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METHODOLOGY

High throughput phenotyping 
of morpho‑anatomical stem properties using 
X‑ray computed tomography in sorghum
Francisco E. Gomez1,2*, Geraldo Carvalho Jr.2, Fuhao Shi3, Anastasia H. Muliana4 and William L. Rooney2

Abstract 

Background:  In bioenergy/forage sorghum, morpho-anatomical stem properties are major components affecting 
standability and juice yield. However, phenotyping these traits is low-throughput, and has been restricted by the 
lack of a high-throughput phenotyping platforms that can collect both morphological and anatomical stem proper-
ties. X-ray computed tomography (CT) offers a potential solution, but studies using this technology in plants have 
evaluated limited numbers of genotypes with limited throughput. Here we suggest that using a medical CT might 
overcome sample size limitations when higher resolution is not needed. Thus, the aim of this study was to develop a 
practical high-throughput phenotyping and image data processing pipeline that extracts stem morpho-anatomical 
traits faster, more efficiently and on a larger number of samples.

Results:  A medical CT was used to image morpho-anatomical stem properties in sorghum. The platform and image 
analysis pipeline revealed extensive phenotypic variation for important morpho-anatomical traits in well-character-
ized sorghum genotypes at suitable repeatability rates. CT estimates were highly predictive of morphological traits 
and moderately predictive of anatomical traits. The image analysis pipeline also identified genotypes with superior 
morpho-anatomical traits that were consistent with ground-truth based classification in previous studies. In addition, 
stem cross section intensity measured by the CT was highly correlated with stem dry-weight density, and can poten-
tially serve as a high-throughput approach to measure stem density in grass stems.

Conclusions:  The use of CT on a diverse set of sorghum genotypes with a defined platform and image analysis 
pipeline was effective at predicting traits such as stem length, diameter, and pithiness ratio at the internode level. 
High-throughput phenotyping of stem traits using CT appears to be useful and feasible for use in an applied breeding 
program.
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Background
Breeding for standability and yield is a major focus of 
sorghum geneticists and breeders [1, 2]. Stem biome-
chanical and morpho-anatomical properties affect 
standability [3–7] and yield components in bioenergy 
sorghum [8] by influencing the plant’s ability to resist 
lodging and produce juicy and large stems. However, 

using existing assays to measure stem biomechani-
cal and morpho-anatomical traits demands significant 
amounts of labor and time which reduce throughput. 
New high-throughput and advanced imaging technol-
ogy provides a solution to alleviate this phenotyping 
bottleneck [9]. This will ultimately enable plant scien-
tists and breeders to evaluate larger segregating popu-
lations which would improve the selection process.

X-ray computed tomography (CT) has become a pow-
erful tool for phenotyping plants and is becoming more 
widely available to a steadily growing number of plant 
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biologists. As a result, this has led to vast amounts of 
image data which need to be efficiently managed, pro-
cessed, mined, and analyzed [10–12]. Despite increas-
ing interest in scanning plant stems using CT [13–15], 
there have been few studies to visualize and quantify in 
a high throughput manner above-ground structures of 
plants using CT.

Plant scientists have been using medical CT and 
industrial CT scanners to analyze a wide range of 
extant plant materials [16]. Both scanners are based on 
the same underlying physics, but due to their difference 
in applications, industrial CT scanners offer a higher 
image resolution [17]. Industrial CT scanners are often 
termed micro-CT or nano-CT because their resolution 
can range from 5 to 150 µm in the micro-CT and to as 
low as 0.5 µm in the nano-CT, compared to medical CT 
scanners, which have at best resolution of 70 µm [18]. 
However, there are medical scanners available that can 
obtain similar resolution as industrial CT scanners. 
Regardless, the type of scanner being utilized, plant sci-
entists are keen for scanners to be as high resolution as 
possible to accommodate small samples that require a 
high-resolution scan.

Given their resolution and capacity to detect external 
and internal phenotypic information in a non-invasive 
and non-destructive manner, combined with the abil-
ity to automate the process, has made the micro-CT the 
scanner of choice for plant studies [16]. Micro-CT has 
been successfully used to characterize root structures, 
developing seeds, stems, leaves, and floral morphology 
and more at a very detailed level [14, 16–24]. However, 
depending on the resolution, the size of the sample, and 
desired signal-to-noise ratio, a CT scan may take sev-
eral minutes to hours, and there is a sample size trade-
off [11, 17, 21]. Therefore, most studies to date, using 
micro-CT have been limited to greenhouse studies and 
used on small samples or small sample sizes that limit 
the throughput and applicability of this method in a 
large-scale field-breeding program. Nevertheless, these 
studies have provided numerous insights and meth-
ods to apply CT scanning and image numerous plants 
tissues.

In clinical research, a combination of biomechanics 
and X-ray CT has proven to be a powerful research tech-
nique to study whole-bone biomechanical properties [25, 
26]. Application of such technology in crop improvement 
could be valuable as well. A study in maize successfully 
applied an X-ray CT to generate structural morphology 
of maize stems, which were then implemented in finite-
element (FE) analyses. FE analyses performed to study 
the biomechanical response of these stems discovered 
that stem strength was highly dependent on stem mor-
phology [27]. The same group using dry maize stems 

grown under field conditions were able to scan up to 10 
samples per run using X-ray CT, and identified a rela-
tionship between stem morphology and biomechanics in 
late-season stem lodging in maize [15].

In sorghum, stem lodging tends to occur at the grain 
filling stage [28] when there is significant moisture and 
turgor pressure that may affect biomechanical proper-
ties [29]. As tissues mature and subsequently dehydrate 
as a result of senescence, the modulus of elasticity of 
these stem increases [3]. Moreover, since bioenergy sor-
ghum stem weight and moisture are good predictors of 
juice yield [8], it is important to evaluate plants when the 
physiological influences on the expression of these traits 
are minimal. Thus, previously mentioned results in late-
season stem lodging in maize may not apply to bioenergy 
sorghum.

The current technological limitations of the micro-CT 
to acquiring plant morphological and anatomical data 
makes its application impractical in a field-breeding 
program. To be useful, the technology must have higher 
throughput when high-resolution is not needed. To 
address this problem, we propose the use of a medical 
CT scanner to visualize and quantify external and inter-
nal phenotypic structures in a high-throughput approach 
that would allow scanning larger samples and increase 
the number of samples per run of grass stems.

Using a medical CT has several advantages over a 
micro-CT when high-resolution is not necessary. For 
example, in a study by du Plessis et al. [30], the authors 
compared a medical CT to a micro-CT using samples of 
different densities. The authors concluded the medical 
CT scanners can produce useful data, significantly reduce 
scanning time, and provide an alternative for testing large 
numbers of samples when only moderate resolution is 
required. Medical CT can also scan larger samples than 
typical micro-CT systems that would be required to do 
in parts that would increase scanning time. Thus, using 
a medical CT would reduce the number of data sets, 
analysis, and computational power. In addition, industrial 
micro-CT scanners are not so easily accessible to many 
crop improvement programs and industrial micro-CT 
costs run much higher than medical CT systems [30].

Since the ultimate goal of plant biology is to map geno-
type to phenotype [10], high-throughput genotyping and 
phenotyping platforms must work in parallel with each 
other. A robust stem phenotyping platform would miti-
gate a phenotyping bottleneck existent in bioenergy/for-
age sorghums. The platform should accurately estimate 
stem geometry and morpho-anatomical traits, allow for 
a large number of samples to be run at the same time, fit 
large samples, produce acceptable repeatabilities for the 
traits, and work quickly with minimal effort. Thus, the 
objectives of this study were to (1) develop a practical 
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high-throughput phenotyping platform and image data 
processing pipeline that can phenotype a large number 
of samples to extract stem morpho-anatomical properties 
and (2) validate the methodology.

Methods
Plant material
Two different sets of sorghum germplasm were used in 
the study. Set 1 consisted of 19 genotypes including elite 
lines and cultivars which contrasted for maturity, stem 
morphology, stem anatomy, and end-use; while Set 2 
consisted of ten F2 plants derived from a cross between 
GIZA114 and Umbrella showing contrasting morpho-
anatomical characters (see Additional file 1: Table S1). All 
genotypes were evaluated to assess the potential of using 
a medical CT to estimate stem properties in a field-based 
breeding program. We illustrate the high-throughput 
digital phenotyping pipeline to quantify morpho-ana-
tomical traits using a medical CT in Fig. 1.

Experimental details
Two separate field experiments were conducted in 2015 
in College Station, Texas (30°33′05.6″N 96°26′14.8″W). 
Seeds were planted in one-row plots 5 m long and 0.76 m 
wide. Genotypes from Set 1 were arranged in a com-
plete randomized block design. The target plant density 

was ~ 75,000 plants ha−1. For Set 2, F2 seeds were distrib-
uted in plots laid out in a row-by-column design. Seeds 
from Set 1 and Set 2 were sown in April. Agronomic 
practices standard for sorghum production in this area 
were used including irrigation as needed to minimize 
drought stress. Harvesting and evaluations occurred in 
July, approximately 95 days after planting.

For phenotyping each genotype in Set 1, six healthy 
plants were randomly selected from the middle of the 
plot and cut at the soil level. For Set 2, ten F2 plants were 
randomly selected from a ten plot population block. After 
harvest, any growth taller than 1.5 m was removed to fit 
the scanner and because stem lodging in sorghum occurs 
primarily between internodes three and six (which are 
typically between 0.5 and 1.5 m) [28]. For most samples, 
the scanned section included internodes 1–7 and some 
genotypes had > 7 internodes in this section. This proce-
dure was followed by the removal of leaf sheaf across the 
stem to get precise stem diameter measurements. During 
this time, samples were kept under moist conditions in a 
temperature-controlled environment at ~ 20 °C and then 
transported to be scanned. The process took under an 
hour after harvesting. After scanning the samples were 
stored again under the same conditions prior to measure-
ments (maximum 6 h) to prevent tissue dehydration and 
to maintain natural material properties.

Fig. 1  Overview of the high-throughput digital phenotyping imaging pipeline developed in sorghum using X-ray CT (green arrows) and 
conventional phenotyping (orange arrows) (see “Methods”)
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Phenotyping platform setup and CT‑measurement
All X-ray imaging was performed at the Diagnostic 
Imaging & Cancer Treatment Center of the Texas A&M 
Veterinary Medicine & Biomedical Sciences facilities in 
College Station, Texas. A SOMATOM Definition AS+ 
(SIEMENS) medical CT was used using 120  kVp, 1.024 
pixels per mm, at a 0.6 mm slice thickness. This medical 
CT scanner has a wide circular sliding gantry of ~ 75 cm 
wide that allows more samples per scan compared to a 
typical micro-CT system and is primarily used to test 
human or animal patients. To obtain maximum high 
throughput all harvested plant samples were loaded 

on a 5 × 6 platform in groups of 30  for trait extraction 
(Fig. 2).

Morphological measurements
In Set 1, stem morphological traits were collected on 
the 1.5-m section scanned in the CT analysis (see Addi-
tional file 1: Table S1). Each internode was numbered, 
with the lower number closer to the base of the plant. 
The distance between each node was recorded as inter-
node length (cm), and internode diameter (mm) was 
measured at the center of each internode using a digi-
tal caliper. Internode volume was estimated using the 
formula.

Fig. 2  a–d Arrangement of sorghum stems on the platform viewed three-dimensionally from different angles
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where r is the radius of the stem, and h is the length of the 
internode. Internode fresh mass was taken for each inter-
node using a digital scale (model 95364 CEN-TECH ®). 
Internode mass density was calculated using the formula

where, m is mass (g), and v is the volume of the inter-
node. Samples were dried in an air-force oven at 60  °C 
for 1  week post phenotyping to estimate dry internode 
weight and density.

Stem biomechanics
Biomechanical properties were collected on the previ-
ously described samples. All internodes were cut at the 
nodes and were subjected to a three-point bending test 
(3PBT) following the methods described in Gomez et al. 
[28]. Biomechanical properties were determined based 
on the Euler–Bernoulli beam theory since the tested 
internodes were relatively slender. The following formula 
calculated the dimensionless slenderness ratio

where L is the length of the stem section and D is the 
diameter of the stem section. A slenderness ratio > 10 was 
maintained on all specimens.

The second moment of an area (I with units  mm4) 
quantifies the resistance to bending provided by cross-
sectional geometry and size. The stem cross-section was 
approximated as a circular cross-section. For beams with 
a solid circular cross-sectional geometry, I is given by the 
formula

where D is the diameter of the stem section. The geomet-
ric property for a given cross-section or section modulus 
(Z) was also calculated by

where I is the second moment of an area and r is the 
internode radius. The elastic (Young’s) modulus E 
reported in MPa is the quotient of normal stress to nor-
mal strain throughout the linear range of elastic behavior 

(1)v = πr2h

(2)ρ =
m

v

(3)� =
L

D

(4)I =
πD4

64

(5)Z =
I

r

[3], henceforth referred to as “material stiffness”. From a 
three-point bending test, E is given by

where Bi is the lateral displacement it took to bend the 
stem section without damaging its structural integrity. Fi 
is the force required to bend the stalk to displacement Bi, 
Lin is the length of the stem section between the two sup-
ports, and I is given by Eq. (4).

Stalk strength was taken as the maximum stress 
required to break the structural integrity of the stem [3] 
and is given by

where Fu is, the force required to induce breakage, Lin is 
internode length, r is internode radius, and I is the sec-
ond moment of an area (Eq. 4). Flexural rigidity (herein 
referred to as rigidity), symbolized as EI (Eq. 8) represents 
the resistance of a beam to bending forces regarding both 
size, geometry and material properties (stiffness). Plants 
are composite materials; therefore, the calculated biome-
chanical properties are interpreted as spatially averaged 
Young’s modulus [31, 33] and effective flexural rigidity 
across the entire heterogeneous plant tissues [33, 34]

Anatomical measurements
Visual stem pithiness measurements from Carvalho and 
Rooney [8] were used as these data included the same 
genotypes that were in Set 1. In brief, the percent of pithy 
stem cross-section area was visually estimated by using a 
rating scale system. This scale ranges from 1 to 9, where 
1 corresponds to 90–100% pithiness and 9 to 0–10% 
pithiness. One unit increase in the scale equals to 10% 
decrease in the percent of the pithy area. For Set 2, the 
same protocol was followed, but in this case ratings were 
taken in the same plants that were scanned in the CT, 
and for internodes 3 and 6 only.

Computational image analysis
A customized computer program was developed by 
the authors in the MATLAB environment (Mathworks, 
Inc., Natick, MA, USA), to extract morpho-anatom-
ical attributes from CT cross-section images (Fig.  3). 
For the algorithm developed, the input is an image, 
and output is the region centers, diameters, rind area, 
cross-section intensity, and percent pithy area. The 
process consisted of the following steps. First, we per-
formed a morphological closing operation to connect 
some disconnected regions due to the image noise 

(6)E =
FiL

3

in

48BiI

(7)σmax =
(Fu)Lin

4I
∗ r
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using a disk-shaped structuring element with radius 3 
[obtained by strel (‘disk’, 3)] in MATLAB. Then, isolated 
regions were extracted using the MATLAB routine 
“regionprops”. Small regions, not part of the platform 
[areas there were below a preset threshold (which 
is image; width*image and height * 0.00005)] were 
excluded. Additionally, a circle was fit for each remain-
ing region to obtain the exterior outline of each cross 
section. If the eccentricity for a region was too low 
(< 0.08) (which means the region was not a circle), this 
region was not included in the analysis.

Next, the cross sections outlined previously were 
then used to determine the center, radius, diameter, 
rind area, intensity, and pithy area. CT intensity was 
measured as the ratio of the mean pixel intensities of 
a region and the maximum possible intensity of the 
image (which is 255). The rind area was defined as the 
area of the outer region. The inner circle was obtained 
by first excluding the pixels which intensities are higher 
than a threshold (175), and then fit the circle using the 
remaining pixel locations in that region. Finally, the 
percent pithy area was defined as the ratio between 
dark pixels (intensity is below a threshold, which is 
20), inside each region and the area of the entire inner 
circle.

In total, over six morph-anatomical attributes were 
determined for each cross-section. Since it was not 
possible to detect nodes using the algorithm, node 
sections of the stem were added manually to the 
output. A separate function estimated internode 
length by multiplying the slice thickness of the CT 

image and the number of images within an internode 
section.

Image preprocessing
A total of ~ 500,000 images were produced by the CT 
scanning of ~ 150 plants. The preprocessing of phe-
notypic data involves removal of node sections since 
no data was collected at the nodes. Missing data was 
removed that may have occurred when the stems cross 
section move out of the area of estimation, or the algo-
rithm did not detect a cross-section. Outlier detection 
was also performed by plotting the samples and identify-
ing any extreme outliers.

Statistical analysis
At first, individual data points estimated by the algorithm 
were averaged by internode. Next, the observed values 
for the morpho-anatomical traits were analyzed using a 
linear model, written as

where µ is the grand mean, gi is the fixed effect of the 
genotype, i

(

g
)

j(i)
 is the fixed effect of the internode num-

ber within the genotype, and εijk is the random error 
component. LS Means and standard errors were esti-
mated for each genotype using the linear model. Pearson 
correlation coefficients where estimated using the LS 
Means from the model for all manual and CT traits col-
lected. The same model was run as a mixed model, except 
all terms were random using the restricted maximum 
likelihood method (REML) to estimate the repeatability 
on a plot mean basis as follows:

where σ 2

G is the genotypic variance, σ 2

E is the error vari-
ance, respectively [35]. For percent pithy area, plot mean 
values from Set 1 were combined with plant-based values 
from Set 2 to estimate repeatabilities and for modelling 
analysis.

A univariate regression was performed for internode 
diameter, length, and pithiness to study the relation-
ship between CT-derived and ground-truth stem traits. 
Three predictive models were fit to validate the accuracy 
and usefulness of the results. In the first model, the CT-
derived internode diameter predicts the diameter col-
lected manually; Diameter = Diameter-CT. In the second 

(8)yij = µ+ gi + i
(

g
)

j(i)
+ εij

(9)H2
=

σ 2

G

σ 2

G + σ 2

E

Fig. 3  Cross sections of 30 sorghum stems during one run of CT 
scanning showing different attenuation levels
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model, CT-derived internode length predicts the inter-
node length collected manually; Length = Length-CT. 
In the third model, the CT-derived internode percent 
pithy area predicts the visual pithiness ratio; Pith = Pith-
CT. The performance of the models from the univariate 
regression was assessed by the leave-one-out cross-val-
idation (LOOCV) method. For this, the data was split 
into two parts, and a single observation (x1, y1) was used 
for the validation set, and the remaining observations 
{(x2,y2),…,(xn,yn)} made up the training set. The statistical 
learning method was fit on the n-1 training observations 
and a prediction ŷ was made on the excluded observation 
using its value x1. The root mean square error (RMSE) 
of prediction was estimated for each validation, RMSE1, 
RMSE2, …, RMSEk:

where y and ŷ are the observed and predicted values in 
the model. The model acceptability was assessed on the 
average of these n test error estimates.

(10)RMSE =

√

1

n

∑

(

y− ŷ
)2

The models were further evaluated by plotting pre-
dicted versus observed values in a 1:1 diagram of the 
model identified from the LOOCV method with the 
lowest RMSE. An R2 value close to 1.0 with a slope of 
observed versus predicted close to 1.0 and small RMSE 
values indicate that the model is precise with little bias 
[36]. All statistical analyses were implemented in the R 
statistical language and computing environment [37].

Results
Phenotypic variation for CT estimated traits was detected
Phenotypic variation existed among genotypes for all CT-
derived traits. In Set 1, the genotypic LS-means across 
all internodes and plants ranged from 3.6 to 28 pixels 
for internode length; stem diameter ranged from 3.5 to 
12 pixels; stem pixel intensity ranged from 0.61 to 0.83, 
and stem rind area ranged from 37 to 248 pixels. In the 
entire panel (Set 1 and Set 2 together), percent pithy area 
ranged from 11 to 60% on a mean genotype basis. The CT 
estimates effectively identified groups of genotypes with 
common phenotypes (Fig. 4). On average, the late matur-
ing genotypes had the largest internode length, diameter, 

Fig. 4  Phenotypic variation for morpho-anatomical traits for 19 genotypes from Set1. Genotypes have been sorted by specific trait. The vertical 
bars indicate the relevant standard error; a length (cm), b diameter (mm), c pithy area (%), d intensity, e rind area
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and rind values (see Additional file  1: Table  S1, Fig.  4a, 
4b, 4e). Earlier genotypes showed higher stem intensity 
values (see Additional file 1: Table S1, Fig. 4d) with a few 
exceptions, notably Tx14323, and GIZA114.

Repeatability for CT estimates trait
Repeatability estimates for CT-derived traits ranged from 
0.51 to 0.72 and repeatabilities for manually collected 
traits ranged from 0.66 to 0.85 (Table 1). In most cases, 
the CT-estimated traits were lower than the ground-
truth trait estimates. High repeatabilities (~ .70) were 
observed for rind, diameter, and volume, followed by 
length and intensity at 0.61, and by percent pithy area 
and second moment of an area, at 0.56 and 0.51, respec-
tively. Overall, H2 for CT and manually collected data 
were consistent, with one notable exception. For percent 
pithy area, repeatability values for CT estimation were 
1.5 times lower than visual measurements.

Accuracy of estimating morph‑anatomical traits using 
X‑ray CT in sorghum
The coefficients of determination of genotypic CT mean 
values regressed to genotypic ground-truth means were 
high for morphological traits and moderate for one ana-
tomical trait (Fig. 5). For length and diameter, the R2 were 
0.91 and 0.97, respectively. For percent pithy area, the 
R2 was 0.49. The leave-one-out cross-validation analysis 
(LOOCV) applied at the individual internode data point 
basis (genotype vs. plant vs. internode) revealed aver-
age R2 and RMSE values of 0.56 and 3.75 for internode 
length, respectively. For internode diameter, an average 
R2 of 0.54 and an average RMSE of 2.78 was observed. 
For pithiness ratio, the average R2 was equal to 0.44 while 
an average RMSE of 1.63 was found.

The adequacy of both models was assessed by plotting 
predicted versus observed (manually phenotyped) inter-
node length, stem diameter, and pithiness ratio for all 
observations. Figure 6 shows the observed and predicted 
values for the model with the lowest RMSE selected from 
the LOOCV. The lowest RMSE for stem length, stem 
diameter and stem pithy area were 0.01, 0.02, and 0.02, 
respectively. The values for all three models were rela-
tively precise and accurate across all observations. Fur-
thermore, a 50% cut off line was added to evaluate the 
model as a selection tool in a sorghum breeding program 
(Fig.  6). The cut off separated the plots into four quad-
rants. The quadrants with the blue observations were 
classified as the individual internodes that would be cor-
rectly classified using the model selected for each of the 
three traits. The accuracy of the model on classifying 
the values for the internodes of each genotype for stem 
length, diameter, and pithiness ratio was 81, 77, and 82%, 
respectively (i.e., from the total number of data points 
predicted, 81, 77, and 82% would be classified correctly 
upon selection).

Table 1  Repeatabilities for  CT-derived traits and  ground-
truth traits measured in 29 diverse sorghum genotypes

NA, data was not collected manually for this trait
a  Measured at individual plant basis

Trait CT Manually 
collected

H2 H2

Internode length 0.61 0.76

Internode diameter 0.70 0.81

Internode volume 0.71 0.83

Second moment of an area (I) 0.51 0.66

Intensity 0.61 NA

Pithiness 0.56a 0.85a

Rind 0.72 NA

Fig. 5  Association between CT and manually collected traits for 29 sorghum genotypes; a length, b diameter, c pithy area (%)
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Fig. 6  Predicted versus observed plots for three traits and the model with the lowest RMSE select using the LOOCV method. Yellow line depicts a 
50% cut off; a stem length, b stem diameter, c stem pithiness ratio

Fig. 7  A heatmap depicting Pearson’s correlation coefficient for all traits collected in 19 sorghum genotypes from Set1
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Correlations among CT‑derived traits
Correlations between CT-derived traits and morpho-
anatomical manually collected traits were variable 
(Fig. 7). For example, CT and ground truth measurement 
of internode volume, internode fresh weight, and dry 
weight were highly correlated. As expected, stem inten-
sity was correlated with internode dry weight density 
(r = 0.61; P < 0.01), but pith-CT had very low correlations 
with the manually collected measurements. Rind-CT 
had a moderate correlation with section modulus, rigid-
ity, and a high correlation with volume-CT; (r = 0.55; 
P < 0.001), (r = 0.66; P < 0.005), (r = 0.82; P < 0.0001).

Results demonstrate that CT estimates of morphologi-
cal traits best correlated with biomechanical properties. 
Volume-CT was highly correlated with rigidity (r = 0.85; 
P < 0.001), respectively. Diameter-CT was positively 
correlated with rigidity (r = 0.71; P < 0.001) and nega-
tively correlated with strength and stiffness (r = − 0.9; 
P < 0.001), (r = − 0.88; P < 0.001). These findings are con-
sistent with results found by Gomez et al. [28].

Discussion
The high-throughput digital phenotyping imaging pipe-
line presented herein was able to reduce human input, 
time and accurately detect variation for important mor-
pho-anatomical traits in well-characterized sorghum 
genotypes at sounding repeatability rates. The magnitude 
of the repeatability is a major factor in determining the 

efficiency and relevance of any phenotyping methodology 
in a germplasm screening program. In our case, repeat-
ability estimates for CT-derived traits were moderate and 
were lower than ground-truth measurements. The dif-
ferences are likely due to minute variation present along 
the plant stem that could be captured by the CT method 
(Fig. 8) which cannot be assessed manually or visually. As 
such, a single point measurement is likely to misrepre-
sent the natural variation of each internode, which might 
cause an overestimation of variance when assessed across 
different plants and genotypes. Errors associated with the 
algorithm estimation might also be a complicator, but for 
this case, improvements are possible.

Our image analysis pipeline could identify genotypes 
with superior morpho-anatomical traits that were con-
sistent with ground-truth based classification previously 
performed by Carvalho and Rooney [8] and Gomez et al. 
[28]. For example, the genotype Rio had smaller stem 
diameter than the genotype Tx13321 but longer inter-
nodes than Tx13321. Interestingly, the CT-estimated 
traits (internode diameter, internode length, and percent 
pithy area) were moderate to highly predictive of the 
manually collected traits. Percent pithy area explained 
50% of the variation for pithiness rating. This value was 
much lower than the coefficient of determination found 
for the other traits evaluated. Stem pithiness occurs 
when the stem parenchyma cells die and are gradually 
filled with air creating a white, cottony, and pithy tissue. 

Fig. 8  Raw data from diameter and pithy area collected by CT for three sorghum genotypes plotted across the span of the plant stem
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CT-derived percent pith is measured at every 0.6  mm 
slices across the length of the stem that can contribute to 
a larger variation than one visually collected pith rating. 
Therefore, one visual rating may not explain the varia-
tion across the length of the internode collected by the 
CT-based measurement and may have contributed to 
the lower R2 observed for stem pithiness in this study. 
Although the low variance explained for our pithiness 
rating may be a result of the visual score, visual ratings 
are one method to rate pithiness, and it has been dem-
onstrated that using a flatbed scanner can increase the 
accuracy of phenotyping [8]. Therefore, an association 
between CT-derived percent pith and percent pith area 
estimations using a flatbed scanner might result in a 
higher association.

In this study, CT estimated morphological traits had 
the strongest correlations with mechanical properties. 
This finding is consistent with a computation sensitivity 
analysis in maize by von Forell et al. [27], demonstrating 
that morphological traits demonstrate a stronger associa-
tion with mechanical traits rather than tissue or material 
properties. The results from the computation sensitivity 
analysis were also consistent with a study using a micro-
CT in maize [15]. In our study, morphological measure-
ments also had a strong effect on mechanical properties. 
For example, CT estimates of the second moment of an 
area were negatively correlated with stem strength and 
stiffness, demonstrating the strong effect stem morphol-
ogy may have on mechanical traits. Similar results were 
reported by Gomez et al. [28]. Furthermore, rind-CT was 
moderately associated with section modulus and is in line 
with a study by Ookawa et al. [38] where an indica variety 
of rice had strong culms due to a large section modulus 
that is associated with stem wall thickness. These results 
indicate that stem morphology has a strong effect on 
mechanical properties and morphological traits such as 
the second moment of an area and section modulus are 
to be considered when selecting for lodging resistance.

CT is based on the principle that the density of the tis-
sue passed through by the X-ray beam can be measured 
by calculation of the attenuation coefficient [39]. There-
fore, material density is a major factor to consider when 
running plant samples in a CT scanner, as plant organs 
vary in tissue density. X-ray attenuation is mainly deter-
mined by the material properties of the plant tissues and 
can become visible by contrast according to density and 
atomic number of elements [12, 40]. Differences in X-ray 
attenuation in several plant stems were visibly apparent 
and primarily dependent on the anatomy, composition, 
and material density of the cross-section of the stem (i.e. 
rind is more lignified) (Fig.  3). At this attenuation level 
obtained by the SOMATOM Definition AS+ medical CT 

it is possible to detect the material density of the stems as 
well as rind and pithy area. It has been shown that medi-
cal CT scanners capture the changes in material density 
and composition of relative light and large objects [39, 
41], such as stems of grasses. In this study, stem ‘density’ 
was estimated as the pixel intensities of a region and had 
a high correlation with internode dry weight density. 
Other studies indicate similar results [41]. Intensity as 
used in this study, is a new method to quantify stem den-
sity in sorghum or other grass stems. Furthermore, in a 
recent study by the authors, it was found that internode 
density, volume, and stiffness can predict strength and 
can explain 75% of the variation [42]. Therefore, using 
the methods developed in this study in combination with 
biomechanics can be used to apply selective breeding 
tools to improve lodging resistance.

The need for a high-throughput method for quantify-
ing important morpho-anatomical traits related to stem 
lodging and juice yield in bioenergy sorghum motivated 
this pipeline and platform. While many high through-
put methods are being developed to phenotype plants 
using unmanned aerial vehicle (UAV), robotics, and 
high throughput platforms such as the ARPA-E TERRA-
REF project (http://terra​ref.org/) [43–46], none of these 
methods allow for combining external and internal stem 
phenotypic information of plants. Besides the poten-
tial applications discussed for our pipeline, it can also 
be applied to produce highly dimensional data used in 
3D reconstruction and crop modeling (Additional file 2: 
Video S1).

Computer vision is an active and challenging field of 
computer science that is rapidly providing tools appli-
cable to biological problems. In principle, images can be 
mined for phenotypes other than those which were col-
lected [47]. The spatial scanning resolution in an X-ray 
CT depends on the spot size of the X-ray source, the 
resolution of the X-ray detector, and used magnification 
of the system [14]. While adding multiple samples in the 
medical CT may have introduced noise into the later 
measurements, we found that the image algorithm devel-
oped in this study was able to detect and extract useful 
external and internal phenotypic information effectively 
and accurately. However, the work herein is preliminary; 
there is room to improve on both processing and algo-
rithms. For example, some of the coefficients of deter-
mination of the univariate regression did not explain all 
of the variation. We believe this was because plant stems 
vary in tissue density and the algorithm did not detect all 
cross-sections, therefore, it did not estimate all objects in 
the CT. Another reason may be that CT measurements 
were more precise and capture a larger portion of the var-
iation than one single manually collected point that can 

http://terraref.org/
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also be subjective. We believe using computer vision and 
machine learning methods are warranted in future stud-
ies using CT in order to enable accurate phenotyping. In 
summary, the results indicate that medical CT scans can 
produce useful data in significantly reduced times, mak-
ing it a good alternative for phenotyping plants.

Conclusions
The results herein indicate that CT-based estimates are 
associated with important traits in bioenergy/forage 
sorghum. Furthermore, predicting traits such as stem 
length, diameter, and pithiness ratio at the internode 
level by utilizing a high-throughput digital phenotyp-
ing approach using CT appears possible in an applied 
breeding program. Further work to improve algorithms 
and the accuracy of our models will enhance the speed 
and efficiency of this methodology allowing it to be 
applied to large populations, panels, and hybrids with 
high fidelity. As a selection tool, our protocol appears 
readily applicable in field-based and large-scale breed-
ing programs.
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