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Abstract 

Background:  Progress in high-throughput molecular methods accompanied by more complex experimental 
designs demands novel data visualisation solutions. To specifically answer the question which parts of the specifi-
cal biological system are responding in particular perturbation, integrative approach in which experimental data are 
superimposed on a prior knowledge network is shown to be advantageous.

Results:  We have developed DiNAR, Differential Network Analysis in R, a user-friendly application with dynamic visu-
alisation that integrates multiple condition high-throughput data and extensive biological prior knowledge. Imple-
mented differential network approach and embedded network analysis allow users to analyse condition-specific 
responses in the context of topology of interest (e.g. immune signalling network) and extract knowledge concerning 
patterns of signalling dynamics (i.e. rewiring in network structure between two or more biological conditions). We 
validated the usability of software on the Arabidopsis thaliana and Solanum tuberosum datasets, but it is set to handle 
any biological instances.

Conclusions:  DiNAR facilitates detection of network-rewiring events, gene prioritisation for future experimental 
design and allows capturing dynamics of complex biological system. The fully cross-platform Shiny App is hosted and 
freely available at https​://nib-si.shiny​apps.io/DiNAR​. The most recent version of the source code is available at https​://
githu​b.com/NIB-SI/DiNAR​/ with a DOI 10.5281/zenodo.1230523 of the archived version in Zenodo.
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Background
Technological progress in biological data generation 
enhanced development of network modelling to allow 
comprehension at systems level [1]. The ideal in silico 
network should be concise and able to capture key fea-
tures of the actual system. Although this is difficult to 
achieve, particularly with non-model organisms, net-
work-based strategies have proven very useful for inter-
preting biological data [2]. In line with emerging network 
views of biological systems, development of user-friendly 
visualisation tools becomes even more relevant.

Efficient network visualisation is lagging behind, espe-
cially in exploration of multi-conditional setups. Few 
solutions combining background knowledge and network 
analysis to enable visualisation of experimental data have 
so far been implemented in this area [3–9]. We devel-
oped an application to extend existing tools and further 
facilitate biological insight into dynamic rewiring events. 
DiNAR uses prior knowledge accompanied by differential 
network analysis to visualise complex experimental data-
sets. Main advanced features of DiNAR are (1) dynamic 
visualisation of complex multi-conditional experiments, 
(2) identification of strong differential interactions and 
(3) recall of latent effects that are present in multi-con-
ditional experiments. Although DiNAR was primar-
ily set for analysis of Arabidopsis thaliana and Solanum 
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tuberosum datasets, it can handle other background 
knowledge networks in combination with experimen-
tal dataset of interest, e.g. transcriptomics, proteomics, 
metabolomics.

Implementation
DiNAR is written in R [10] and extended with JavaScript 
and Shiny package for interactive web applications. The 
implementation requires R version 3.1 or higher and sev-
eral R packages, including animatoR [11], visNetwork 
[12] and ndtv [13]. Homotopy, as implemented in anima-
toR package, is used to interpolate node and edge weight 
value between discrete conditions/time-points. visNet-
work, a browser based visualization library, allows imple-
mentation for easier manipulation and interaction with 
the data. Implementation of the ndtv package functions 
provides downloadable interactive movie rendering.

The fully cross-platform validated application is hosted 
and freely available at https​://nib-si.shiny​apps.io/DiNAR​
. Source code is stored at https​://githu​b.com/NIB-SI/
DiNAR​, where a more detailed application manual and 
package list are available. DiNAR can also be run locally 
in R or hosted on a local RStudio Shiny Server.

Current application release provides the user with two 
embedded background knowledge networks: manually 
constructed plant immune signalling network (PIS) [14] 
translated to S. tuberosum at the orthologue groups level 
[15] and one constructed from prior knowledge on A. 
thaliana—the A. thaliana Comprehensive Knowledge 
Network (AtCKN) [15]. AtCKN, containing 20,012 nodes 
and 70,091 connections, was first analysed to determine 
disjoint communities (i.e. clusters) based on network 
centrality measures, for easier visualisation. Multi-level 
community detections algorithm followed by spinglass 
community detection algorithm were used, both imple-
mented in igraph R package [16]. As the result, AtCKN 
was divided into 48 clusters. DiNAR also provides an 
option of uploading a user-defined network. Any kind 
of network in the proper format can be used to visual-
ise changes in omics dataset (e.g. transcriptomics, miR-
NAomics, proteomics and metabolomics). Notice that 
the background network node identifiers should be con-
sistent with the corresponding experimental data identi-
fiers as well as the statistical analyses between different 
omics levels have to be standardised. Both static graph-
ics and interactive animations can be exported, together 
with a record of user settings, which is compliant with 
FAIR guiding principles for reproducible research [17].

In addition to DiNAR core scripts, optional pre-pro-
cessing and clustering tools (subApps) are also hosted at 
shinyapps.io platform: https​://nib-si.shiny​apps.io/pre-
proce​ssing​ and https​://nib-si.shiny​apps.io/clust​ering​, 
while their source code is freely available under GitHub 

subApps sub-repository. Microarray/NGS data analysis 
from GEO with examples is available under GEOData-
Analysis sub-repository. Gene orthologue groups of A. 
thaliana, potato and several other non-model plant spe-
cies are available at GoMapMan web-accessible resource 
[18]. Test examples, description of clustering analysis 
pipeline, instructions for installation and technical trou-
bleshooting guide are also deposited at https​://githu​
b.com/NIB-SI/DiNAR​/.

Results and discussion
Application features
DiNAR core app
DiNAR landing web page provides the application over-
view, with links to user tutorials and tools. The interactive 
sidebar menu provides guidance through the required 
analysis steps (Fig. 1). In the case of any inconsistencies 
or missing steps, the application will not proceed to the 
next step.

For differential network visualisation, user selects 
among provided A. thaliana or S. tuberosum networks or 
uploads the pre-processed (preferably by DiNAR sub-
App) user-defined background knowledge network. 
DiNAR module size limit, in the term of visualisation, is 
between 2 and 16,384 edges, excluding loops (self-activa-
tion or self-inhibition, e.g. autocatalysis, oligomerisation, 
and autophosphorylation). Next, user uploads the experi-
mental dataset of interest. Condition-specific networks 
are then dynamically constructed according to user-
defined cut-off parameters: thresholds for the measure of 
statistical significance (e.g. adjusted p value < 0.05) and 
the threshold for the node weight values (e.g. interpo-
lated absolute values of logFC � 0.5, here denoted with 
abs(n) and abs(m) ). If two connected nodes (elements 
from n and m) pass the cut-off criteria, they and the edge 
connecting them are visualised over the selected back-
ground network. Node weight values are used to define 
the node size and colour as well as to define degree of 

edge weight 
(

abs(n)
max(abs(n),1)

+
abs(m)

max(abs(m),1)

max(
abs(n)

max(abs(n),1)
+

abs(m)
max(abs(m),1)

,1)

)
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does not use fixed cut-off thresholds, the user is allowed 
to fine-tune which level of expression change to disregard 
in a particular in silico investigation and to detect more 
subtle differences. If larger clusters are imported the 
user-friendly additional filtering by node degree is 
provided.

Other panel tabs offer detailed information about the 
nodes and edges in the network, MapMan bin enrich-
ment per cluster and two interactive network graphics 
views, static and dynamic. Options such as click and drag, 
zoom, hover and first neighbour highlight help users to 
explore rewiring events details. Static (background, fro-
zen and interactive modes) and dynamic (vizNetwork 
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Fig. 1  Overview of DiNAR features. DiNAR reads analysis-ready network and experimental data. It creates differential network per condition to 
produce interactive animation according to user-defined parameters
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and animatoR modes) results can be exported from the 
application, as well as the analysis settings log. See Fig. 1 
for detailed overview of DiNAR features.

DiNAR subApps
Pre-processing subApp facilitates the construction of 
DiNAR′  s Custom Network. Generally, nodes and edges 
tables with predefined structure for DiNAR input could 
be constructed manually (see the manual for more 
details), however for larger networks this would be 
unnecessarily time-consuming. Pre-processing subApp 
reads the supplied nodes and edges in three formats: 
tables (tab, comma or semicolon separated), GraphML 
(standard graph structure data format) or GraphML 
combined with XGMML. GraphML and XGMML for-
mats can be exported from Cytoscape 3.6 [19], yEd [20] 
and similar applications/platforms. GraphML with node/
edge attributes is also generated and could be exported 
from the subApp. In the case of uploading one of the first 
two formats, either a table or a sole GraphML file, coordi-
nates are assigned to each node using a two-dimensional 
grid followed by Kamada–Kawai layout. Should the user 
want to use own defined coordinates, both the GraphML 
and XGMML files need to be uploaded. In addition, the 
pre-processing subApp also calculates the node degree 
measure. Files generated by the subApp are available at 
https​://githu​b.com/NIB-SI/DiNAR​/tree/maste​r/subAp​
ps/clust​ering​/examp​les.

For the visualisation of large networks (e.g. AtCKN) to 
be informative, the network clustering step is necessary. 
Network of interest should be provided in GraphML for-
mat. Prior to the clustering step, the network is simpli-
fied by the removal of self-loops and duplicated edges. 
The first clustering step detects community structure 
using multi-level modularity optimization algorithm, 
excluding communities (i.e. clusters) with less than 5 
nodes from further analyses. In the next step, densely 
connected (approximately fully connected subgraphs) 
and star-like clusters are identified. Densely connected 
clusters are defined as clusters with n(n− 1) edges, with 
n being the number of nodes. Star-like communities are 
defined as graphs that contained only one hub node and 
with an edge count close to the number of nodes. A hub 
node is defined as the node with a degree higher or equal 
to 60% of the maximal node degree of the cluster, high 
closeness, and betweenness in undirected graph close to 
(n− 1)(n− 2)/2 , where n is the number of nodes. Upon 
identification of densely connected and star-like clus-
ters, they are excluded from further processing, as are 
all clusters with less than 210 nodes and 211 edges. The 
remaining clusters are clustered further using spinglass 
community detection algorithm into the same number of 
sub-clusters as the number of hub nodes calculated for 

that cluster. For visualisation, first a two-dimensional grid 
layout is used, followed by either Fruchterman-Reingold 
(number of nodes ≤ 26 and number of edges ≤ 26 ) or 
Kamada–Kawai layout (otherwise). The final output of 
the clustering subApp are tables of nodes and edges, with 
information about cluster affiliation, node coordinates 
and degree, whilst preserving information about between 
cluster relations.

Method validation
Overview of DiNAR features and most similar avail-
able applications is presented in Table  1. As no soft-
ware was directly comparable to DiNAR, we validated 
our approach through biological interpretation of two 
plant pathogen interaction experimental datasets. Plant 
immune signalling response against pathogens is a com-
plex phenomenon that involves plant perception of the 
pathogen, transduction of the signal within the plant cell 
and results in reprogramming of the plant metabolism 
[21]. Hormonal crosstalk, in general, plays an important 
role in plant responses to stress. In addition to ethylene 
(ET), jasmonic acid (JA) and salicylic acid (SA) [22], the 
importance of other plant hormones, whose basic func-
tion is not defence, including abscisic acid (ABA), gibber-
ellin (GA), auxin (AUX) and cytokinin (CK) was shown. 
Depending on the pathogen and host physiological state, 
specific plant components are activated or repressed in 
a well-defined time-dependent manner. Analysing large 
datasets in DiNAR enables researchers to comprehend 
the regulatory events of such complex, inter-connected 
and highly dynamical biological systems.

Arabidopsis thaliana
We first demonstrate DiNAR on a transcriptomics data-
set describing dynamics of A. thaliana response to bacte-
rial pathogen Pseudomonas syringae DC3000 at 0, 2, 3, 4, 
6, 7, 8, 10, 11, 12, 14, 16 and 17.5 hours post inoculation 
(hpi) [23]. We interpreted Arabidopsis network cluster 
40 (Fig.  2a), which includes several well-characterized 
immune-related genes. In the original analysis of the data 
by Lewis et al. [23], two notable peaks of global expres-
sion were observed, the first at 2  hpi and the second at 
6  hpi. This is also evident in DiNAR dynamic visualisa-
tion of cluster 40, as transcriptional switches of two main 
gene modules (Additional file 1). The first switch corre-
sponds to upregulation of a module containing hub tran-
scription factors WRKY6/30 and ZAT11. In the second 
switch, another module containing key regulators of sali-
cylic acid response TGA3/5, NPR3/4, PAD4 and EDS1 
is activated. Furthermore, two additional transcriptional 
switches were identified with DiNAR visualisation. The 
first, occurring at 7  hpi, corresponds to induction of a 
module containing important jasmonate and ethylene 
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Fig. 2  Arabidopsis thaliana response to bacterial pathogen Pseudomonas syringae DC3000. DiNAR static network visualization a of cluster 40 in 
the AtCKN in response to infection with Pseudomonas syringae 17.5 hpi (adjusted p value < 0.05, absolute value of logFC � 0.5, min node degree 
3). b Magnification of panel a as visible in dynamic-animatoR mode. Node colours correspond to gene regulation with red (upregulated) and blue 
(downregulated). Colour scale on top right. The size of nodes correspond to absolute logFC values
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Fig. 3  Visualisation of data in PIS network using DiNAR. a Potato immune signalling network comprising metabolic, signalling and gene 
regulatory pathways of SA, JA and ET. Nodes representing transcripts/proteins are coloured blue, metabolites and small compounds green and 
phytohormones orange. Pathogens are represented as red nodes. Parts of network describing SA, JA and ET pathways, kinases and ROS signalling 
as well as viral and bacterial interactors are marked with dashed line. b Transcriptional response of potato leaves to infection with PVY 1 dpi. DiNAR 
static–interactive visualisation of PIS network of NT cv. Désirée (left panel) and NahG-Désirée (right panel) is shown (adjusted p value < 0.05, no 
logFC cut-off, min node degree 1). Node colours correspond to gene regulation with red (upregulated) and blue (downregulated). The size of nodes 
correspond to absolute logFC values. Edges describing the reactions between the components are directed and represent activation (full line, 
unilateral arrows), inhibition (full line) or binding (dashed line, bilateral arrows)
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response transcription factors and jasmonate biosyn-
thesis genes. The second corresponds to reactivation of 
the previously mentioned salicylic acid response module 
at 17.5 hpi (Fig. 2b). These results illustrate how DiNAR 
provides easy insight into studied process and reveals 
additional information in comparison to using solely 
standard statistical analyses.

Potato‑virus PVY interaction
For the second example we analysed potato time series 
transcriptional response to potato virus Y (PVY) [24] in 
the manually constructed plant immune signalling net-
work [14] comprising of 205 nodes and 422 edges, cov-
ering metabolic, signalling and gene regulation networks 
of SA, JA and ET (Fig.  3a). The network was originally 
built by extensive article curation for Arabidopsis. Here 
we used its potato translation based on orthologue gene 
information [15]. In potato dataset, gene expression was 
measured 1, 3, 4, 5 and 7 days post inoculation (dpi). 
Two genotypes were analysed; non-transgenic (NT) cv. 
Désirée and its transgenic counter-part depleted in accu-
mulation of salicylic acid (NahG-Désirée).

To evaluate the role of SA in potato immune signalling, 
dynamic gene expression changes between NT Désirée 
and NahG-Désirée were compared using Dynamic-
VisNetwork and Dynamic-animatoR implemented in 
DiNAR (Additional files 2 and 3). The results show that 
SA-deficiency perturbs the transcriptional reprograming 
of the genes included in PIS network.

MAP kinases (MPKs) are regulated in different stages 
(1, 4 and 7 dpi) of NahG-Désirée response, even though 
no differences in expression of those genes were observed 
in NT plants. Interestingly, induction of MPK3 and 
MPK6 at 1 dpi coincides with the activation of the main 
ET responsive transcription factor EIN3 and respiratory 
burst enzyme NADPH-oxidase which expression levels 
are also induced. SA-deficiency changes the responsive-
ness of hormonal signalling pathway at different stages. 
For example, at 1  dpi components of JA biosynthesis 
(LOX, CTS, 4CLL, ACX3,6, and ACX 1, ACH) and JA 
signalling (JAZ 9, 11, 12 and JAZ 1, 2, 5, 6) are induced 
in NahG-Désirée, however remain unresponsive in NT 
genotype.

Even though SA is traditionally viewed as the most 
important hormone in virus-induced response [25], 
we show dynamic changes in expression of several ET-
signalling components at different stages of Désirée NT 
response to PVY (Fig. 3b). At 1 dpi an induction of ACO 
(ACC oxidase), an ET-biosynthesis gene is observed and 
continuous to be induced at later time points (4 and 5 
dpi), reaching the highest peak at 7 dpi. EIN3 is induced 
at 1 and 3 dpi and it induces the transcription of EBF gene 
resulting in expression peak of EBF gene at 3 dpi. At 4 dpi 
repression of several ethylene responsive factors (ERF1,2; 
ERF5,6; ERF 104, ERF105) as well as EBF gene occurs. 
With these examples, we show that DiNAR enables novel 
insights into dynamic gene expression reprogramming.

Table 1  Comparison of DiNAR with most similar tools available

exp. experimental, NAp not applicable, ND not possible to determine, SD standard deviation, technical operability accesibility at the time of testing, TSV tab separated 
values

App name App type Type 
of visualisation

Network type 
import

Import 
of exp. 
datasets

Built-in 
clustering

Built-in 
filtering

Export 
formats

Technical 
operability

DiNAR Stand-alone 
web app

Interactive: 
dynamic & 
Static

Preprocessed 
cytoscape, 
TSV text, ... 
(subApps)

YES YES (DiNAR 
subApps 
clustering)

Stat. signifi-
cance, node 
weight, min.
node degree, 
cluster/gene 
ID

Interactive: 
dynamic & 
static; log, 
TSV, GraphML

YES

AIM [3] Online Static database NAp NO NAp ND ND NO

CyLineUp [4] Cytoscape 3 
plugin

Noninteractive 
static

Cytoscape YES NO Stat. sig-
nificance (p 
value)

Noninteractive 
static

YES

DyNet [5] Cytoscape 3 
plugin

Semi-interactive 
static

Condition 
specific

NO YES (heatmap) ND Noninteractive 
static

YES

DyNetviewer 
[6]

Cytoscape 3 
plugin

Coarse dynamic text YES YES Gene expres-
sion, SD

Text YES

Diffany [7] Cytoscape 3 
plugin

Noninteractive 
static

Cytoscape NO NO Edge weight Noninteractive 
static

YES

PCSF [8] R package Interactive static Edge list YES YES Functional 
enrichment

Igraph YES

iNID [9] Online Static NAp YES YES p values logFC ND NO
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Conclusion
The advantage of DiNAR, compared to other network 
visualization tools, is the dynamic visualization of multi-
conditional datasets in the context of background knowl-
edge on molecular interactions with embedded network 
analyses. It facilitates detection of network-rewiring 
events, gene prioritisation for future experimental design 
and allows capturing dynamics of complex biological sys-
tem. Biological examples demonstrated how DiNAR pro-
vides valuable information in revealing hidden patterns 
of plant signalling dynamics and knowledge extraction.

Additional files

Additional file 1. Dynamic visualisation of Arabidopsis thaliana response 
to Pseudomonas syringae. AtCKN network, cluster 40, GSE56094 experi-
mental data, Pseudomonas syringae pv. tomato DC3000 vs Mock subset. 
Relative expression between Pseudomonas syringae and mock-treated 
plants has been log2 transformed. The absolute values are represented 
by the size of the node and differential expression is color-coded (red-
induction, blue-repression of expression). Only genes that are significantly 
differentially expressed are visualized (FDR p < 0.05). Dynamic changes in 
gene expression following 0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 16 and 17.5 hpi 
are shown.

Additional file 2. Dynamic visualisation of immune signalling network 
response in potato cv. Désirée infected with virus PVY. PIS network, 
GSE58593 experimental data at the orthologue groups level. Relative 
expression between PVY and mock-treated plants has been log2 trans-
formed. The absolute values are represented by the size of the node and 
differential expression is color-coded (red—induction, blue—repression 
of expression). Only genes that are significantly differentially expressed are 
visualized (FDR p < 0.05). Dynamic changes in gene expression 1, 3, 4, 5 
and 7 dpi after infection with PVY are shown for Désirée plants.

Additional file 3. Dynamic visualisation of immune signalling network 
response in potato cv. NahG-D\’esir\’ee infected with virus PVY. PIS 
network, GSE58593 experimental data at the orthologue groups level. 
Relative expression between PVY and mock-treated plants has been 
log2 transformed. The absolute values are represented by the size of 
the node and differential expression is color-coded (red—induction, 
blue—repression of expression). Only genes that are significantly dif-
ferentially expressed are visualized (FDR p < 0.05). Dynamic changes in 
gene expression 1, 3, 4, 5 and 7 dpi after infection with PVY are shown for 
NahG-Désirée plants.

Abbreviations
Ath: Arabidopsis thaliana; app: application; CKN: Comprehensive Knowledge 
Network; dpi: days post inoculation; exp.: experimental hpi hours post inocula-
tion; ID: identifier; MPKs: MAP kinases; min.: minimal; NA: not available; NAp: 
not applicable; ND: not determined; NT: non-transgenic; PIS: plant immune 
signalling; SD: standard deviation; stat.: statistical; subApp: subApplication; tp: 
time point.
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