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METHODOLOGY

Hyperspectral imaging: a novel approach 
for plant root phenotyping
Gernot Bodner1*  , Alireza Nakhforoosh1,3, Thomas Arnold2 and Daniel Leitner4,5

Abstract 

Background:  Root phenotyping aims to characterize root system architecture because of its functional role in 
resource acquisition. RGB imaging and analysis procedures measure root system traits via colour contrasts between 
roots and growth media or artificial backgrounds. In the case of plants grown in soil-filled rhizoboxes, where the 
colour contrast can be poor, it is hypothesized that root imaging based on spectral signatures improves segmentation 
and provides additional knowledge on physico-chemical root properties.

Results:  Root systems of Triticum durum grown in soil-filled rhizoboxes were scanned in a spectral range of 1000–
1700 nm with 222 narrow bands and a spatial resolution of 0.1 mm. A data processing pipeline was developed for 
automatic root segmentation and analysis of spectral root signatures. Spectral- and RGB-based root segmentation did 
not significantly differ in accuracy even for a bright soil background. Best spectral segmentation was obtained from 
log-linearized and asymptotic least squares corrected images via fuzzy clustering and multilevel thresholding. Root 
axes revealed major spectral distinction between center and border regions. Root decay was captured by an expo-
nential function of the difference spectra between water and structural carbon absorption regions.

Conclusions:  Fundamentals for root phenotyping using hyperspectral imaging have been established by means of 
an image processing pipeline for automated segmentation of soil-grown plant roots at a high spatial resolution and 
for the exploration of spectral signatures encoding physico-chemical root zone properties.
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Background
The root system is fundamental for plant physiological 
and ecosystem functioning [39, 50, 61]. Better under-
standing of root and rhizosphere processes can therefore 
essentially contribute to enhance resource efficiency in 
crop production and sustainable soil management [26, 
38, 63, 68].

Advances in root system and rhizosphere manage-
ment critically depend on appropriate measurement 
methods, making the plants’ “hidden half ” [5] acces-
sible to visualization and quantification. Traditionally 
root research relied on destructive and highly laborious 
methods (e.g. coring, profiling; [67]). Since the 1990 

tie non-destructive imaging methods have become 
increasingly popular in plant sciences [18, 36]. Imag-
ing of plant root systems has evolved into two direc-
tions: (1) deep phenotyping using high resolution 3D 
methods for small scale processes (e.g. X-ray computer 
tomography, [45]; magnetic resonance imaging, [69]), 
and (2) high-throughput phenotyping using optical 
methods [17]. In spite of their different focus, there is 
a trend towards approximation owing to technological 
advance. E.g. current μCT devices yet allow imaging of 
larger soil volumes up to a range of 1000  cm3 at high 
resolutions in reasonable measurement time for pheno-
typing purposes (range: hour; [40]). On the other hand 
high-throughput applications, traditionally restricted 
to RGB imaging, are moving towards wider spectral 
ranges where chemical imaging of rhizosphere com-
ponents is possible [12, 54]. Nakaji et al.  [49] were the 
first to demonstrate application of hyperspectral imag-
ing (480–972  nm) in order to discriminate between 
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living, senescent and dead roots, leaf debris and soil. 
For leave tissues, Pandey et  al. [51] showed that using 
an extended hyperspectral range from 550 to 1700 nm 
enables an accurate prediction of leaf water content and 
nutritional status.

Most root phenotyping approaches rely on seed-
ling/juvenile plants grown in artificial media such as 
agar [27], germination paper [33] or hydroponics [10] 
to facilitate imaging. Extrapolation from such systems 
towards natural growing conditions has been ques-
tioned [75, 80]. Therefore larger soil-filled rhizobox sys-
tems have been established for field-near root imaging 
[37, 47]. RGB root imaging of rhizobox grown plants 
has been successfully used to characterize distinctive 
root architectures in breeding germplasm as well as the 
modification of root architecture in response to vari-
able soil conditions (temperature, water and nutrient 
supply, compaction; e.g. Price et  al. [57], Nagel et  al. 
[46, 48]).

RGB root phenotyping however requires sufficient 
root-soil colour contrast for (automated) segmenta-
tion which is challenging in case of bright coloured soils 
and/or dark coloured roots. Pierret [54] was the first 
to suggest spectral imaging of rhizoboxes as a promis-
ing advance for root research. Hyperspectral data might 
overcome problems of root distinction from soil back-
ground in the RGB colour space. Furthermore spectral 
reflectance encodes material properties that can be cap-
tured via advanced statistical models (chemometrics; 
[76]), potentially providing a tool to simultaneously 
measure root architecture with relevant physico-chemi-
cal root zone properties (e.g. water content). Close-range 
spectral imaging has already been successfully applied 
in phenotyping aboveground plant parts [43]. However, 
besides the system described by Nakaji et al. [49], there 
are still no established spectral imaging systems and data 
processing pipelines for root phenotyping.

Here a first comprehensive methodological description 
and evaluation of hyperspectral root phenotyping is pre-
sented. Acquisition of high resolution hyperspectral root 
images and subsequent image processing is described in 
detail. Root segmentation based on spectral information 
is compared with standard colour based segmentation. 
Application of the novel method is exemplified for iden-
tification of spectrally distinctive regions within the root 
and spectral changes during root decay. Classification 
of such chemometrically distinctive root regions is an 
important information when aiming to understand pos-
sible functional differences between root axes in space 
and time. The aim here is to establish the fundamentals 
of hyperspectral imaging for plant root phenotyping and 
reveal its potential as a novel tool for improved root sys-
tem and rhizosphere characterization.

Methods
Rhizobox setup
Plants were grown in rhizoboxes (30 × 100 × 1 cm) con-
sisting of a grey PVC back-plate and side frames (thick-
ness 3  cm), and a mineral glass front (thickness 8  mm) 
fixed by metal angle bars to the sides. At the bottom, 
drainage holes were drilled into the frame.

Boxes were filled with two substrates to compare differ-
ent background effects on imaging, i.e. dark topsoil and 
bright subsoil from a calcareous chernozem [23] sieved 
to an aggregate size < 2  mm. Table  1 gives an overview 
of basic soil properties. Soil moisture was adjusted to a 
matrix potential of h = − 100 cm (drained upper limit for 
a rhizobox of height/gravitational potential of 100  cm) 
for a well-watered treatment and h = − 1000  cm for a 
water limited treatment (retention curve of the two sub-
strates, Additional file 1).

10 g of slow release NPK fertilizer (16% N, 2.6% P, 11.6% 
K) were mixed into the soil. Rhizoboxes were planted 
directly with one presoaked seed from Triticum turgidum 
L. subsp. durum cv. Floradur at a depth of 2 cm below soil 
surface. The glass surface/root zone was darkened with a 
black plate and the slit at the top of the boxes was closed 
with PVC foam to minimize evaporation. Boxes were 
positioned at 45° angle into a metal frame and transferred 
into a growth chamber (Light intensity 250 mmol m2 s−1 
by six Atum Photon 270 LED; day/night 14 h/10 h; tem-
perature 23 °C/16 °C; Relative humidity 60%).

The experimental design was a CRD with four repli-
cates and substrate (bright vs. dark) and moisture (dry 
vs. moist) as main factors (i.e. 16 rhizoboxes). Plants 
were watered every third day upon weighing to keep the 
initial moisture level. Imaging was done for fully devel-
oped root systems (BBCH 44), i.e. when reaching the 
bottom part of the boxes and showing all types of roots 
(primary/basal roots, shoot borne roots, laterals; [81]). 
At this stage, 2.2% of total root length was < 0.2 mm and 
48.7% < 0.5 mm diameter.

For the analysis of root decay we followed Nakaji et al. 
[49], cutting the shoot and subsequently imaging the 
upper third of the rhizobox (with primary, shoot-borne 
and lateral roots) at 14, 28, 47, 94, 101 and 201 days after 
cutting.

Image acquisition setup
The hyperspectral root imaging system (Fig.  1) consists 
of four main components: (1) A halogen line illumination 
(45°/− 45°) that provides a homogeneous light sources 
for imaging the rhizobox; (2) an image spectrograph 
(ImSpector N17E, Specim, FI) that splits the incoming 
light into 256 spectral bands between 900 and 1700 nm; 
(3) a thermo-electrically cooled 14-bit monochrome NIR 
camera (Xeva, Xenics, BE) that records the spectral NIR 
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bands (900–1700  nm) for each pixel. The resolutions of 
the camera sensor is 320 by 256 pixels and the frame rate 
is 100 Hz. The spectral resolution of the imaging system 
is 3.1  nm (256 bands between 900 and 1700  nm). Due 
to low sensitivity of the detector chip at the lower edge, 
resulting in noisy spectra, the spectral bands were limited 
to the wavelength range of 1000–1700 nm.

The distance between the front lens and the rhizobox is 
18 cm with a perpendicular position of the rhizobox with 
respect to the camera. A white standard (Spectralon tile) 
is positioned at the top of the rhizobox at the same angle 
and distance and imaged before each scan. The white 
standard is covered by the same type of glass as used for 
the rhizoboxes to compensate for the light transmission 
path through the glass upon normalization with the white 
and dark standards (see “Image preparation” section).

A hyperspectral rhizobox image (with x, y as spatial 
dimensions and z as spectral dimension) is obtained 
using a push-broom approach, i.e. the imaging system 
(illumination + spectrograph + camera) is moving in the 
y-direction while continuously capturing line scans in 
the x-direction of the rhizobox which are projected into 
the spectrograph and recorded by the camera. With a 
field of view (FOV) of 3 cm, maximum spatial resolution 
is 0.1  mm. A 50  mm lens is used to achieve this image 
resolution at 10 mm s−1 scanning speed. Via a two-axis 
positioning system, moving the imaging system up and 
down, spectral line scans (strides) of 3  cm width with 
10% overlap between adjacent strides are acquired. Each 

stride is saved separately in a compressed file format 
(SIF) to reduce the size of the files. The single strides are 
composed to a full rhizobox image during image process-
ing (see “Image processing” section).

Prior to scanning, camera integration time has to be 
adjusted to the background colour for optimizing image 
quality. The optimum camera integration time is obtained 
using the Xenics Xeneth camera software and targeting a 
bright object (i.e. root) on the rhizobox; it is adjusted in 
a way that approximately 85% of the full dynamic range 
of the imaging system are used. Exceeding this maximum 
will result in data losses during image acquisition, while 
on the other hand low integration time does not make 
use of the full capacity of the camera. Here an integration 
time of 4500  µs for the darker topsoil filled rhizoboxes 
and 3500  µs for the brighter subsoil filled rhizoboxes 
were used respectively.

The setup was developed as a prototype for root pheno-
typing by Carinithian Tech Research (CTR). It is located 
in a closed room to avoid influence of stray light during 
image acquisition and keeping the measurement device 
at stable temperature (20 °C) and air humidity (40%).

Image processing
Figure  2 schematically presents the image processing 
pipeline. All steps are performed via Matlab scripts (Mat-
lab version R2018a) on an Intel Core i7-6700 PC with 
40 GB RAM. Scripts are available from the authors upon 
request.

Table 1  Basic soil properties (texture, Corg), water content (WC) at  a  matrix potential of  h = − 100  cm (well-watered) 
and h = − 1000 cm (water-limited), and soil colour (Munsell colour code)

Type Soil properties Colour (hue, value, chroma)

Dry Wet

Topsoil Sand (g g−1) 21.9

10 YR 3/2 10 YR 2/2

Silt (g g−1) 61.2

Clay (g g−1) 16.9

Corg (g g−1) 2.0

WC100 cm (cm3 cm−3) 0.27

WC1000 cm (cm3 cm−3) 0.18

Subsoil Sand (g g−1) 26.4

2.5 Y 5/4 2.5 Y 4/6

Silt (g g−1) 69.6

Clay (g g−1) 4.0

Corg (g g−1) 0.8

WC100 cm (cm3 cm−3) 0.33

WC1000 cm (cm3 cm−3) 0.13
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Image preparation
Absolute reflectance of the raw image (Ri,λ) is normal-
ized at each wavelength band λ for each pixel i following 
Eq.  (1) and using the dark (Di,λ) and white (Wi,λ) stand-
ards acquired before each scan. The dark standard cor-
rects for the wavelength dependent dark current of the 
NIR camera, while the white standard represents maxi-
mum (100%) reflectance. The normalized image (Ni,λ) is 
thus obtained by:

Pre‑treatment
Following Esquerre et  al. [16] three types of data pre-
treatments are implemented, i.e. response linearization 
enhancing low reflectance regions, baseline correction to 

(1)Ni,� =

Ri,� − Di,�

Wi,� − Di,�

correct for offset and change in the baseline (polynomial 
detrending, derivatives, asymmetric least squares, ALS) 
and multiplicative correction (standard normal variate, 
SNV, multiplicative scatter correction, MSC, extended 
multiplicative signal correction, EMSC). For most pre-
treatments the mda toolbox for Matlab [31] is used. 
EMSC is performed via the toolbox from Afseth and 
Kohler [1]. However, due to excessive computational time 
of MSC and EMSC for the large-size image data evalu-
ated here, they were not included in further evaluations.

Dead pixels and spikes, containing no information and 
potentially disturbing segmentation and analysis, are 
identified via the standard deviation matrix of difference 
spectra Ni,λ − Ni,λ+1. A threshold is visually defined from 
the standard deviation histogram and the respective pix-
els are black masked (i.e. assigned a value of zero over all 
wavelengths; Vidal and Amigo [72] and Dorrepaal et  al. 
[13]).

Fig. 1  Measurement setup of the hyperspectral root imaging system, with a system components, b close-up of the camera and illumination, and c 
scanning of a rhizobox
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Pre‑treatment method selection and dimensionality 
reduction
Identification of adequate pre-treatment methods and 
spectral bands maximizing feature distinction require 
selection criteria. A first selection approach targets the 
entire image: it combines a set of Non-Gaussian indica-
tors (skewness, kurtosis, entropy, negentropy, signal-to-
noise ratio, Kullback–Leibler divergence) that measure 
deviation from random white noise [8, 21]. As single 
indicators can lead to different results [19] an average 
rank of all information criteria is used to select the top-
ranking pre-treatment method.

The second approach is based on histogram evalu-
ation [29]. Root (foreground) and soil (background) 
regions of interest (ROIs) are selected and the sepa-
ration of their histogram peaks at each wavelength 
is quantified via Bhattacharyya distance [4]. Spectral 
transformations (differences spectra, Ni,λn − Ni,λm, λm 
and λn= 1…222) were evaluated with the ROI based 
histogram method only: due to sharply increasing 
dimensionality (222 × 222) transformation of entire 
images for the non-Gaussian indicator approach is not 
feasible for computational reasons.

The three best pre-treatment methods selected by 
each approach, i.e. (1) non-Gaussianity based, (2) Bhat-
tacharyya distance based for (a) single spectra as well 
as (b) difference spectra, were further used for compre-
hensively testing the influence of pre-treatment on sub-
sequent segmentation.

Simultaneously with pre-treatment evaluation, the 
most informative wavelengths within the pre-treated 
images are extracted, while removing all noisy bands. 
Here the ten best bands with highest frequency of 
occurrence among the applied evaluation approaches 
were selected. For comparison PCA was used as refer-
ence dimensionality reduction method. Depending on 
the segmentation algorithm either 2D or 3D data can 
be used. 3D images contained all ten selected bands, 2D 
data contained one spectral dimension only: reduction 
to a single spectral dimension was done via (1) averag-
ing over the ten best bands, (2) extracting the single 
most informative band and (3) the principal component 
with highest feature contrast.

Image segmentation
Segmentation is performed with unsupervised (multi-
level thresholding, k-means clustering, fuzzy cluster-
ing) and supervised (two-class support vector machine) 
techniques. The implemented fuzzy clustering algo-
rithm was presented by Li et  al. [34], while all other 
algorithms are adapted from standard Matlab scripts. 
Evaluation of segmentation quality was done based on 
obtained root length in relation to a manually tracked 
reference length and image skewness: misclassification 
can increase false negatives (root pixels wrongly classi-
fied as soil background) resulting in a conservative seg-
mentation with low noise (high skewness) at the cost of 
underestimation of root length; false positives (soil pix-
els wrongly classified as root) on the contrary result in a 
noisy image (low skewness) and corresponding overes-
timation of root length.

Post‑processing
Post-processing comprises stitching of all strides to an 
entire binary root system image and removal of remain-
ing noise in the image. Automatic stitching is done with 
an image registration algorithm based on cross-cor-
relation of image pixels in Fourier domain [22]. Noise 
removal is performed by filtering for small circular 
objects using region property analysis with a manually 
set minimum extent.

Chemometric root analysis
Chemometric models delimit physico-chemically dis-
tinctive regions within the segmented root and/or 
soil domains based on their specific spectral patterns. 
Also here unsupervised (fuzzy and k-means cluster-
ing, PCA) and supervised (Multiclass error-correcting 
output codes, ECOC, with optional classifiers, e.g. sup-
port vector machine, k-nearest neighbour, discriminant 
analysis, decision tree) approaches are implemented.

With directly measured reference data spectral 
regression models can be applied. Scripts for linear and 
non-linear univariate regression, partial least squares 
regression (PLSR), principal component regression 
(PCR) and support vector machine regression (SVMR) 
were included.

Fig. 2  Scheme of the image processing pipeline developed for root segmentation and chemometric analysis of root and soil properties from 
hyperspectral images. Implemented approaches for a pre-processing and b post-processing and image analysis. Abbreviations: ALS asymmetric 
least squares correction, SNV standard normal variate, MSC multiplicative scatter correction, EMSC extended multiplicative signal correction, SCR 
simple contrast ratio, WC Weber contrast, MC Michelson contrast, PCA principal component analysis, fft fast Fourier transform, ECOC error correcting 
output codes, PCR principal component regression, PLSR partial least squares regression, SVMR support vector machine regression. (The Matlab 
scripts can be obtained from the corresponding author upon request.)

(See figure on next page.)
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The application of chemometric models is exem-
plified for the analysis of spectrally distinctive radial 
(centre to border; supervised ECOC model) pattern on 
the roots, as well as for root decay following clipping 
of the shoot (non-linear regression model). For radial 
differentiation the image was shape-corrected via ALS 
baseline correction to exclude confounding effects from 
surface geometry of spherical objects [58] and dimen-
sions were reduced to the first five principal compo-
nents. Eight radial classes from root centre (0–0.1 mm) 
to border pixels at 2 pixel increments were defined 
and the respective pixels were labelled accordingly. 
An ECOC model with a decision tree classifier [6] was 
trained with 50% of pixels from the eight radial classes 
and validated with the remaining 50% of pixels.

For root decay, the most distinctive wavelength sepa-
rating spectra (untransformed, first derivative, single 
wavelength and wavelength differences) at different 
times after clipping was identified via Bhattachar-
yya distance. Spectral reflectance was then related to 
decay time via an exponential model and subsequently 
mapped on each root pixel.

Imaging data
Determination of an adequate image processing strat-
egy (pre-treatment, dimensionality reduction, segmen-
tation) was done on topsoil and subsoil image sections 
(320 × 3000 pixel, 222 wavebands from the densely 
rooted upper part of rhizoboxes, i.e. one central stride 
with one third of the vertical pixels). The reduced file 
size of 9.4  GB ensured comparatively short calcula-
tion time for the single steps, required for evaluating 
all processing options. The resulting image processing 
strategy is then applied to all rhizoboxes of the same 
treatment resulting in binary root system images for 
structural quantification. With the 40  GB RAM PC 
used here the Matlab based processing pipeline takes 
about 40  min to obtain a binary rhizobox image from 
the spectral raw data.

In this study structural quantification was done with 
WinRhizo (Version 2013; Regent Inc.) for root length 
only. Visible root length from spectral segmentation 
was compared to colour based segmentation from RGB 
images. RGB images were taken with a Canon EOS 6D 
camera (resolution 5472 × 3648 pixel) after the spec-
tral scans. Images were converted to TIFF-files and seg-
mented using WinRhizoPro based on five distinctive 
colour classes for root and soil respectively. Manually 
tracked roots on RGB images were used as reference. 
Manual tracking was done in CorelDraw (Version X7) 
using a graphic tablet (Wacom Intuos®pro) and zooming 

into the image (500% magnification) to capture all root 
axes visible on the glass surface.

Visible length was also compared to total length, 
including the non-visible roots, obtained at the end of the 
experiment after separating (washing) roots from soil fol-
lowing Himmelbauer et al. [25].

Chemometric analysis of distinctive root regions and 
root decay is exemplified with a segmented root image 
from the well-watered topsoil treatment.

Statistical evaluation
The influence of pre-treatment, dimensionality reduction 
and segmentation methods was evaluated by analysis of 
variance. The dependent variable was root length, while 
skewness of the segmented binary image was used as 
covariate capturing the influence of misclassified pixels. 
Cases where segmentation failed (noise threshold: skew-
ness < 2.5; no visual identification of the root system) 
were excluded. Evaluation of spectral versus colour based 
segmentation in relation to the manually tracked refer-
ence was done by regression analysis with zero intercept. 
Slopes were compared statistically following Sawand [59] 
to reveal whether the two segmentation approaches dif-
fered significantly in capturing visible root length. All 
statistical analyses were performed in SAS Version 9.4 
using PROC MIXED for covariance analysis, PROC 
REG for regression analysis and PROC GLM for slope 
comparison.

Results
Image processing strategy
Hyperspectral rhizobox images with 222 bands in the 
spectral range of 1000–1700 nm and a spatial resolution 
of 0.1 mm result in an image size of 42.3 GB. Using a rep-
resentative image section of 320 × 3000 pixels near the 
plant base, file size was decreased to 9.4 GB for deriving 
an adequate image processing strategy, while reducing 
computational time sufficiently to test several possible 
combinations of processing steps (pre-treatment, dimen-
sionality reduction, segmentation) on a standard PC.

Spectral pre‑treatment
Image pre-treatment corrects uneven surface morphol-
ogy due to soil aggregates, resulting in inhomogene-
ous illumination with increased reflectance scattering 
[16]. In total 16 pre-treatment approaches were evalu-
ated via non-Gaussian indicators (whole image section) 
and Bhattacharyya distance (root and soil ROIs; 0.6% of 
image pixels). Bhattacharyya distance was also calcu-
lated for difference spectra (graphical examples, Addi-
tional file 2). Evaluation results are given in Table 2. 

The indicators did not point to a unique pre-treat-
ment method to maximize distinction between root 
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foreground and soil background. Particularly in the top-
soil there was no significant correlation between ranks 
from non-Gaussian measures and Bhattacharyya dis-
tance. In the subsoil on the contrary correlation coef-
ficients between the methods were significant with an 
r > 0.61.

Among the three best pre-treatment methods indicated 
by each of the information criteria, de-trending via ALS 
baseline correction occurred in 44% of all cases. For the 
subsoil log-linearization resulted in an average improved 
foreground–background distinction. Difference spectra 
increased the distinctiveness of image features (Bhat-
tacharyya distance topsoil 3.0–6.5; subsoil 4.2–8.0). The 

Table 2  Selection of  best pre-treatment methods (combination of  linearization, de-trending and  multiplicative 
correction) from non-Gaussian information indicators and Bhattacharyya distance

For non-Gaussian measures the rank represents a mean of six different indicators; for ROIs (R, single wavelengths, Ri − Rj, wavelength differences) the absolute value of 
Bhattacharyya distance and the ranking of methods (in brackets) is given. The three best pre-treatment methods suggested by each selection approach are marked in 
italic

* Non no treatment, Log(1/R) log-linearization, polynomial 2nd order polynomial centring, derivative 1st order Savitzky–Golay derivative, ALS asymptotic least square 
correction, SNV standard normal variate

Linearization De-trending Multiplicative 
correction

Non-Gaussian 
measure rank

Bhattacharyya 
distance R (rank)

Bhattacharyya 
distance Ri − Rj 
(rank)

Topsoil

1 Non* Non Non 15 0.28 (15) 9.40 (3)

2 Non Polynomial Non 16 0.12 (16) 9.94 (1)

3 Non Derivative Non 6 4.89 (2) 8.24 (4)

4 Non ALS Non 4 4.05 (5) 9.86 (2)

5 Non Non SNV 14 4.55 (4) 5.21 (12)

6 Non Polynomial SNV 11 9.05 (1) 5.52 (9)

7 Non Derivative SNV 10 1.78 (12) 3.81 (15)

8 Non ALS SNV 9 2.16 (11) 4.07 (14)

9 Log(1/R) Non Non 8 0.30 (14) 5.30 (11)

10 Log(1/R) Polynomial Non 7 1.00 (13) 5.46 (10)

11 Log(1/R) Derivative Non 1 2.57 (10) 4.94 (13)

12 Log(1/R) ALS Non 2 4.63 (3) 3.67 (16)

13 Log(1/R) Non SNV 12 3.08 (7) 6.77 (7)

14 Log(1/R) Polynomial SNV 13 3.65 (6) 6.46 (8)

15 Log(1/R) Derivative SNV 5 3.03 (8) 7.87 (5)

16 Log(1/R) ALS SNV 3 2.69 (9) 7.14 (6)

Subsoil

1 Non Non Non 13 0.26 (15) 3.18 (16)

2 Non Polynomial Non 14 0.11 (16) 3.48 (15)

3 Non Derivative Non 15 2.76 (12) 7.04 (11)

4 Non ALS Non 10 2.56 (13) 6.20 (12)

5 Non Non SNV 9 3.68 (9) 9.36 (6)

6 Non Polynomial SNV 7 3.87 (8) 9.88 (5)

7 Non Derivative SNV 16 3.89 (7) 4.52 (14)

8 Non ALS SNV 12 5.84 (6) 7.39 (10)

9 Log(1/R) Non Non 8 7.44 (2) 11.95 (3)

10 Log(1/R) Polynomial Non 11 1.10 (14) 10.61 (4)

11 Log(1/R) Derivative Non 5 3.61 (10) 8.87 (7)

12 Log(1/R) ALS Non 2 5.91 (5) 13.62 (1)

13 Log(1/R) Non SNV 3 6.60 (3) 8.19 (8)

14 Log(1/R) Polynomial SNV 4 6.37 (4) 7.56 (9)

15 Log(1/R) Derivative SNV 6 3.36 (11) 5.07 (13)

16 Log(1/R) ALS SNV 1 10.52 (1) 11.51 (2)



Page 9 of 17Bodner et al. Plant Methods  (2018) 14:84 

three top-ranking pre-treatment approaches from each 
information criterion for topsoil and subsoil were further 
used in the evaluation of subsequent image processing 
steps.

Dimensionality reduction
Figure 3 gives an overview of the frequency of occurrence 
of wavelength regions with highest foreground–back-
ground contrast identified via band selection indicators 
(see movie Additional file  3). The highest spectral dif-
ferentiation between root and soil occurred in the region 
from 1440 to 1480  nm (topsoil) and 1400 to 1440  nm 
(subsoil). A second distinctive region was found between 
1050 and 1090 nm. Spearman rank correlation indicated 
that location of the most informative spectral bands in 
topsoil and subsoil was similar (r = 0.80, P < 0.001).

Segmentation algorithm
Four segmentation methods (fuzzy clustering, k-means 
clustering, multi-level thresholding and a two-class SVM) 
were evaluated with dimensionality reduced images. As 
expected there was a trade-off between segmented length 
and noise: the higher the number of pixels misclassified 
as roots the higher the noise from these sparsely dis-
tributed pixels (cf. Additional file  4). In the subsoil seg-
mentation failed in 51.0% of the cases with high noise 
(skewness < 2.5) and no clearly identifiable root axes. This 
was mainly the case for thresholding (78.6%), while fuzzy 
clustering only failed in 17.9% of cases. In the topsoil seg-
mentation only failed in 15.9% of all cases (thresholding 
28.6%, fuzzy clustering 14.3%, k-means clustering 10.8%, 
SVM 10.0%).

Significant influences from previous processing 
steps on the final segmentation result are highlighted 

in Table  3. The highest significant interaction between 
processing steps was a soil type specific effect of pre-
treatment and segmentation algorithm. Thus adequate 
pre-treatment methods strongly depended on the soil 
background as well as the subsequent segmentation 
method.

Figure  4 shows the resulting mean comparison 
(Tukey test) for the highest significant interaction 
(Soil × Pre × Seg). For clarity only the twenty segmenta-
tion results next to the manually tracked reference are 
plotted.

Fig. 3  Frequency of occurrence of most informative bands in a topsoil (a) and subsoil (b) hyperspectral image according to different band 
selection approaches

Table 3  Results of  analysis of  variance of  various pre-
processing steps on  the  segmented root length for  two 
soil background materials (DF degrees of freedom)

The highest significant interaction is highlighted in italic

Source DF F-value p value

Soil 1 0.48 0.4978

Pre-treatment (Pre) 8 1.98 0.1088

Dimensionality reduction (Dim) 3 10.51 0.0003

Segmentation (Seg) 3 8.01 0.0013

Soil × Pre 9 6.42 0.0005

Soil × Dim 3 1.16 0.3532

Soil × Seg 3 2.51 0.0913

Pre × Dim 24 3.34 0.0055

Pre × Seg 24 5.83 0.0002

Dim ×  × Seg 4 1.47 0.2514

Soil × Pre × Dim 18 1.30 0.2940

Soil × Pre × Seg 19 4.24 0.0017

Pre × Dim × Seg 27 1.30 0.2826

Skewness 1 12.15 0.0026
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In the topsoil overlap between different strategies was 
comparatively large, i.e. similar length estimates and 
thereby accuracy in relation to the manually tracked ref-
erence length could be obtained via different image pro-
cessing strategies. In the brighter subsoil differences were 
substantially higher and only some processing strategies 
resulted in segmented root length near to the reference 
length. Overall fuzzy clustering tended to be more con-
servative, while thresholding resulted in high number of 
pixels classified as roots with a tendency to increase noise 
from misclassified pixels. This is exemplified in Fig.  5: 
compared to the manually tracked reference (Fig.  5a) it 
can be seen that fuzzy clustering (Fig.  5b) did not cap-
ture some lateral root axes, while thresholding (Fig.  5c) 
resulted in a noisier image still conserving these lateral 
axes.

The best segmentation results with root length next to 
the manually tracked reference and low image noise were 
obtained for the topsoil with log-linearization and ALS 
correction as pre-treatment and using thresholding on 
the single most informative band (difference to manual 
tracking 3.5%). For the subsoil log-linearization and ALS 
correction in combination with fuzzy clustering on the 
single most informative band resulted in the lowest dif-
ference to manual tracking (4.6%).

Spectral versus colour based root segmentation
The topsoil and subsoil processing strategies with best 
segmentation result were then applied to the entire 
rhizobox images and compared to colour threshold seg-
mented RGB images as well as manually tracked refer-
ences. Figure  6 shows that both, spectral and colour 
based image segmentation, reliably predicted visible root 
length. The spectral approach captured slightly less root 
length (77.0%) compared to colour based segmentation 
(83.4%). However, slopes of both segmentation methods 
were not significantly different (P = 0.225) indicating that 
both methods had similar performance to predict visible 
root length for substrates used here.

Overall root length was significantly influenced by the 
soil material (807.3 cm for topsoil vs. 461.7 cm for sub-
soil; P = 0.012) and soil moisture (884.2 cm for moist soil 
vs. 423.1 cm for dry soil; P < 0.001), but not by segmenta-
tion method (770.6 cm for manual tracking, 593.5 cm for 
automated spectral segmentation, 643.0 for automated 
RGB segmentation; P = 0.377) nor interaction between 
segmentation method and treatment.

On average visible root axes at the observation window, 
accessible to optical imaging, were 27.3% of total root 
length in the rhizoboxes. The relation between visible 
and total root length was significant with an r2 of 0.74 
(P < 0.001; cf. Additional file  5). For the topsoil, surface 
visibility was significantly higher in the control compared 

Fig. 4  Root length for the twenty best combinations of pre-treatment, band selection and segmentation algorithm in the topsoil (a) and subsoil 
(b). The manually tracked reference length is shown with ± 10% margins (transparent grey area); grey dotted areas show the range of results 
without significant difference (Tukey, p < 0.005). NG refers to band selection via non Gaussian measures, BAT to Bhattacharyya distance based 
selection for single wavelength (BATs) and wavelength differences (BATd); for pre-treatments cf. Table 1; FU (grey) fuzzy clustering, TH (orange) 
thresholding, SVM (brown) support vector machine classification, KM k-means clustering (turquoise)
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to the dry treatment (37.6% vs. 15.6% of all root length 
visible at the glass observation window; P = 0.030), while 
it did not differ in the subsoil.

Spatial differentiation of root spectral pattern
A key advantage of hyperspectral imaging is the chem-
ometric information contained in the spectral images. 
Radial differentiation in spectral signatures from center 
to border (cf. Additional file 6) were predicted by a deci-
sion tree model with an r = 0.86 for the training data and 
r = 0.48 for the validation data. Table 4 gives the percent-
age of pixels allocated to the respective labelled classes by 
the trained model.

The chemometric model identified two main spectrally 
distinctive regions: an inner region (0–0.3  mm) where 
in average 82% of the pixels are allocated to the first and 
second class, and an outer region where in average 62% 
of the pixels are allocated to spectral classes > 0.3  mm. 
Within these two regions, the spectral pattern of pixels 
largely overlapped. It should be noticed that coarser root 
axes (> 0.7 mm) made up only 5.3% of all root pixels in the 
image. Figure 7 shows the classification result with close-
ups for the basal and apical region. At the basal parts of 
root axes pixels with the spectral features of the central 
classes (dark blue) are more abundant compared to the 
apical parts with predominance of pixels with spectral 
characteristics of the outer region (light blue).

Temporal changes of spectral signature of decaying roots
Differentiation in the spectral pattern between the initial 
and final time was highest for the first derivative differ-
ence spectra between wavelengths of 1649–1447  nm 
with a maximum Bhattacharyya distance of 2.21 (Addi-
tional files 7 and 8). Figure  8 shows the exponential 
model predicting root decay duration as a function of 
spectral reflectance with two validation time points (28 
and 101 days after clipping) not included in curve fitting. 
Changes in spectral reflectance were closely related to 
decay duration (r2 = 0.96).

Figure  9 provides a close-up image of root axes at 28 
and 101  days after clipping with mapping of the decay 
model on the root pixels. At 101 of root decay (Fig. 9b) 
only one major root axes was recognized (segmented) 
as spectrally different from the soil background, while 
the coarser shoot-borne root axis and the laterals were 
apparently strongly decomposed. On the contrary a small 
part of the main axis was not recognized in the image 
at 28  days after clipping (Fig.  9a). Fine mapping also 
revealed a centre-to-border gradient of reflectance val-
ues, suggesting chemometric similarity between spatial 
(radial) and temporal spectral patterns.

Discussion
Rhizobox experimental system
Inference from root phenotyping towards field envi-
ronments critically depends on suitable substrates [24] 
and plant development stage, particularly for monocots 

Fig. 5  Root image at 1450 nm with manually tracked roots (a), 
segmented via fuzzy clustering (b) and multilevel thresholding (c)

Fig. 6  Prediction of manually traced visible root length from 
automatic spectral and colour segmentation methods
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with shoot-borne roots emerging upon tillering [74, 
80]. The rhizobox setup used in this study represents a 
field-near system with soil as substrate and sufficiently 
large containers for unconstraint (cereal) root growth 
until end of vegetative development. Size of phenotyp-
ing systems is particularly important when focussing 

on root contribution to drought resistance [52, 56]. 
The rhizoboxes of 1  m height used here closely match 
the hydraulic behaviour of similarly textured field soils 
(e.g. Saxon and Rawls [60]: field capacity for silt loam 
0.31 cm3 cm−3; cf. Table 3: rhizobox drained upper limit 
0.27–0.33 cm3 cm−3).

Imaging setup
Camera model and spectrograph determine the spectral 
range as well as spectral and spatial resolution of imag-
ing systems. For root imaging high spatial resolution 
is required as most root axes of annual plants are allo-
cated in the lowest diameter classes (very fine < 0.5 mm; 
fine 0.5–2  mm) according to Böhm classification [7]; 
e.g. here 48.7% < 0.5  mm and 99.8% < 2  mm. The spa-
tial resolution limit of the scanning device used here is 
0.1  mm. This is only slightly lower compared to com-
mon settings of RGB root scanning (400 dpi equiva-
lent 0.063 mm pixel size; Himmelbauer et al. [25]) and 
μCT (0.056–0.099  mm according to pot size; Metzner 
et  al. [42]). Image acquisition time for a rhizobox of 
100 cm height an 30 cm width at this spatial resolution 
is 16  min. This is substantially shorter to high-resolu-
tion 3D methods (e.g. 20 min for a 30 cm high × 8.1 cm 
inner diameter tube; Metzner et al. [42]) and therefore 
suitable to mature root phenotyping.

Compared to RGB imaging, a hyperspectral approach 
substantially increase data size as well as the complexity 
of evaluation. The automated segmentation pipeline pre-
sented here however allows a comparatively rapid data 
processing to obtain a binary root image (about 40 min). 
Still comparison of RGB versus spectral segmentation 
suggested an advantage of NIR bands just in case of very 
bright soil background. Otherwise VIS bands are suitable 

Table 4  Predicted allocation of  root pixels to  labelled radial classes from  root centre (inner 0–0.1  mm) to  root border 
(> 1.3 mm) based on their spectral characteristics using a decision tree model

Percentage of root pixels in the respective class in relation to the total number of root pixels is given in the bottom line

Class labels (mm) Predicted allocation to class (%)

0–0.1 0.1–0.3 0.3–0.5 0.5–0.7 0.7–0.9 0.9–1.1 1.1–1.3 > 1.3

0–0.1 51.1 12.0 7.4 7.5 8.4 8.9 9.5 8.8

0.1–0.3 32.6 68.2 27.4 27.4 29.0 29.7 34.3 31.7

0.3–0.5 13.2 15.8 58.4 26.2 28.0 29.7 26.6 31.1

0.5–0.7 2.8 3.6 6.2 38.1 8.3 8.2 8.0 7.6

0.7–0.9 0.2 0.3 0.6 0.7 26.2 1.0 1.1 0.9

0.9–1.1 0.0 0.0 0.1 0.1 0.0 22.5 0.1 0.1

1.1–1.3 0.0 0.0 0.0 0.0 0.0 0.0 20.4 0.0

> 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.8

Percentage total pixels 18.9 39.2 26.1 10.4 3.3 1.2 0.5 0.3

Fig. 7  Radial pattern of root spectral reflectance classified with a 
decision tree model trained for eight radial classes from center to 
border at 0.2 mm increment. The white frames on the whole root 
image indicate the location of top and bottom close-up sections
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for detection of living root axes from soil background 
[49] with high resolution RGB cameras leading to a 
potentially superior root-soil segmentation compared to 
a NIR setup (see discussion on spectral vs. colour based 
segmentation results below).

Thus the most relevant added value of hyperspectral 
NIR imaging is related to the physicochemical informa-
tion contained in this wavelength range. These chemical 
imaging capacities of a hyperspectral setup are deter-
mined by spectral range and resolution. The camera sen-
sor of the device used here allows imaging between 900 
to 1700 nm with 256 narrow bands (i.e. spectral resolu-
tion of 3.1 nm) covering wavelength bands such as water, 
cellulose, lignin, starch and protein [15, 30, 64, 70]. 

Hyperspectral imaging thus has the potential to extend 
root phenotyping towards such physicochemical root 
zone properties with relevance for root functionality.

Image processing strategies for feature detection
Exploitation of the information hidden in hyperspectral 
data critically depends on algorithms capable to detect 
the features of interest. Root phenotyping, similarly to 
food quality control, targets biological objects of vari-
able biochemical composition and high tissue water con-
tent. Additional challenges in root–soil image processing 
arises from the complex background with uneven sur-
face morphology from soil aggregates, and non-uniform 
and time-variable water content. Esquerre et  al. [16] 
suggested chemometric image pre-treatment to sup-
press surface morphology and improve contrast between 
image features. Also our results demonstrated that root 
versus soil pixels could be better separated after spectral 
pre-treatment. Baseline correction with asymmetric least 
squares and the use of difference spectra were particu-
larly efficient for enhancing feature contrasts. A major 
disadvantage of ALS baseline correction is the high com-
putational time required for large datasets (1545.5 s for a 
9.4 GB image) compared to other pre-treatment methods 
with similar performance such as first derivatives (33.4 s) 
or standard normal variate (6.8  s) of log-linearized 
spectra.

Beyond visual inspection, different selection meth-
ods can be applied for an objective pre-treatment selec-
tion and extraction of the most informative wavelengths. 
Although the different measures (non-Gaussian indica-
tors, Bhattacharyya distance) did not point to a unique 
wavelength to maximise feature contrast, for both topsoil 
and subsoil foreground (root)–background (soil) distinc-
tion was highest between 1400 and 1480  nm. Second-
ary regions of distinctive wavebands occurred between 
1050–1090  nm and 1620–1700  nm. The region around 
1450 nm corresponds to a major water absorption band 
(e.g. [20]). For leaf tissues Mobasheri and Fatemi [44] 
also found high correlation to equivalent water thickness 
around 1050  nm. In the third region of high root-soil 
contrast several spectral peaks for cellulose (1632  nm), 
hemicellulose (1668, 1681  nm) and lignin (1672–1674, 
1677, 1685 nm) are located [62].

Segmentation accuracy was dependent on soil sub-
strate and pre-treatment. The most efficient pre-treat-
ment for both substrates was log-linearization and ALS 
correction, while thresholding was most accurate in the 
topsoil and fuzzy clustering in the subsoil.

Unsupervised approaches such as clustering can be 
readily applied in automated segmentation of phe-
notyping data as they do not require a user-labelled 
training dataset. Still clustering results depend on the 

Fig. 8  Relation between spectral reflectance (first derivative 
difference spectra 1649–1447 nm) and decay duration (days after 
clipping of the shoot)

Fig. 9  Close-up of the same image region with fine-mapping of 
regression model for root decay duration (cf. Fig. 8) on root pixels; a 
root image at 28 days after clipping, b root image at 101 days after 
clipping. Colour scale: days after clipping
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user-defined cluster number which implies a certain 
degree of subjectivity and empiricism [28]: e.g. using two 
clusters only to represent the data structure, one for root 
and one for soil, tended to increase noise in segmenta-
tion results, while higher cluster number underestimated 
root length by allocating root pixels to a mixed class. Sta-
bility measures can provide some decision-support to 
assess the clustering result [32]. However, also clustering 
algorithm and distance metrics influence the segmenta-
tion result. Thus optimizing the settings of unsupervised 
approaches before evaluation of an image series still 
requires some user interaction.

Supervised machine learning approaches are often con-
sidered as particularly adapted for classification of multi-
dimensional data [66, 79]. However, our results did not 
suggest an advantage of using support vector machine 
segmentation. Belgiu and Drǎguţ [3] and Anzanello et al. 
[2] concluded that transformation of spectral data could 
change the superiority of supervised versus unsupervised 
approaches. Other studies (e.g. [11]) reported a slightly 
better performance of supervised classification. Chen 
and Stow [9] underlined that size and homogeneity of 
training data are critical for the accuracy of supervised 
approaches. In our case the labelled data were only 0.6% 
of image pixels. Also inaccuracy of freehand-labelling 
could have reduced performance: considering the tiny 
size of root axes and constraints of camera resolution 
falsely labelling of soil pixels as root and vice versa, or 
influence of mixed border pixels can hardly be excluded 
[55]. Therefore unsupervised approaches were more effi-
cient for automatic segmentation in a phenotyping con-
text, while supervised machine learning approaches were 
most adapted to subsequent chemometric analyses.

Overall our results demonstrate that an adequate image 
processing strategy has to be found for an experimen-
tal dataset with a specific foreground (species depend-
ent roots)–background (soil) combination. There is no 
unique combination of pre-treatment, band selection and 
segmentation algorithms that fits all hyperspectral root 
images. However, following the image processing pipe-
line presented here, the appropriate pre-treatment and 
segmentation methods and best bands for an optimum 
segmentation result can be found efficiently.

Spectral versus colour based segmentation
Our results demonstrated that even for bright subsoil 
segmentation via colour thresholds did not differ in per-
formance compared to spectral segmentation. Overall 
the colour based segmentation was even slightly, though 
not significantly, more accurate than the spectral seg-
mentation. We hypothesize that the main reason for this 
was the smaller pixel size of high resolution RGB cam-
eras (6.6  μm for the camera model used here) better 

capturing fine lateral axes. Still there could be substrate 
types such silica sand (Additional file  9) where colour 
based segmentation fails, while still spectral patterns 
allow foreground–background distinction. Also more 
advanced segmentation algorithms (e.g. sub-pixel map-
ping approaches; e.g. [41, 71, 77] might further improve 
detection of tiny structures with the given spatial resolu-
tion of the camera.

Importantly all reports on rhizobox-like systems found 
a significant relation between visible and total root length 
[47]. Also here total root length could be predicted from 
visible axes (r2 = 0.74) with a similar percentage of visible 
roots as reported by Pfeifer et al. [53] for barley (between 
20 and 30%) in a comparable setup.

Chemometric root analysis
Chemometric classification of the segmented root axes 
with a decision tree model revealed major spectral dis-
tinction between a central region extending to an aver-
age radius of 0.3 mm and the region beyond 0.3 mm to 
the outer border of root axes. It is hypothesized that the 
model captured distinctive constituents of the root stele 
via their spectral pattern (particularly related to water 
absorption; cf. Additional file 6). For example Watt et al. 
[73] reported stele diameter of cereal primary roots in 
the range of 0.1–0.2 mm.

Spectral root signatures changed with root decay 
time after clipping. The temporal change was most 
pronounced at a wavelength difference of 1649 minus 
1447  nm. The region around 1649  nm contains sev-
eral bands for cellulose, hemicellulose and lignin [35, 
62], while the region around 1447  nm has strong water 
absorption properties [20]. It is thus suggested that the 
spectral pattern could indicate a change in tissue water 
content relative to the concentration in structural car-
bohydrates. The dynamics of changing spectral reflec-
tance were modelled by an exponential curve which is 
common in plant (root) litter decomposition [14, 65]. 
Fine-mapping of the model on root pixels revealed that 
spatial (mainly radial) differences of root constituents 
were encoded by the same spectral signature as decay 
duration. Upon calibration with measured root chemi-
cal components (e.g. C:N, lignin, cellulose, hemicellu-
lose, calcium; [78]) it can be expected that hyperspectral 
imaging provides relevant insights into the spatial and 
temporal biochemical patterns of plant roots and a better 
understanding of root functioning.

Conclusions
Hyperspectral imaging is a novel approach for root 
phenotyping of soil grown plants. Although acquisi-
tion and processing time limits throughput compared 
to RGB imaging, spectral signatures provide potential 
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added-value by encoding physico-chemical root/soil con-
stituents. Hyperspectral imaging thus bridges between 
high-throughput RGB and CT/MRI deep root pheno-
typing technologies. Phenotyping requires a high degree 
of automation in image processing. Adequate methods 
for root segmentation and chemometric analysis are 
therefore critical. With the hyperspectral image pro-
cessing pipeline presented here an adapted strategy for 
specific experimental settings can be found efficiently. 
Pre-treated images were successfully segmented with 
unsupervised clustering and thresholding approaches. 
Due to lower resolution of spectral images, still there 
was no segmentation advantage over colour threshold-
ing from RGB images. However using chemometric 
models, spectral signatures allowed to infer on distinc-
tive radial composition of root axes and their decompo-
sition dynamics. These first results demonstrate that the 
developed data processing pipeline facilitates applica-
tion of hyperspectral imaging as promising technology 
for advances in root research. Further investigations will 
highlight the relevance of distinctive spectral root prop-
erties in relation to root functionality. Finally, exploration 
of large-size hyperspectral root data will contribute to 
define target wavelengths relevant for the design of mul-
tispectral, high-throughput structural–functional root 
phenotyping systems.
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