the flight path visualized 
in Fig. 7. Flight lines deviated regarding orientation and 
straightness. The photo trigger interval appeared to be 

more constant. As DJ GS Pro does not allow to import 
way-point files directly, we were forced to use the KML 
shape import functionality and the built-in algorithm 
of DJ GS Pro to generate way-point flights. As a conse-
quence, the implemented flight deviated regarding the 
proposed parameters of PhenoFly Planning Tool, and 
the flight lines did not precisely match the corners of the 
mapping area. Therefore, the number of photos and flight 
lines were reduced (Table 6). Additionally, the calculated 
flight duration was slightly higher, most probably because 
DJI GS Pro adds additional time buffers in turning points. 
Despite the deviation of two minutes, the estimated flight 
duration was a valuable element in flight preparation 
and resulted in the flight being successfully completed 
while considering the battery capacity range of the UAS. 
Enhancing DJ GS Pro with PhenoFly Planning Tool pro-
vided us with the advantage of staying with the flight 
control software of the manufacturer, which is most likely 
the safest to control the UAS.

Processing reports from Agisoft Photoscan indi-
cated that the targeted GSD of 3.00 mm was reached, 
despite the uneven ground. The spacing between flight 
lines and exposure stations led to an overall overlap 
of >  89%, which is in accordance to the predefined 
requirements. The GCP recover frequency deviated 
slightly from the targeted frequency: 26% photos had 
no visible GCP, which is 5% higher than predicted. 
Further investigations showed that unreliable auto-
matic detection of GCPs in edges of the sensor were 
main cause for this deviation. If the GCP in image 
edges were manually added, the percentage of photos 
without a visible GCP decreased to 23%, which cor-
responds to the targeted maximum value of 25%. This 
results confirmed that taking into account GCP dis-
tribution as early as in the experimental setup phase 
may ensure sufficient GCP recover frequencies in final 
remote sensing missions.

In addition to GCP recover frequencies, we exam-
ined the plot center recover frequencies. In Experiment 
3, viewing geometries (zenith angles) for plot centers 
were comparable with the predicted frequency distribu-
tion of PhenoFly Planning Tool (Fig. 8): the shape of the 
frequency distribution in the implemented flight corre-
spond to the shape of the predicted distribution, while 
the values were slightly shifted to more close-nadir views 
by 2 ◦–3◦ . This distribution confirms that close-nadir 
views rarely happen if performing mapping flights. Nev-
ertheless, predicting viewing geometries in flight prepa-
ration may allowed to estimate the level of uncertainty 
introduced, or to plan flights that will later become pro-
cessed with multi-view techniques [19, 64].

Table 6  Predicted and  realized flight and  mapping 
parameters and  ground control point (GCP) recover 
frequency for Experiment 3

Parameter Predicted Realized

Number of photos 741 572

Flight duration (min) 8 10

Flight height (m) 28 28.4

Number of flight lines 19 18

GSD 3.00 mm 3.02 mm

Overlap 92 × 75% > 89% (overall)

GCP recover frequency

 0 per image (%) 21 26

 1 per image (%) 52 45

 2 per image (%) 27 29

Fig. 8  Frequency distribution of plot-center based zenith angles for 
the prediction (gray surface) and realization (black line) in Experiment 
3
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Conclusion
Qualitative characteristics of photos taken by UAS have 
a major influence on the usability of the data (e.g. fea-
ture detection and high-resolution segmentation). Image 
quality is influenced by exposure (as function of shut-
ter speed, aperture and ISO), ground sampling distance 
(as function of flight height and sensor resolution), and 
many other factors such as motion blur (as function of 
flight speed, shutter speed and GSD), viewing geometry 
(as function of angle of view), spacing between exposure 
stations, flight lines and examined objects.

Current flight planning and mapping tools for UASs 
strongly focus on vendor-specific solutions and have no 
dedicated focus on photographic properties. In this pub-
lication, we outlined the most important aspects to be 
regarded for high-quality data collection, and provided 
with PhenoFly Planning Tool an interactive learning envi-
ronment to access these concepts. The software thereby 
bridges the gap between UAS based mission planning 
and involvement of photographic properties and provides 
the community with a tool-set to improve tasks such as:

1.	 Performing a pre-purchase evaluation of UASs 
including (external) camera systems

2.	 Assess the requirements and feasibility of a planned 
mission, thereby reducing uncertainty regarding pho-
tographic products

3.	 Optimize flight parameters to meet the requirements 
for dedicated mapping missions

4.	 Set-up experiments with optimized GCP distribu-
tion, plot size and viewing geometry

5.	 Prepare flights and import the calculated parameters 
into a sophisticated autopilot system (for example 
Litchi as lightweight way-point flight tool, or UgCS 
as full-featured autopilot tool)

6.	 State hardware and flight parameters and derived 
quality parameters as metadata to published studies 
and datasets

With the publication of the free software PhenoFly Plan-
ning Tool (https​://shiny​.usys.ethz.ch/Pheno​FlyPl​annin​
gTool​), we hope to provide a tool that will increase the 
efficiency and success of UAS-based remote sensing 
flights, but also complement this publication for learning 
purpose.
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