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METHODOLOGY

Image‑based methods for phenotyping 
growth dynamics and fitness components 
in Arabidopsis thaliana
François Vasseur1*, Justine Bresson2, George Wang1, Rebecca Schwab1 and Detlef Weigel1*

Abstract 

Background:  The model species Arabidopsis thaliana has extensive resources to investigate intraspecific trait vari-
ability and the genetic bases of ecologically relevant traits. However, the cost of equipment and software required for 
high-throughput phenotyping is often a bottleneck for large-scale studies, such as mutant screening or quantitative 
genetics analyses. Simple tools are needed for the measurement of fitness-related traits, like relative growth rate and 
fruit production, without investment in expensive infrastructures. Here, we describe methods that enable the estima-
tion of biomass accumulation and fruit number from the analysis of rosette and inflorescence images taken with a 
regular camera.

Results:  We developed two models to predict plant dry mass and fruit number from the parameters extracted with 
the analysis of rosette and inflorescence images. Predictive models were trained by sacrificing growing individuals for 
dry mass estimation, and manually measuring a fraction of individuals for fruit number at maturity. Using a cross-
validation approach, we showed that quantitative parameters extracted from image analysis predicts more 90% of 
both plant dry mass and fruit number. When used on 451 natural accessions, the method allowed modeling growth 
dynamics, including relative growth rate, throughout the life cycle of various ecotypes. Estimated growth-related 
traits had high heritability (0.65 < H2 < 0.93), as well as estimated fruit number (H2 = 0.68). In addition, we validated the 
method for estimating fruit number with rev5, a mutant with increased flower abortion.

Conclusions:  The method we propose here is an application of automated computerization of plant images with 
ImageJ, and subsequent statistical modeling in R. It allows plant biologists to measure growth dynamics and fruit 
number in hundreds of individuals with simple computing steps that can be repeated and adjusted to a wide range 
of laboratory conditions. It is thus a flexible toolkit for the measurement of fitness-related traits in large populations of 
a model species.
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Background
Relative growth rate (RGR) and fruit number are two 
essential parameters of plant performance and fitness 
[1–3]. Proper estimation of RGR is achieved with the 
destructive measurement of plant biomass across sev-
eral individuals sequentially harvested [4, 5]. However, 
sequential harvesting is space and time consuming, 

which makes this approach inappropriate for large-scale 
studies. Furthermore, it is problematic for evaluating 
measurement error, as well as to compare growth dynam-
ics and fitness-related traits, like fruit production, on the 
same individuals. Thus, a variety of platforms and equip-
ment have been developed in the last decade for high-
throughput phenotyping of plant growth from image 
analysis, specifically in crops [6–10] and in the model 
species A. thaliana [11–14]. Because commercial tech-
nologies are powerful but generally expensive [6, 8, 11, 
13], low-cost methods have been proposed, for instance 
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to estimate rosette expansion rate from sequential imag-
ing of A. thaliana individuals [14–16]. These methods 
can be adapted to a variety of lab conditions, but they do 
not allow the quantification of complex traits like bio-
mass accumulation, RGR and fruit production.

Strong variation in RGR has been reported across and 
within plant species [17–22], which has been assumed 
to reflect the inherent diversity of strategies to cope with 
contrasting levels of resource availability [3, 23, 24]. For 
instance, species from resource-scarce environments 
generally show a lower RGR than species from resource-
rich environments, even when they are grown in non-
limiting resource conditions [25, 26]. Ecophysiological 
studies [18, 26] have shown that plant RGR depends on 
morphological traits (e.g. leaf mass fraction, leaf dry mass 
per area) and physiological rates (e.g. net assimilation 
rate) that differ between species, genotypes, or ontoge-
netic stages. For instance, plants become less efficient to 
accumulate biomass as they get larger and older, result-
ing in a decline of RGR during ontogeny [4]. This is due 
to developmental and allometric constraints such as self-
shading and increasing allocation of biomass to support-
ing structures, like stems, in growing individuals.

To assess plant performance, response to environment, 
or genetic effects, it is important to link individual’s 
growth trajectory to productivity, yield or reproductive 
success. However, while several methods have been pro-
posed to estimate growth dynamics from image analysis 
[8, 11–16], methodologies for automated, high-through-
put phenotyping of fruit number per plant remain sur-
prisingly scarce [27, 28]. Yet, the analysis of inflorescence 
images in A. thaliana could offer a valuable tool to con-
nect growth dynamics and plant fitness. Because of its 
small size, inflorescences can easily be collected, imaged 
and analyzed with simple equipment. Furthermore, the 
genetic resources available in this species enable large-
scale analyses (mutants screening, quantitative trait loci 
mapping and genome-wide association studies). For 
instance, the recent analysis of 1135 natural accessions 
with complete genomic sequences [29] allows conducting 
large comparative analysis of phenotypic variation within 
the species [30, 31].

With the methods proposed here, we aimed at devel-
oping flexible and customizable tools based on the auto-
mated computerization and analysis of plant images to 
estimate fruit number and growth dynamics, including 
RGR throughout the life cycle. We focused on A. thali-
ana because it is a widely used model in plant science 
and also increasingly being used in ecology, although 
the same approach could be performed on other rosette-
shaped species. The estimation of biomass accumula-
tion was semi-invasive, as it requires sacrificing some 
individuals to train a predictive model. This approach 

considerably reduced the number of plants needed to 
estimate RGR during ontogeny, from seedling establish-
ment to fruiting. Furthermore, the estimation of fruit 
number from automated image analysis of A. thaliana 
inflorescences could greatly help link growth variation to 
plant performance and fitness, in various genotypes and 
environmental conditions.

Results
Estimation of biomass accumulation, RGR and growth 
dynamics
Description
The method for growth analysis requires a set of plants on 
which we want to non-destructively measure dry mass, 
and a set of individuals harvested to train a predictive 
model (Fig. 1). In the case study presented here, we eval-
uated the method on 472 genotypes of A. thaliana grown 
in trays using a growth chamber equipped with Rasp-
berry Pi Automated Phenotyping Array (hereafter RAPA) 
built at the Max Planck Institute (MPI) of Tübingen. We 
partitioned the whole population (n = 1920) in two sub-
populations: the focal population (n = 960) on which 
growth dynamics (and fruit production) were measured, 
and the training population (n = 960) on which a predic-
tive model of plant dry mass was developed.

Individuals of the focal population were daily photo-
graphed during ontogeny (Fig. 1a), and harvested at the 
end of reproduction when the first fruits (siliques) were 
yellowing (stage 8.00 according to Boyes et al. [32]). Top-
view images were manually taken during the first 25 days 
of plant growth (Additional file 6: Fig. S1). Plants of the 
training population were harvested at 16 days after ger-
mination (DAG), dried and weighed for building a pre-
dictive model of rosette biomass with top-view images 
(Fig.  1b). Predictive models were trained and evaluated 
with a cross-validation approach (Fig.  1c). Once a pre-
dictive model has been chosen and validated, rosette dry 
mass can be non-destructively estimated on all individu-
als of the focal population, which allows modeling growth 
trajectory, biomass accumulation and RGR throughout 
the plant life cycle.

Implementation
We developed an ImageJ [33] macro (Additional file 1) to 
extract shape descriptors of the rosette from tray or indi-
vidual pot images (Fig. 1a). The macro guides users in the 
different steps of image analysis to label plant individuals, 
perform segmentation and measure rosette shape descrip-
tors. It processes all images (trays or individual pots) pre-
sent in an input folder, and returns shape descriptors of 
individual rosettes in an output folder defined by users. 
Shape descriptors include individual rosette area (RA) and 
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Fig. 1  Estimation of plant dry mass from image analysis and statistical modeling. a Example of sequential tray images, analyzed with ImageJ 
to extract individual rosette shape descriptors during ontogeny. b Dry rosettes weighed at 16 DAG in the training population. c Series of 
cross-validation performed for different predictive models with different training population size (x axis). Dots represent mean prediction accuracy, 
measured as Pearson’s coefficient of correlation (r2) between observed and predicted values. Error bars represent 95% confidence interval (CI) 
across 100 random permutations of the training dataset. d Correlation between observed and predicted values from the best model obtained after 
stepwise regression, performed 60 individuals to train the model, and tested on 300 individuals not used to train the model
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perimeter (Perim) in pixels, rosette circularity 
(

Circ = 4π ×

(

RA

Perim2

))

 , aspect ratio 
(

AR =

Major axis length
Minor axis length

)

 , 

and roundness 
(

Round =
4×RA

π×Major axis length2

)

 . Rosette area 

and perimeter can be converted into cm2 and cm, respec-
tively, by measuring the area and perimeter of a surface 
calibrator defined by users.

Predictive models of plant dry mass from shape descrip-
tors were tested against measurements in the training 
population (R code in Additional file  2). Depending on 
the training population size, we observed variable predic-
tion accuracy for different models, as measured by the 
coefficient of correlation (r2) between measured and pre-
dicted rosette dry mass in individuals not used to train 
the model (Fig.  1c). LASSO and RIDGE models reached 
high prediction accuracy even with very small training 
population size (< 20 individuals). However, with a mini-
mum of 50 training individuals, lm and RIDGE/LASSO 
performed equally, with a prediction accuracy > 90%. 
Using stepwise regression, we showed that using only 
rosette area and circularity as predictors in a simple lin-
ear model framework can reach high prediction accu-
racy (r2 = 0.91, Fig.  1d). Thus, the final equation we used 
to estimate rosette dry mass from rosette pictures was 
Rosette DM = −0.00133+ 0.00134 × RA+ 0.00274 × Circ 
(cross-validation r2 = 0.91, Fig. 1d).

Application
From estimated rosette dry mass during the ontogeny and 
final rosette dry mass measured at the end of the life cycle 
(maturity), we modeled sigmoid growth curves of biomass 
accumulation (mg), M(t), for all individuals in the focal 
population with a three-parameter logistic function [4, 34] 
(Fig. 2a, b), as in Eq. 1:

where A, B and tinf are the parameters characterizing 
the shape of the curve, which differ between individuals 
depending on the genotypes and/or environmental con-
ditions. A is the upper asymptote of the sigmoid curve, 
which was measured as rosette dry mass (mg) at matu-
rity. The duration of growth was estimated as the time 
in days between the beginning of growth after vernali-
zation (t0) and maturity. B controls the steepness of the 
curve, as the inverse of the exponential growth coefficient 
r (r = 1/B). tinf is the inflection point that, by definition, 
corresponds to the point where the rosette is half the 
final dry mass. Both B and tinf were estimated for every 

(1)M(t) =
A

1+ e
tinf −t

B

individual by fitting a logistic growth function to the data 
in R (Additional file 3).

Growth dynamics variables were computed from the 
fitted parameters, such as GR(t), the derivative of the 
logistic growth function (Fig. 2c, d), as in Eq. 2:

and the relative growth rate (mg d−1 g−1), RGR​(t), meas-
ured as the ratio GR(t)/M (t) (Fig. 2e, f ), as in Eq. 3:

Comparing growth traits measured at tinf, i.e. when GR 
is maximal for all individuals [4], revealed important vari-
ations between accessions (Fig.  2g–i), with an important 
part of phenotypic variance accounted by genetic variabil-
ity, as measured by broad-sense heritability (H2 = 0.93, 0.90 
and 0.65 for M(tinf), GR(tinf) and RGR​(tinf), respectively). 
To evaluate the robustness of the method, we repeated 
an experiment on 18 accessions selected for their highly 
contrasted phenotypes (Additional file 6: Fig. S2). Results 
showed a good correlation between the rosette dry mass at 
the inflection point estimated in the first experiment and 
the dry mass destructively measured in the second experi-
ment (r2 = 0.67; Additional file 6: Fig. S3a).

Estimation of fruit number from inflorescence images
Description
The method to estimate fruit number from inflores-
cence images requires to manually counting fruits on a 
fraction of individuals in order to train predictive mod-
els (Fig.  3). All individuals were harvested at the same 
stage, when the first fruits started to dry. Inflorescence 
and rosette of individuals of the focal population were 
separated and both photographed (Fig.  3a). Fruits were 
manually counted on the inflorescence images of 352 
out of 856 plants harvested (Fig. 3b). In parallel, we ana-
lyzed the inflorescence skeletons of all the 856 harvested 
plants with a dedicated ImageJ macro (Additional file 4). 
Using the skeleton descriptors computed with the macro 
and manual measurements in the population subset, we 
evaluated the accuracy of different models to predict the 
number of fruit per individual (Fig. 3c), and applied the 
best model to the whole focal population.

Implementation
For all images present in the input folder, the “RAPA-
macro_InflorescenceSkeleton.txt” macro (Additional 
file  4) automatically performs image segmentation, 

(2)GR(t) = rM(t)×

(

1−
M(t)

A

)

(3)RGR(t) = r ×

(

1−
M(t)

A

)
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skeletonization, and computation of 2D skeleton param-
eters of inflorescence (Fig. 3a). 2D skeletons analysis with 
ImageJ returns nine vectors of variables for each plant 
(described in Fig.  3), which were automatically saved 
as.xls files by the macro (in an output folder defined by 
user). The sums of these nine vectors per individual were 
used as nine predictors of fruit number.

Using the same approach as for estimating rosette dry 
mass, we tested different models and different training 
population size with cross-validation (R code in Addi-
tional file  5). As for rosette dry mass, results showed 
that the nine skeletons descriptors predict > 90% of fruit 
number in 100 individuals not used to train the model 
(Fig.  3c). With a training population size > 30 individu-
als, lm performed equally than LASSO and RIDGE 
regressions. As for dry mass estimation, quadratic mod-
els performed poorly. For small training population size, 
LASSO and RIDGE regressions reached higher predic-
tion accuracy than linear or quadratic models. Using 

stepwise regression, we showed that the best model 
to estimate fruit number in a linear model framework 
is: Fruit Nb = 0.181× Nb actual junctions + 0.003

×Nb slab pixels + 0.226× Nb triple points (cross-valida-
tion r2 = 0.91, Fig. 3d).

Application
The model to estimate fruit number from inflorescence 
images was applied on all individuals of the focal popu-
lation (Fig.  4a). We measured a relatively high broad-
sense heritability for fruit production across accessions 
(H2 = 0.68), compared to H2 estimates of morphologi-
cal and physiological traits measured in previous stud-
ies [35]. In addition, fruit number estimated from image 
analysis was well correlated with fruit number manually 
counted on 18 genotypes phenotyped in a second experi-
ment (r2 = 0.70; Additional file  6: Fig. S3b). To further 
validate the method, we applied the predictive model on 
an independent set of inflorescence images taken at the 

Fig. 2  Application of the dry mass estimation method to model growth dynamics in A. thaliana. Statistical modeling of rosette dry mass during 
ontogeny, M(t), with three-parameter logistic growth curve, on one individual (a) and 451 natural accession accessions (b); absolute growth rate 
during ontogeny, GR(t), on one individuals (c) and the 451 accessions (d); relative growth rate during ontogeny, RGR​(t), on one individuals (e) and 
the 451 accessions (f). tinf (red dashed line) represents point of growth curve inflection. Individuals on the right panels are colored by duration 
(days) of plant life cycle. (g–i) Variation of M(tinf), GR(tinf) and RGR​(tinf) across the 451 accessions phenotyped, with broad-sense heritability (H2) on the 
top-left corner of each panel. Dots represent genotypic mean ± standard error (n = 2)
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Fig. 3  Estimation of fruit number from image analysis and statistical modeling. a Example of inflorescence images, analyzed with ImageJ 
to extract individual skeleton descriptors after segmentation and 2D skeletonization. b Manual counting (purple dots) of fruit number on a 
subset of inflorescence images. c Series of cross-validation performed for different predictive models with different training population size (x 
axis). Dots represent mean prediction accuracy, measured as Pearson’s coefficient of correlation (r2) between observed and predicted values. 
Error bars represent 95% CI across 100 random permutations of the training dataset. d Correlation between observed and predicted values for 
cross-validation of the best model obtained with stepwise regression, performed 60 individuals to train the model, and tested on 100 individuals 
not used to train the model
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Center for Plant Molecular Biology (ZMBP, University 
of Tübingen) on the rev5 knock-out mutant. Compared 
to wild-type Col-0, rev5 produced less fruits due to the 
effect of the mutation on branching pattern and flower 
development [36]. This was well captured by the predic-
tive model (Fig. 4b), yet trained on the natural accessions.

Discussion
Arabidopsis thaliana is the most widely used plant spe-
cies in molecular biology, ecology and evolution, but we 
still largely ignore how growth dynamics is related to 
individual performance and fitness [37]. This is mainly 
because traits like RGR and fruit number remain difficult 
to measure in large scale experiments. Thus, our goal was 
to develop a set of tools for biologists to analyze these 
traits with low-cost equipment. Rather than the devel-
opment of a new methodology or algorithm, we propose 
an application guide for the implementation of image 
computerization with free software (R, ImageJ). From 
simple top-view imaging of rosette and inflorescence, 
we built robust predictive models of plant dry mass and 
fruit number. Based on a semi-invasive approach and two 
computing steps—one to analyze images with ImageJ and 
one to model data with R –, the method allows a single 
experimenter to simultaneously measure biomass accu-
mulation, RGR and fruit production over thousands of 
plants.

For rosette-shaped species like A. thaliana, top view 
pot or tray imaging can easily be done in any labora-
tory or facilities. In this study, we used pictures of trays 
manually taken during ontogeny with a regular camera. 
The same approach has been proposed in low-cost sys-
tems for high-throughput phenotyping in A. thaliana, 

using projected rosette area to measure growth dur-
ing several hours or days [14–16]. Comparatively, our 
method allows measuring the absolute and relative rate 
of biomass accumulation during the whole life cycle of 
a plant. The time lapse and frequency of tray imaging is 
important for proper fitting of the growth curve. We used 
daily imaging during the 25 first days of growth after 
vernalization, although growth curves can be fitted with 
only one picture every 2–3  days. The ImageJ macro we 
developed here automatically processes tray images when 
plants are young and do not overlap. When they become 
too large (20–25 DAG in our study), the macro offers the 
possibility to spatially separate plants (manual mode). We 
estimated that, on a desktop computer, the macro takes 
approximately 20–25  s per tray (30 individuals) when 
running on automatic mode, and between 1 and 2 min in 
manual mode (depending on the number and amplitude 
of corrections to make).

The semi-invasive approach drastically reduces the 
number of replicates necessary to measure the growth 
dynamics, or the time needed for manual measurement 
of fruit number. Furthermore, it allows experimenter to 
compute biomass accumulation non-destructively until 
the end of the life cycle, and thus, to compare growth and 
reproductive success on the same individuals. We showed 
that the method is robust and reproducible across experi-
ments. Moreover, the model for fruit prediction correctly 
predicted the decrease in rev5 due to flower abortion in 
a complete independent experiment. However, we rec-
ommend making a new predictive model of plant bio-
mass with cross-validation for each experiment (code 
example available in Supplementary File 2), specifically 
if growth conditions change, as the relationship between 

Fig. 4  Application of the method to estimate fruit number in natural accessions and rev5 mutant of A. thaliana. a Variability in fruit number 
across 441 natural accessions, with broad-sense heritability (H2) on the top-left corner. Dots represent genotypic mean ± standard error (n = 2). b 
Prediction of fruit number (mean ± 95% CI) from model trained on accessions and applied to rev5 mutant and Col-0 wild-type (n = 5). Results are 
compared to observed fruit number manually counted at harvesting
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rosette morphology and rosette biomass is expected to 
differ depending on genotypes and environments. Fur-
thermore, our approach for estimating growth dynam-
ics was powerful in A. thaliana, a rosette-shaped species 
for which size can be estimated from on 2D images. 
Although our method must be efficient in other rosette-
shaped species, biomass estimation in plants with com-
plex 3D architecture requires more sophisticated image 
analysis. A recent study in maize offers a nice example of 
3D reconstruction and biomass prediction with a dedi-
cated phenotyping platform [8]. The same limitations 
hold true for the estimation of fruit number: our image-
based method can only be performed on species with 
inflorescences that can be imaged on a 2D plan.

In this study, we propose flexible methods and custom-
izable tools for researchers to characterize plant pheno-
type in their own facilities. This should lower the barriers 
of high-throughput phenotyping, and help dissect the 
relationships between growth dynamics and reproductive 
success in various laboratory conditions. Methods were 
developed for A. thaliana, which is the favorite model 
in plant genetics and molecular biology, and it is also 
becoming a model in evolutionary biology and ecology 
[30, 31, 37–39]. We hope that these tools will encourage 
researchers to analyze complex traits and fitness compo-
nents in various conditions and genotypes, thus partici-
pating to the effort to better understand the physiological 
bases of plant adaptation.

Methods
Plant material
472 natural accessions of A. thaliana were selected 
from the initial germplasm of the 1001 Genomes pro-
ject [29] (http://1001g​enome​s.org/; Additional file  7: 
Table  S1). Seeds used in this study were obtained from 
parental plants propagated under similar conditions in 
greenhouse. All seeds were stored overnight at − 80  °C 
and surface-sterilized with 100% ethanol before sowing. 
A transgenic line of A. thaliana affecting in branching 
pattern and fruit production was used: rev5, which is a 
strong ethyl-methylsulfonate (A260 V) knock-out muta-
tion of REVOLUTA​ in the Col-0 background [36].

Growth conditions
Plants were cultivated in hydroponics, on inorganic solid 
media (rockwool cubes) watered with nutrient solution 
[40]. Four replicates of 472 accessions were grown, with 
pots randomly distributed in 64 trays of 30 pots each. 
Seeds were sowed on 3.6 cm × 3.6 cm  × 3 cm depth rock-
wool cubes (Grodan cubes, Rockwool International A/S, 
Denmark) fitted in 4.6 cm (diameter) × 5 cm (depth) cir-
cular pots (Pöppelmann GmbH and Co., Germany). The 

pots were covered with a black foam disk pierced in the 
center (5–10  mm hole manually made with a puncher). 
Before sowing, the dry rockwool cubes were watered 
with 75% strength nutrient solution. The chemical com-
position of the nutrient solution was obtained from Conn 
et al. [40].

After sowing, trays were incubated for 2  days in the 
dark at 4  °C for seed stratification, and then transferred 
for 6  days to 23  °C for germination. After germination, 
all plants, having two cotyledons, were vernalized at 4 °C 
during 41 days to maximize the flowering of all the dif-
ferent accessions. Plants were thinned to one plant per 
pot, and trays were moved to the RAPA room, set to 
16  °C with a temperature variability of close to ± 0.1  °C, 
air humidity at 65%, and 12  h  day length, with a PPFD 
of 125–175  µmol  m−2  s−1 provided by a 1:1 mixture of 
Cool White and Gro-Lux Wide Spectrum fluorescent 
lights (Luxline plus F36 W/840, Sylvania, Germany). All 
trays were randomly positioned in the room, and watered 
every day with 100% strength nutrient solution.

Replicates 1 and 2 (the focal population, n = 960) 
were harvested when the first fruits started to dry. Due 
to germination failure, mortality or missing data, only 
451 accessions were phenotyped for growth, and 441 
for fruit number. Replicates 3 and 4 (the training popu-
lation, n = 960) were harvested at 16 DAG for dry mass 
measurement.

A second experiment was performed on a set of 18 
contrasted accessions (Additional file 6: Fig. S2), grown in 
the same conditions. Three replicates per genotype were 
harvested at the estimated inflection point for rosette dry 
mass measurement (inflection point estimated from the 
first experiment), and five replicates were harvested at 
the end of the life cycle for manual fruit counting.

rev5 and Col-0 were cultivated in the Center for Plant 
Molecular Biology (ZMBP, University of Tübingen, Ger-
many). Plants were grown on standard soil (9:1 soil and 
sand) under controlled conditions: in long days (16 h day; 
8 h night), low light (70–80 µE m−2 s−1) and an ambient 
temperature of 21 °C (see [41] for details).

Plant imaging and harvesting
All trays were manually imaged every day during the first 
25 days after vernalization with a high-resolution camera 
(Canon EOS-1, Canon Inc., Japan). Individual labeling 
(i.e. genotype, replicate and date of measurement) was 
performed with ImageJ [33] during the image analysis 
process with the “RAPAmacro_RosetteShape.txt” macro. 
Image segmentation was performed on rosette and inflo-
rescence, after inverting images and adjusting color satu-
ration between 35 and 255. However, it is important to 
note that color threshold for segmentation depends on 
light conditions during imaging, and thus, needs to be 

http://1001genomes.org/
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adjusted by users on a set of template images. To clean 
segmented images, undesirable dots that remained after 
segmentation were removed with the ‘Remove outliers’ 
function in ImageJ. After segmentation, inflorescence 
skeletonization and 2D skeleton analysis were automati-
cally performed with the corresponding functions in 
ImageJ (see code in Additional file  4). Skeletons were 
not pruned for loops. Extracted rosette shape and inflo-
rescence skeleton parameters were automatically saved 
as.xls files.

Plants in the training population were harvested at 
16 days after vernalization, rosette were dried at 65 °C for 
three days, and separately weighed with a microbalance 
(XA52/2X, A. Rauch GmbH, Graz, Austria). All individ-
ual rosette parameters extracted after segmentation were 
saved as.xls files, each row corresponding to a specific 
date, tray label and pot coordinates.

At the end of the life cycle, inflorescence and rosette 
of the focal population were harvested and separately 
photographed. They were dried at 65 °C for at least three 
days, and weighed with a microbalance (XA52/2X). In 
the experiment at ZMBP, whole plants of rev5 and Col-0 
were photographed at the end of the life cycle (first yel-
lowish fruits) by taking side pictures of each pot sepa-
rately (n = 5).

Statistical analyses
Different predictive models were evaluated for both 
the estimation of rosette dry mass and fruit number. 
We notably compared linear models, quadratic mod-
els—where each predictor was fitted as a two-order 
polynomial function, RIDGE and LASSO regressions 
(Additional files 2 and 5). Prediction accuracy was 
tested by cross-validation on 100 individuals not used 
to train the model, using the Pearson’s coefficient of 
correlation (r2) between observed and predicted trait 
values. For each model, we tested prediction accuracy 
according to training population size across 100 ran-
dom permutations of the training dataset (R code in 
Additional files 2 and 5). Training population size var-
ied between 10 and 250 for dry mass estimation, and 
between 10 and 120 for fruit number estimation. Step-
wise regression, using step function in R, was used to 
identify the best model, with minimum predictors, of 
rosette dry mass and fruit number.

Non-linear fitting of individual growth curves (Eq. 1) 
were performed with the nls function in R (Additional 
file  3). Since some plants germinated during or, for a 
few, after vernalization, we considered the first day of 
growth (t0) for each individual of the focal population 
as the day at which it had a minimum size. For conveni-
ence, we used the size of the biggest measured plant 

across all individuals at the first day of growth follow-
ing vernalization, which corresponded to a plant with 
first true leaves just emerged. Growth was expressed as 
a function of days after germination (DAG, starting at 
t0). This procedure allowed for normalization of growth 
trajectories from the same starting point between indi-
viduals that differ in germination speed [42]. Growth 
dynamics variables were computed from the fitted 
parameters, such as absolute growth rate, GR(t), the 
derivative of the logistic growth function (Eq.  2), and 
RGR​(t) (Eq. 3).

Broad-sense heritability (H2) was calculated with 
a Bayesian approach implemented in a MCMCglmm 
model performed in R, considering the accession as a 
random factor, as:

where y is trait of interest in individual k of genotype i, 
Gi is accession i, and eik is the residual error. H2 was cal-
culated at the proportion of genotypic variance ( σ 2

G ) over 
total variance ( σ 2

G + σ 2
E):

yik = Gi + eik

H2
=

σ 2
G

σ 2
G + σ 2

E

.

Additional files

Additional file 1. ImageJ macro used to extract rosette shape descriptors 
from top-view tray or pot images.

Additional file 2. R code used to predict rosette dry mass from rosette 
shape descriptors, with cross-validation approach to train and test differ-
ent models and training population size.

Additional file 3. R code used to model sigmoid growth curves and 
growth dynamics (M(t), GR(t), and RGR​(t)) from predicted rosette dry mass 
during ontogeny and measured rosette dry mass at maturity.

Additional file 4. ImageJ macro used to extract inflorescence skeleton 
descriptors from top-view images of plant inflorescence.

Additional file 5. R code used to predict fruit number from inflorescence 
skeleton descriptors, with cross-validation approach to train and test dif-
ferent models and training population size.

Additional file 6: Figure S1. The RAPA facility. Entrance view of the 
growth chamber with a zoom on the camera installed between light 
tubes (top-left panel). On the right is the setup to water the plants and 
take manual tray picture. Figure S2. Representation of the 18 accessions 
phenotyped in the second experiment. Nine phenotypic groups repre-
sented by the purple circles (three groups of RGR and three groups of 
growth duration) were selected, each containing two accessions. Figure 
S3. Inter-experiment reproducibility of rosette dry mass and fruit number 
estimation. Measured across 18 contrasted accessions. (a) Pearson’s 
coefficient of correlation (r2) between rosette dry mass M estimated at 
the inflection point tinf in the first experiment and rosette dry mass M 
measured at tinf in the second experiment. (b) r2 between the number of 
fruits estimated in the first experiment and the number of fruits measured 
in the second experiment.

Additional file 7: Table S1. List of the 451 accessions phenotyped (n = 2), 
with measured and estimated traits, and fitted model parameters of Eq. 1.
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Abbreviations
t0: first day of growth after vernalization; tinf: inflection point (days) of the 
logistic growth curve; A: upper asymptote of the logistic growth curve (mg); 
B: inverse of the exponential constant of the logistic growth curve; DAG: days 
after t0; M: rosette dry mass (mg); GR: absolute growth rate (mg d−1); RGR​: rela-
tive growth rate (mg d−1 g−1).
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