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METHODOLOGY

Methodological approach for predicting 
and mapping the phenological adaptation 
of tropical maize (Zea mays L.) using 
multi‑environment trials
Henri E. Z. Tonnang1,2*  , Dan Makumbi2 and Peter Craufurd2

Abstract 

Background:  The phenological development of the maize crop from emergence through flowering to maturity, 
usually expressed as a rate (i.e. 1/duration), is largely controlled by temperature in the tropics. Maize plant phenologi-
cal responses vary between varieties and quantifying these responses can help in predicting the timing and duration 
of critical periods for crop growth that affect the quality and quantity of seed. We used routine multi-environment 
trials data of diverse tropical maize varieties to: (1) fit 82 temperature dependent phenology models and select the 
best model for an individual variety, (2) develop a spatial framework that uses the phenology model to predict at 
landscape level the length of the vegetative and reproductive phases of diverse varieties of maize in different agro-
ecologies. Multi-environment trial data of 22 maize varieties from 16 trials in Kenya, Ethiopia, and Sudan was analyzed 
and the Levenberg–Marquardt algorithm combined with statistical criteria was applied to determine the best temper-
ature-dependent model.

Results:  The Briere model, which is not often used in plant phenology, provided the best fit, with observed and 
predicted days to flowering showing good agreement. Linking the model with temperature and scaling out through 
mapping gave the duration from emergence to maturity of different maize varieties in areas where maize could 
potentially be grown.

Conclusion:  The methodology and framework used in the study provides an opportunity to develop tools that 
enhance farmers’ ability to predict stages of maize development for efficient crop management decisions and assess-
ment of climate change impacts. This methodology could contribute to increase maize production if used to identify 
varieties with desired maturity for a specific agro-ecology in in the targeted regions.
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Introduction
The method of using temperature and time as factors 
to describe the development of plants and insects was 
proposed and has been continuously studied for over 
300 years [1]. The concept began with the French natu-
ralist [1] who suggested that temperature variations were 
probably one of the causes of the changes in plant and 

insect phenology. They proposed summing up the mean 
daily air temperature for an identical number of months 
in a location, which led to the birth of the degree-day 
concept as the values of the developmental rate of plants 
obtained from year to year were roughly constant [1]. 
The degree-day equation was later modified by several 
authors [2–4]. As the concept of degree-day evolved, 
a new hypothesis arose stating that the rate of chemi-
cal reactions is either doubled or tripled for each 10  °C 
rise in temperature [5]. This idea was expressed in form 
of a constant called Q10 [5]. Towards the end of the 18th 
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century, the principle started to influence the formula-
tion of plant and insect development rate functions [5].

Mathematical, statistical and machine learning 
approaches are commonly used to enhance the under-
standing of plant architecture, growth, development, and 
interactions with the environment. A single-parameter 
compartmental model was used to describe the transport 
of fluoride in living plants [6]; and an ensemble of statis-
tical metrics was applied to quantify large sets of plant 
transcription factor binding sites [7]. In Qiongyan et  al. 
[8] a neural network was developed to detect the spikes 
of wheat plants, and an algorithm with deep learning 
method was applied for counting the leaf of rosette plants 
[9]. Increasingly, the formulation of mathematical expres-
sions to represent the development of plants and insects 
continued to progress centered on the postulation that 
“within certain ranges, as temperature (Te) decreases, the 
rate of development slows and, if the temperature drops 
low enough, development will cease at the organism’s 
lower developmental threshold; often called the base tem-
perature (Tb). As temperature increases, development rate 
increases until temperature reaches the optimum tempera-
ture (To), above which the development rate decreases and 
eventually ceases at a value called maximum temperature 
(Tm)”. Inspired by this hypothesis, various models have 
been developed, each with strengths and weaknesses [10]. 
Largely, these models derived the relationship between 
the development of plants and insects and temperature 
either empirically or through process-based methodology. 
Empirical functions are formulated and parameterized 
using the same measured phenomenon as the phenome-
non to be derived [11]. In contrast process-based functions 
are mathematical expressions formulated and parameter-
ized using biological knowledge such as the enzyme kinet-
ics to predict the time from planting to anthesis [11].

Climate has a considerable impact on the distribution 
and abundance of plants and other organisms, and the 
mathematical depiction of the climatic effect on crop 
phenology has been of significant interest among scien-
tists [12, 13]. Temperature is the most important climate 
variable determining plant phenology (via rate of devel-
opment) and plant distribution (via base and maximum 
temperature limits to survival) [14, 15]. Understanding 
the phenology of maize can therefore help to define crop 
adaption to a region or site (i.e. its ability to mature and 
set seed within a growing season). In maize, it can also 
help hybrid seed production by determining appropriate 
planting dates of lines to ensure flowering synchrony [15, 
16]. Therefore, the accurate prediction of phenological 
development is fundamental to define crop adaption and 
yield potential [15, 17].

Despite the abundance of literature [15, 18, 19] on the 
use of temperature dependent models for the prediction 

of maize developmental phases, few studies have been 
conducted on tropical maize in sub Saharan Africa (SSA). 
Furthermore, in order to get the best possible predic-
tion of phenology for individual varieties across space 
and time, a range of well-known and well-tested temper-
ature-dependent models for plant and insect develop-
ment should be evaluated and made available through 
an open-source modeling framework. If this framework 
can be based on existing and annually or routinely con-
ducted breeding or variety-testing trials, then the pro-
cess can become institutionalized. Models can then be 
used to predict the adaptation of different maize varie-
ties spatially and temporally across major maize growing 
agro-ecologies, information that is important in efforts to 
improve maize yields. The objectives of this study were 
therefore to: (1) to evaluate 82 different temperature 
dependent models to predict the phenological develop-
ment of 22 diverse tropical maize varieties using existing 
multi-environment trial data; and (2) develop a spatial 
framework that uses the phenology model to predict the 
period from sowing to flowering or maturity across sites 
and agro-ecologies, i.e. to map the adaptation of different 
varieties.

Materials and methods
Maize varieties and test locations
Twenty-two (22) early and intermediate maturity open-
pollinated maize varieties were planted in nine different 
locations in Kenya, Ethiopia, and Sudan in 2004 (a total 
of 16 trials) as described in Table  1 and Fig.  1 (adapted 
from [16]). In each of these trials the date when 50% of 
the plants in a plot: (1) emerged; (2) had a tassel (male); 
(3) had a silk (female) and (4) were physiologically mature 
(black layer formation) was recorded. Selection of experi-
mental field data for model development and calibration 
was conducted using altitudinal change (400–1600 m) to 
represent a wide range of temperature values (11–20  °C 
minimum; 24–37  °C maximum). Six sites covering the 
maximum range of temperature were selected for model 
development and calibration, namely Alupe, Embu, 
Kibos and Bungoma, Pawe, Wad Madani. The remaining 
three sites, namely Kiboswa, Nyahera and Vihiga, were 
used for independent model evaluation. In model devel-
opment about 1/3 of data are typically used for independ-
ent validation.

Temperature datasets and shape file of suitable soil 
and weather conditions
Two types of temperature data were used, daily tempera-
tures for model development and monthly gridded tem-
perature for mapping. Daily minimum and maximum 
temperature were obtained from weather stations in the 
vicinity of field trials [16]. Maize phenology data were 
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collected during two growing seasons; March to August 
2004 characterized by higher rainfall, and September 
2004 to January 2005 characterised by lower rainfall. The 
data were used to develop the phenology model. Gridded 
average monthly minimum and maximum temperature 
for Kenya were obtained from WorldClim (http://www.
world​clim.org/) and the Climate Change, Agriculture and 
Food Security (CCAFS) (http://www.ccafs​-clima​te.org) 
databases. The data are organized in layers (grids) with a 
spatial resolution of 30 s that is equal to 0.9 × 0.9 km.

The shape file of suitable soil and weather conditions 
for maize production used in this study was obtained 
from HarvestChoice [20]. It is a spatially disaggregated 
production statistics database of derived from the Spatial 
Production Allocation Model (SPAM). The resolution is 
5 arc-minute grid cells [20].

Assumptions

1.	 Temperature and time were considered as the pri-
mary factors affecting the rate of maize development. 
Photoperiod or daylength can also affect development 
(maize is a quantitative short-day plant), but breeders 
select against this trait and most tropical maize varie-
ties are effectively insensitive to photoperiod. Further-
more, Kenya straddles the equator and the variation 
in photoperiod is very small [21, 22].

2.	 It was assumed that the trials were grown with ade-
quate nutrients and water and did not suffer adverse 
stress based on the yields obtained [16]. In general 
phenological development is only adversely affected 
by very severe stress [16].

3.	 Maize plant developmental cycle was divided into 
two phases: the vegetative phase (VP), starting from 
emergence to tasseling/silking (flowering), and the 
reproductive phase (RP), which is from flowering 
to physiological maturity (PM). It was assumed that 
the duration of the VP and RP were the same in any 
given variety based on previous experience. The 
overall developmental rate per phase for the whole 
crop was estimated by accumulating the daily devel-
opment rate values:

where development D is a function of temperature T 
which in turn is a function of time t, r is the develop-
ment rate, Δt is the time increment and P the vector 
of parameter values [23]. The time step for the model 
was fixed to a day.

4.	 Phenology was predicted spatially only in areas 
where maize is known to be grown, based on suit-
ability maps and known maize areas.

Models
According to [24] development is the process of cellular dif-
ferentiation manifested by different life-phases of an organ-
ism. Development time is the duration between life-phases 
and growth is the increase in biomass resulting from the 

(1)D =

t
∑

0

r(T (t),P)�t

Table 1  Description of  the  locations where  data used to  develop, calibrate and  validate the  models for  the  selected 
maize varieties was collected as described in [16]

Locations (latitude–
longitude)

Altitude (m) Country Soil characteristics Rainfall 
during cropping 
season (mm)

Temperature (°C) Data use

Minimum Maximum

Vihiga (0°32′S–34°47′E) 1629 Kenya Friable clay 550 14.1 27.0 Model evaluation

Nyahera (0°1′S–34°44′E) 1548 Kenya Friable clay loam 520 17.0 29.4 Model evaluation

Kiboswa (0°1′S–34°44′E) 1532 Kenya Friable clay loam 520 17.0 29.4 Model evaluation

Embu (0°30′S–37°27′E) 1504 Kenya Clay loam 346 13.9 24.6 Model development and 
calibration

Bungoma 
(0°33′S–34°33′E)

1374 Kenya Clay loam 374 11.4 25.4 Model development and 
calibration

Kibos (0°2′S–34°48′E) 1193 Kenya Sandy loam 547 16.3 30.7 Model development and 
calibration

Alupe (0°30′N–34°7′E) 1153 Kenya Sandy clay loam 679 15.8 28.6 Model development and 
calibration

Pawe (11°09′N–36°09′E) 1100 Ethiopia Clay loam 878 16.6 33.4 Model development and 
calibration

Wad Medani 
(14°23′N–33°31′E)

400 Sudan Clay 119 20.3 36.9 Model development and 
calibration

http://www.worldclim.org/
http://www.worldclim.org/
http://www.ccafs-climate.org
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development. Selecting a mathematical expression for rep-
resenting the phase of development of a crop is challenging 
[25]. This study applied 82 temperature-dependent nonlin-
ear equations (Additional file 1: Table S1) which have been 
used in agricultural production, either in the context of 
insect phenology modeling or crop development [25, 26].

Estimation of the model parameters
An important step in conducting this study was to evalu-
ate how well the selected models (out of the 82 tested) fit 
the observed data. We used the Levenberg–Marquardt 

(LM) algorithm [27] because it combines both the ‘steep-
est descent’ and the Gauss–Newton method to evaluate 
the models. This algorithm iteratively locates the minimum 
of a function that is expressed as the sum of squares of 
the nonlinear model [27]. After initialization of the mod-
els, the LM algorithm was launched and a goodness of fit 
procedure was used to find the parameters of the model. 
The model parameters were estimated by fitting equations 
to the recorded data from multi-environment trials. A pro-
gram written in R computing language [28] provided an 
interactive processing, in which initial values of the model 

Fig. 1  Locations of early and intermediate open-pollinated maize varieties trials conducted in Kenya, Ethiopia and Sudan
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parameter are entered; and once the LM algorithm is 
launched, the values of the parameters are optimized based 
on the matching of model output to observed data follow-
ing the ‘steepest descent’ and the Gauss–Newton methods. 
Overall, the process is similar to the functioning of LEAF-
E; a tool developed to analyze grass leaf growth using func-
tion fitting [29].

Goodness of fit and selection criteria of the model
No single method exists to best assess the goodness of fit 
of an individual model to specific data. Therefore visual 
assessment and the coefficient of determination R2_Adj 
[25, 30] were used. The R2_Adj is estimated as follows:

where, n is the number of observations, k is the number 
of parameters of the zth sub-model, and R2

z is the correla-
tion coefficient obtained by the following expression:

where, ȳ is the observed median, y the observed mean 
and ŷji is the jth predicted value from the ith function.

The best-fitted model is selected by examining the resid-
uals and comparing Akaike’s Information Criterion (AIC) 
and the Model Selection Criterion (MSC) [25]. The math-
ematical expressions of the two criteria are:

where, n is the number of observations, Yobsi and Yesti are 
the observed and estimated values for the ith observa-
tion, p is the number of parameters, and wi is the weight 
required for each observation. In the case of nested mod-
els, F test was used to check whether the addition of 
parameters has a statistically significant contribution to 
the model before selection [25].

Best‑fit model: Briere et al. [31]
Although all the 82 models were fitted with the available 
multi-environment trial datasets of different maize varie-
ties, herein we report only two models, which provided 

(2)R2_Adj = 1−

(

1− R2
z

)

(

n− 1

n− k − 1

)

(3)R2
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n
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)2
−

n
∑
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(
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n
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i=1 wi

(

Yobsi − Ȳest
)2
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(
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)2

)
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n

the best fit to the selected maize varieties based on crite-
ria outlined above. The full set of models is available in a 
in the Additional file 1: Table S1.

The Briere model was developed based on four princi-
ples: (1) the option to estimate the lower and upper tem-
perature thresholds; (2) the inclusion of an asymmetry 
in relation to the optimum value of temperature where 
the developmental rate is highest; (3) the presence of an 
inflection point; and (4) the introduction of a decay in 
development rate at temperatures above the optimum 
temperature [31]. With these considerations, the lower 
and the upper thermal limits were unequivocally inte-
grated in the equation to represent two important param-
eters of the model, Tb and Tm, respectively [31]. To get 
decay at high temperatures, a square root was included 
to allow a high slope when the values of temperatures 
approach Tm. By combining the products of different 
powers of temperature, an inflection point occurs yield-
ing the Briere_1 model with the following mathematical 
expression.

A second model, Briere_2, was derived from Briere_1 
model by replacing the square root with a general power 
equal to d = 1/µ, where µ is the new parameter and a is 
an empirical constant [31]. The Briere_2 equation is as 
follows:

Evaluation of the model
The evaluation of the model in this study was defined as 
the level to which the selected model correctly predicted 
the number of days a maize variety takes from emergence 
to flowering and from flowering to physiological matu-
rity at different, independent locations. To carry out this 
procedure, independent data recorded at three typical 
sites in Kenya (Kiboswa, Nyahera and Vihiga) were used. 
Flowering and maturity dates were predicted for a stand-
ard and common sowing date for each variety from the 
models developed using data from the other six sites and 
observed and predicted values compared.

Spatial predictions of the duration of maize phenology
A Kenya boundaries shape file was divided into grids or 
cells. To predict the number of days each phase of maize 
development takes to be completed in an individual 
cell, the temperature-dependent mathematical expres-
sion obtained during the modeling step was run at each 
individual cell of Kenya using a typical sowing date. 

(6)r(T ) = a ∗ T (T − To)

(

√

Tmax − T
)

(7)r(T ) = a ∗ T (T − To)

(

√

Tmax − T
)d
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The gridded temperature datasets were loaded into the 
computer, simultaneously extracted from the database 
and then organized in matrix format using longitude as 
column and latitude as a row. A point object picks the 
temperature-dependent mathematical expression of the 
maize vegetative and reproductive phases, and these are 
consecutively applied in each geographical coordinate of 
the grid. After replacing the values of temperature in the 
phenology model in each grid, a new matrix with the val-
ues of the development rate in the respective geographi-
cal coordinates was computed. These values are then 
inversed (1/development rate) to estimate the number of 
days used to complete each phase of maize development. 
The results are converted into ASCII files and transferred 
to an open source software Q-GIS [32] for visualization.

Results
The multi-environment datasets were used to fit a total 
of 82 temperature driven models (Additional file  1: 
Table  S1). However, only the model of Briere et  al. [31] 
was selected to calculate the duration of vegetative and 
reproductive phases of 22 different maize varieties in 
Kenya. In addition to describing the data accurately (R2_
Adj and R2 > 0.82 for all tested varieties), the Briere model 
was able to provide biologically meaningful estimates of 
Tb and Tm for development of 8–10  °C, and 38–40  °C, 
respectively.

Parameter estimates from the Briere_1 and Briere_2 
models of eight-selected maize varieties are presented 
in Table 2. The estimated Tb ranged from 8.1 to 10.1  °C 
while Tm ranged from 34.3 to 40.4  °C. The adjusted R2 
was high for all varieties (0.83–0.91). The root mean 
square error (RMSE) for each variety’s development rate 
ranged from 0.0014 to 0.0022, which further indicated 
the ability of the model to predict the duration of indi-
vidual maize variety’s phases of phenology. Although the 

selected model did not explicitly estimate the optimum 
temperature at which the developmental rate is highest, 
graphical visualization (Fig.  2) showed that these values 
were between 23 and 32 °C, consistent with the literature, 
depending on the variety.

The number of days taken from emergence to flower-
ing, and from flowering to physiological maturity, for 
the 22 maize varieties at three independent data sets 
(locations) used for model evaluation is presented in 
Table  3. The range in observed flowering durations was 
between 48 and 80 across sites and varieties. Compari-
son of the duration obtained from model outputs with 
field trial results showed good agreement (r = 0 .892**, 
Adj R2 = 0.786 for Kiboswa; r = 0.712**, Adj R2 = 0.482 
for Nyahera; and r = 0.920**, Adj R2 = 0.838 for Vihiga) 
suggesting that the model predicted phenology well 
and could be used with confidence to predict phenol-
ogy spatially. The number of days from sowing to emer-
gence is approximately 7–10  days and also varies with 
temperature. Adding this to the duration of the vegeta-
tive and reproductive phases provides gives the length 
for the growing period of the 22 varieties of maize in any 
location.

As expected, maize development is predicted to take 
longer in the cooler mid-altitudes of Western Kenya and 
to be shorter in the warmer lowlands of the coastal areas. 
Out of the 22 varieties of maize analyzed here, the long-
est growing period from sowing to flowering was for VE 
212, where most predicted values were > 105  days. The 
earliest variety was VE 220 at < 90 days in the majority of 
regions in Kenya. These maps show that all selected vari-
eties of maize can be grown in most parts of Kenya, with 
a range of adaptation among varieties available (Figs.  3, 
4). The phenology models for each variety were mapped 
spatially and then filtered or masked to represent areas 

Table 2  Estimated parameters of Briere—1 and Briere—2 models [23] for eight maize varieties covering the vegetative 
and reproductive phases of the crop development

a  Numbers in parentheses are standard errors

Variety Tb (°C) Tm (°C) a AIC R2 MSC RMSE

VE 201 8.9826 (0.0011)a 40.1123 (0.6633) 0.0003 (0.0001) − 74.3393 0.9389 − 0.8117 0.0014

VE 203 10.1398 (0.0008) 39.0562 (0.1416) 0.0003 (0.00002) − 68.7885 0.8794 − 0.8737 0.0020

VE 206 9.515 (0.1002) 38.4895 (0.1000) 0.0003 (0.00002) − 71.7878 0.9010 − 0.8500 0.0017

VE 208 8.5664 (0.1008) 38.587 (0.2510) 0.0003 (0.0001) − 70.7438 0.8763 − 0.8719 0.0018

VE 210 9.6988 (0.0310) 39.1233 (0.0523) 0.0003 (0.00001) − 70.3806 0.8848 − 0.8690 0.0018

VE 212 9.0336 (0.0608) 37.2379 (0.1154) 0.0003 (0.00002) − 72.3643 0.9242 − 0.8238 0.0016

VE 218 8.1142 (0.1004) 40.0585 (0.0001) 0.0029 (0.00004) − 70.9964 0.9020 − 0.8597 0.0017

Variety µ Tb (°C) Tm (°C) a AIC R2 MSC RMSE

VE 220 1.0307 (0.000001) 10.0339 (0.000001) 40.4344 (0.0001) 0.00004 (0.000001) − 65.2251 0.8765 − 1.1314 0.0022
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where soil and weather conditions are suitable for grow-
ing maize (Fig. 5 for selected varieties). 

Discussion
This study had two major objectives, namely to develop a 
model framework to rigorously predict maize phenology 
from routine yield trials and to map adaptation spatially. 
Maize breeders conduct many yield trials each year in a 
wide range of locations representing target environments 
as well as ‘hot-spots’ for biotic or abiotic stresses [16]. In 
most, if not all, trials phenology, a key trait, is recorded. 
These standard data sets are available for predictive mod-
eling and, as we have shown, are resources that can be 
successfully used to add value to the breeding process.

The maize plant requires a certain amount of heat 
units or thermal energy to transition between different 
phases of development [13, 33]. Because of yearly and 
within season variation in weather patterns, measuring 
the heat units accumulated over time provides a physi-
ological time scale that is biologically more accurate 
than calendar days for predicting stages of development 
[13, 33]. Phenology models, characterized by a rate of 
development, are often applied to predict the timing of 

events in plant development. However, it is difficult to 
directly measure the rate of plant development [4]. Usu-
ally a relationship is established between the develop-
ment rate (development rate is calculated as the inverse 
of development time), and the development time as the 
latter (e.g. flowering date) can be easily and routinely 
measured from field studies. The most critical step in the 
current study was the choice of a model among numer-
ous thermal mathematical models that exist to describe 
the developmental response of plants and insects to tem-
perature. No standard method exists to choose between 
competing models and the modeling framework devel-
oped here provides a solution. The decision on choice 
of a model should not be based on statistics alone but a 
combination of statistics and scientist’s experience and 
skills to identify an appropriate model that provides the 
best biologically meaningful and statistically significant 
parameters. The model of Briere et al. [23] described well 
the development rate of the selected maize varieties. This 
finding was interesting because, to the best of our knowl-
edge, the Briere model has not been used in the context 
of plant development. The model has always been applied 
to describe the temperature dependent development rate 

Fig. 2  Temperature dependent models of development rate (1/development time) for maize varieties VE 201, VE 203, VE 206, VE 208, VE 210, VE 212, 
VE218, and VE 220 respectively
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of insect life stages [31]. The model provided estimates of 
number of days from emergence to the end of the vegeta-
tive phase that closely matched the recorded data at the 
three locations. This suggested that this model is suitable 
for modeling growth of tropical maize. The model has 
several features: it requires a small number of parameters 
making it easy to fit and the formulation allows the global 
minimum of the loss function to be rapidly reached. The 
parameters Tb and Tm have biological definitions that 
provide smooth curves with adequate approximation of 
biological processes. The curve captured maize response 
to temperature within a large range of temperature val-
ues. The selected model includes numerous features 
such as the dependency at low temperatures, the posi-
tive linear dependence at intermediate temperatures, 
the parabola response across the optimum temperatures 
and the negative linear dependency at high temperatures 
[10, 34]. Many of these features are not found among the 
eight temperature dependent models used for predict-
ing the phenology of maize as described in [11]. This 
study showed that the accuracy of the models applied 
was mainly associated with the temperature response 

across a selected range rather than Tb and Tm. Herein we 
argue that such association may not always be adequate 
as the physiological process of maize crop development 
is illustrated by gradual variation of organs and tissues 
stemming in gradients [19]. During maize development, 
the temperature responses are absolute and not relative; 
therefore shifting temperature beyond a set limit can 
stimulate an immediate effect, which may not be evi-
dent if the value of the temperature was unchanged or 
remained below or above the threshold. In other words 
the threshold value of temperature is an important vari-
able for accurately predicting maize phenology and 
should not be omitted but carefully estimated through 
the smoothness of the model we have proposed [19].

Although numerous efforts have been made by 
researchers to suggest mathematical expressions to 
describe the relationship between the timing of events 
during maize development and environmental tempera-
ture [15, 18], few attempts were made on the mapping of 
phenological development in SSA. Simulation of the phe-
nological development of wheat and maize at global scale 
was conducted by [15]. The authors applied the concept 

Table 3  Observed and  predicted number of  days taken by  each maize variety during  the  vegetative and  reproductive 
phases of the crop development at three locations used for model evaluation

a  Numbers in parentheses are standard errors

Varieties names Locations (latitude–longitude)

Kiboswa (0°1′S–34°44′E) Nyahera (0°1′S–34°44′E) Vihiga (0°32′S–34°47′E)

Observed (days) Model (days) Observed (days) Model (days) Observed (days) Model (days)

VE-200 56 52 (03)a 73 70 (03) 79 78 (02)

VE-201 56 56 (01) 73 72 (03) 76 75 (02)

VE-202 61 59 (03) 73 71 (02) 78 78 (01)

VE-203 66 62 (02) 79 75 (03) 77 75 (03)

VE-204 59 55 (03) 73 73 (01) 75 74 (02)

VE-205 58 57 (02) 72 70 (01) 77 76 (02)

VE-206 61 63 (02) 74 75 (01) 78 77 (01)

VE-207 61 64 (03) 74 72 (02) 76 77 (02)

VE-208 59 56 (03) 74 71 (02) 75 75 (01)

VE-209 61 60 (01) 74 71 (03) 76 74 (03)

VE-210 61 60 (02) 74 74 (01) 79 79 (01)

VE-211 59 58 (03) 73 73 (01) 76 74 (03)

VE-212 69 65 (02) 79 79 (02) 80 81 (02)

VE-213 59 56 (03) 74 74 (01) 75 75 (02)

VE-214 49 50 (01) 73 72 (02) 78 77 (01)

VE-215 61 59 (03) 73 72 (01) 75 75 (01)

VE-216 58 58 (01) 73 74 (01) 78 78 (01)

VE-217 58 57 (01) 73 72 (02) 79 80 (02)

VE-218 56 57 (02) 73 74 (02) 73 70 (03)

VE-219 58 56 (03) 73 73 (01) 77 78 (02)

VE-220 48 49 (01) 70 71 (02) 75 74 (02)

VE-221 59 59 (01) 73 70 (03) 75 74 (02)
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of heat units, which assumes the accumulation of daily 
temperature above Tb. Because the model was primar-
ily developed for the temperate regions, the equation 
included an incremental modification of the heat units 
due to the effect of photoperiod. Using crop calendars 
and large-scale pattern of phenological characteristics 
of varieties, a spatial prediction of the length of growing 
season for each crop was produced. The results revealed 
an over and under estimation by 0.5–1.5  months of the 
duration of cropping period of maize [15]. Such outcome 

may be explained by the fact that a linear model (degree-
day), which lacks the ability to capture the nonlinearity in 
the processes that govern plant development, was used. 
In addition, the model was projected globally; ignoring 
that in tropical regions the effects of the sensitivity to day 
length (photoperiod) is negligible on maize phenology. 
We suggest that the calibration of model should be con-
ducted for a defined area of interest, as a single model is 
unlikely to work everywhere.

Fig. 3  Maps of Kenya showing the number of days 10 maize varieties (VE 212, VE 213, VE 214, VE 215, VE 216, 217, VE 218, VE 219, VE 220 and VE 221) 
would take during each phase (vegetative or reproductive) of development in different agro-ecologies. The small white dots are areas with missing 
values of temperature



Page 10 of 12Tonnang et al. Plant Methods          (2018) 14:108 

Taking into account that maize crop is grown across 
large agro-ecologies in Kenya, and elsewhere in Africa, 
it was important in this study to adopt a framework that 
could provide some level of knowledge at agro-ecolog-
ical and national level. The mapping framework used 
readily available open-access temperature (and other 
variables if desired) data and could be used for other 
crops and research questions. Therefore, to scale up our 
results, a bottom-up approach in which a number of 
sites were selected for the analysis of the model followed 
by mapping was adopted. During the mapping step the 
temperature applied contained wider ranges than those 
used at individual trial locations, which helped to esti-
mate the length of growing period for each variety of 
maize in the whole of Kenya. Such outcome is of high 
importance to farmers as it provides location specific 
and accurate duration of events during the growing of 

maize, which could guide in management planning. 
The predictive mapping framework could be used at a 
range of scales depending on the user and their needs. 
For example, extension workers may want to know what 
variety performs best at a particular location. Input 
dealers, on the other hand, may want to know what 
range of varieties to stock for their market area.

Implications of the study and conclusions
Phenology models are important analytical tools for 
predicting, evaluating, and understanding the length of 
crop growing duration under diverse environmental con-
ditions. Linking the model with climate drivers such as 
temperature, and scaling out through predictive map-
ping, permitted us to estimate the phase duration of spe-
cific maize varieties throughout areas where maize is and 
can be grown in Kenya. Furthermore, these predictive 

Fig. 4  Maps of Kenya showing the number of days 10 maize varieties (VE 201, VE 203, VE 206, VE 208, VE 210, VE 212, VE 218, and VE 220) would take 
during each phase (vegetative or reproductive) of development in different agro-ecologies. This figure was obtained by masking the distribution 
map of suitable soil and weather conditions for growing maize with the phenology maps presented in Fig. 3 and in this figure
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models can be developed for other species and also used 
with future climate scenarios, to assess climate change 
impacts [35] and future breeding targets.

In East Africa, information on maize seed packages is 
usually very limited; with varieties being categorized in 
imprecise altitude classes (low, medium, high) and/or 
maturity groups (early, medium, late), neither of which 
are predictive. This study provided predictive, and hence 
location specific length of growing periods for 22 maize 
varieties. This information can help farmers in two ways. 
First, information on when varieties will mature can 

help farmers select the best variety for their location and 
growing season. Second, phonological predictions can be 
used to predict the timing of key stages of development 
that can be used to provide advice on the timing key 
events such weeding and application of fertilizer that will 
lead to improved yields. In future we intend to compact 
the maps and include additional features for each vari-
ety of maize (name, type, color, potential yield, maturity 
class, ecology, resistance to diseases/pests, tolerance to 
abiotic stresses, year and company of release) to be pro-
vided by breeders and specific country variety release 

Fig. 5  Maps of Kenya showing the number of days 12 maize varieties (VE 201, VE 202, VE 203, VE 204, VE 205, VE 206, VE 207, VE 208, VE 209, VE 210 
and VE 211) would take during each phase (vegetative or reproductive) of development in different agro-ecologies. The small white dots are areas 
with missing values of temperature
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institutions to develop a tool and smart phone applica-
tions that we hope will contribute to increased maize 
production in sub-Saharan Africa.

Additional file

Additional file 1: Table S1. Summary of the mathematical expressions of 
the 82 models tested in the study.
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