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METHODOLOGY

Bayesian functional regression 
as an alternative statistical analysis 
of high‑throughput phenotyping data 
of modern agriculture
Abelardo Montesinos‑López1, Osval A. Montesinos‑López2*, Gustavo de los Campos3*, José Crossa4, 
Juan Burgueño4 and Francisco Javier Luna‑Vazquez2

Abstract 

Background:  Modern agriculture uses hyperspectral cameras with hundreds of reflectance data at discrete narrow 
bands measured in several environments. Recently, Montesinos-López et al. (Plant Methods 13(4):1–23, 2017a. https​
://doi.org/10.1186/s1300​7-016-0154-2; Plant Methods 13(62):1–29, 2017b. https​://doi.org/10.1186/s1300​7-017-0212-
4) proposed using functional regression analysis (as functional data analyses) to help reduce the dimensionality of 
the bands and thus decrease the computational cost. The purpose of this paper is to discuss the advantages and 
disadvantages that functional regression analysis offers when analyzing hyperspectral image data. We provide a brief 
review of functional regression analysis and examples that illustrate the methodology. We highlight critical elements 
of model specification: (i) type and number of basis functions, (ii) the degree of the polynomial, and (iii) the methods 
used to estimate regression coefficients. We also show how functional data analyses can be integrated into Bayes‑
ian models. Finally, we include an in-depth discussion of the challenges and opportunities presented by functional 
regression analysis.

Results:  We used seven model-methods, one with the conventional model (M1), three methods using the B-splines 
model (M2, M4, and M6) and three methods using the Fourier basis model (M3, M5, and M7). The data set we used 
comprises 976 wheat lines under irrigated environments with 250 wavelengths. Under a Bayesian Ridge Regres‑
sion (BRR), we compared the prediction accuracy of the model-methods proposed under different numbers of basis 
functions, and compared the implementation time (in seconds) of the seven proposed model-methods for different 
numbers of basis. Our results as well as previously analyzed data (Montesinos-López et al. 2017a, 2017b) support that 
around 23 basis functions are enough. Concerning the degree of the polynomial in the context of B-splines, degree 3 
approximates most of the curves very well. Two satisfactory types of basis are the Fourier basis for period curves and 
the B-splines model for non-periodic curves. Under nine different basis, the seven method-models showed similar 
prediction accuracy. Regarding implementation time, results show that the lower the number of basis, the lower the 
implementation time required. Methods M2, M3, M6 and M7 were around 3.4 times faster than methods M1, M4 and 
M5.
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Background
High-throughput phenotyping (HTP) technologies can 
generate large volumes of data. Many of the phenotypes 
collected with HTP technologies are high-dimensional. 
These data can often be represented as functions. Func-
tional data analysis (FDA) is a field of study that deals 
with the analysis and theory of data whose units of obser-
vation are functions (curves) defined in any continuous 
domain [19]. For instance, one can measure the growth 
of an organism over time and conceptualize the observed 
points as (noisy) evaluations of a growth function. Like-
wise, hyperspectral reflectance (as well as other tech-
niques involving transmittance or absorbance) data can 
also be thought of as evaluations of a function observed 
at a sample of points, for example, a number of bands 
ranging from 392 nm (nm) to 1850 nm [1, 17, 18].

Hyperspectral image data have become increasingly 
available in agriculture. This information is commonly 
used to build secondary traits (vegetative index) that are 
related to primary traits of interest, such as grain yield. 
For example, in South Australia, hyperspectral data are 
used to discriminate among grape cultivars [2, 14]. Other 
applications use hyperspectral data to predict the chemi-
cal composition of plants [9], which can be used to detect 
the nutrient and water status of wheat in irrigated sys-
tems [28]. Likewise, infrared spectroscopy is routinely 
used by the dairy industry in developed countries and 
the information obtained is used to predict milk compo-
nents, and health and reproductive outcomes [6].

Recently, we used functional regression analysis (FRA) 
to develop prediction equations for yield and other traits 
using hyperspectral crop image data [17, 18]. Our results 
showed that FRA can provide yield predictions with simi-
lar and, in some cases, higher predictive power than that 
of conventional regression techniques.

FRA and functional analysis use linear combinations 
of basis functions as the main method to represent 
functions. The use of basis functions is a computational 
device well adapted for storing information about func-
tions, since it is very flexible and has the computational 
power to fit even hundreds of thousands of data points. 

Moreover, it allows the required calculations to be 
expressed within the familiar context of matrix algebra 
[24].

The basic philosophy of FRA and functional data analy-
sis is to think of observed data functions as single entities, 
rather than merely as a sequence of individual observa-
tions. The term functional in reference to observed data 
refers to the intrinsic structure of the data rather than to 
their explicit form. In practice, functional data are usually 
observed and recorded discretely as m pairs (tj , xj) , and xj 
is a snapshot of the function at time tj, most of the time 
blurred by measurement error, but we assume the exist-
ence of a smooth function f that gave rise to the observed 
data. Time is very often the continuum over which the 
functional data are recorded, but other continua, such as 
wavelength, spatial position, frequency and weight may 
be involved. A smooth function allows a pair of adjacent 
data values, xj and xj+1 , to be linked together to some 
extent, since they are unlikely to be too different from 
each other. If this smoothness property did not apply, 
there would be nothing much to be gained by treating 
the data as functional rather than just multivariate [24]. 
Those interested in deeply understanding the theory and 
applications of FRA and functional data analysis should 
read books recently published by Hsing and Eubank [12], 
Horváth and Kokoszka [13] and Ferraty and Romain [7]. 
However, the book by Ramsay and Silverman [24], whose 
first edition was published in 1997, must be cited as a 
major landmark in the history of functional data analysis. 
The book by Ferraty and Vieu [8] represents a second-
generation view of this subject.

The functional data analysis in general and FRA are 
being used in many applications (climatology, remote 
sensing, linguistics, precision agriculture, etc.) where the 
data are gathered by observing a continuous phenom-
enon over time or space; see Ramsay and Dalzell [22] 
for examples. Real-time applications of FRA and func-
tional data analysis can also be found in Rice [21], Mül-
ler [20], González-Manteiga and Vieu [10], among others. 
Henceforth, the improved performance of measurement 
instruments will make it possible to collect these data on 

Conclusions:  In this study, we promote the use of functional regression modeling for analyzing high-throughput 
phenotypic data and indicate the advantages and disadvantages of its implementation. In addition, many key ele‑
ments that are needed to understand and implement this statistical technique appropriately are provided using a real 
data set. We provide details for implementing Bayesian functional regression using the developed genomic functional 
regression (GFR) package. In summary, we believe this paper is a good guide for breeders and scientists interested in 
using functional regression models for implementing prediction models when their data are curves.

Keywords:  Hyperspectral data, Functional regression analysis, Bayesian functional regression, Functional data, 
Bayesian Ridge Regression
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dense grids. They can no longer be considered variables 
taking values in Rp (as required in conventional statistical 
methods).

In this article, we provide a brief review of FRA, high-
light important aspects of model specification, discuss 
how FRA can be integrated into Bayesian models [4] and 
illustrate the application of FRA using real data from 
high-throughput phenotypic experiments.

Methods
Functional regression
FRA is the area of functional data analysis with most 
applications and methodological developments. FRA 
can be classified into three types: (a) functional predic-
tor regression (scalar-on-function), where the response 
variable is scalar and the predictor is a function; (b) func-
tional response regression (function-on-scalar), where 
the response variable is a function and the predictor a 
scalar; and (c) function-on-function regression, where 
both the response and the predictor are functions. In this 
paper, we will focus only on the first type of FRA. For 
illustrative purposes, below we describe a model of the 
first type that contains in the predictor a functional term 
that represents the information of the curves.

Here the response variable (yi) is a scalar response of 
the ith observation with i = 1, 2, . . . , n ; however, the pre-
dictors or covariates are now functions instead of sca-
lar. xi(t) is the functional predictor and represents the 
value of a continuous underlying process evaluated at 
time t; unfortunately, in practice the whole curves are 

(1)yi =

∫

xi(t)β(t)dt + ei,

not available because they are measured in m discretiza-
tion sample of points t1 < · · · < tm in time or another 
domain. This means that we only observe discrete noisy 
trajectories

where ǫi is interpreted as random measurement errors 
(instrument error, human errors,…) at the finite discre-
tization points with a Gaussian distribution with zero 
mean and variance σ∈ . Equation (2) is exactly the model 
proposed by Welham et al. [30] and Verbyla et al. [29] for 
modeling smoothing splines as mixed models, but this 
reformulation of Eq. (2) as a mixed model is only possible 
for cubic smoothing splines.

In functional regression (of scalar-on-function type), 
this model (Eq. 2) is used to smooth each row (curve) of 
the predictor information given in Eq.  (1), since in this 
context each row represents a curve and a curve (called 
a datum) is not a single observation, but rather a set of 
measurements along a continuous domain, which, taken 
together, should be regarded as a single entity [15]. 
Hyperspectral images are an example of functional data 
(predictor information) obtained on the reflectance of 
electromagnetic power on large numbers of wavelengths, 
that is: xi = (xi1, xi2, . . . , xim)

′ . Here, xit represents the 
reflectance observed at the tth wavelength on the ith 
sample (e.g., genotype). The first goal is to infer fi(tm) . 
This can be achieved using smoothing techniques [26, 
27]. Figure 1 illustrates this approach. Reflectance is rep-
resented on the vertical axis and wave numbers (in the 
392 to 850 nm range) are represented on the x-axis. The 
different curves correspond to different genotypes and 
each curve represents a datum.

(2)xi(tm) = fi(tm)+ ǫi

Fig. 1  Reflectance (centered to a zero mean) measured over 250 wavelengths in the 392 to 850 nm range of the light spectrum. Each curve cor‑
responds to data of a maize genotype planted in an irrigated environment and measured at Cd. Obregón, Mexico
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In Fig.  1 the unknown function, fi(tm) , is repre-
sented as a linear combination of a set of L basis func-
tions, φil(tm) , that are non-linear functions of the input 
variable (tm), that is, fi(tm) =

∑L
l=1 cilφil(tm) ; here cil 

are regression coefficients that can be estimated by 
regressing xim on the basis functions, i.e., by fitting 
xim =

∑L
l=1 cilφil(tm)+ εim. Some of the most popular 

basis functions include the Fourier and splines basis.

Fourier basis
A Fourier series is an expansion of a periodic function 
f(t) in terms of an infinite sum of sines and cosines that 
are orthogonal. According to Reig et  al. [25], the study 
and computation of a Fourier series (called harmonic 
analysis) is often useful as a way to break up an arbitrary 
periodic functions into a set of simple terms that can be 
solved individually and then recombined to obtain the 
solution to the original problem, or an approximation of 
it, to whatever accuracy is desired or practical.

Splines
Splines are piece-wise polynomials fitted within intervals 
defined by a set of knots; they tend to be used to describe 
functional information without any strong cyclic vari-
ation. The elements that define a spline are: the family 
or type (e.g., B-splines), the degree of polynomials used 
to build the spline (linear, quadratic, cubic, etc.) and the 
set of knots that define the bins within which the poly-
nomials are fitted. The basis functions of a spline are 
defined in such a way that the function is continuous 
and has continuous derivatives everywhere (including at 
the knots) of order q-1; here q is the order of the poly-
nomial. The number of basis functions (L) in a B-spline 
is L = q + 1 + K, where K denotes the number of interior 
knots [3].

The process of using basis functions is shown in Figs. 2 
and 3. In both cases, the unknown function was sine 
f (tk) = sin (1+ tk) , the set of points {tk} were drawn 
from a uniform distribution in the interval between 10 
and 20, and errors were drawn from a normal distri-
bution with mean 0 and a standard deviation of 0.5. In 
Fig.  2, we approximated the function using the Fourier 
basis. Here, we considered using L = 11 basis functions 
and three different values for the period (T = 4, 6 and 8). 
The approximation (representation) of the curve is very 
poor for periods T = 4 and 8. However, for T = 6, the rep-
resentation of the curve is good. It is important to point 
out that to make Fig. 2, we changed the number of basis 
(5, 25 and 51) but did not find any difference when using 
L = 11 in Fig. 2. In Fig. 3, we approximated the function 
using a spline with L = 5, 11, 25 and 51 basis and we con-
sidered linear, quadratic and cubic splines. Using L = 5 
basis is not enough to reasonably represent the curve 
(Fig.  3a). However, when L = 11, 25 and 51 basis, the 
smoothing curves do a reasonable job for quadratic and 
cubic splines. However, the performance of the linear 
spline was not good and using L = 51 yields overfitting.

The examples presented in Figs. 2 and 3 highlight the 
importance of carefully choosing the type of basis func-
tion and the value of the period for the Fourier basis. 
In general the main elements of model specification in 
FRA and functional data analysis include the choice of 
the family of basis functions (e.g., splines or Fourier) and 
parameters that may index each family (e.g., knots in a 
spline), the number of basis functions (or model degrees 
of freedom), and the method used to estimate regression 
coefficients (e.g., least squares).

In similar fashion, β(t) in Eq. (1) is the beta functional 
regression coefficient and ei is an error term assumed nor-
mal with mean zero and variance σ 2 . Several methods can 

Fig. 2  Scatterplot of the hypothetical phenomenon. The dots represent the 100 data points measured. This smoothing plot was done using L = 11 
basis for three values of the period T = 4 (black color), 6 (blue color) and 8 (red color)
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be used to reconstruct the functional form of the sample 
paths from the observed discrete data, depending on: (a) 
the manner in which these data were obtained in discrete 
time, and (b) the way we expect the curve to behave.

Conventional functional regression with scalar response 
and functional predictor
It is usually assumed that the sample trajectories xi(t) 
that appear in Eq. (2) belong to a finite-dimensional space 
generated by a truncated basis φ1(t), . . . ,φL(t) and is 
expressed as

where L represents the number of basis functions, and 
φl(t ) is the lth basis function evaluated in t. The basis func-
tions φl(t ) are a system of functions specially chosen to 
be used as building blocks that represent a smooth curve. 
There are many different types of basis function systems, as 
mentioned above. cil is the basis coefficient corresponding 
to the ith individual of the φl(t ) function and determines 
the relative weights of each basis function when construct-
ing the curve for datum i. Assuming that each curve was 
observed in t = [t1, . . . , tm]

T , then in vector form

where cTi = [ci1, . . . , ciL] of order 1 × L. Therefore, the 
values of ci that best represent xi(t) in terms of minimiz-
ing [xi(t)−�ci]

T [xi(t)−�ci] are given by

(3)xi(t) = ci1φ1(t)+ ci2φ2(t)+ . . .+ ciLφL(t),

xi(t) =









�

L

l=1 cilφl(t1)

.

.
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�

L

l=1 cilφl(tm)
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=
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In other words, Eq.  (4) used the least-square method 
to produce the smoothed estimates by multiplying the 
raw observations by the “smoother” or “hat” matrix 
H =

[

�T�
]−1

�T , where � is the matrix of basis func-
tions of order m × L. Assuming that the beta functional 
coefficients given in Eq.  (1) can be expressed as a linear 
combination of a truncated basis, ψ1(t) , …, ψS(t); since 
β(t) =

∑S
s=1 dsψs(t) , the model given in Eq.  (1) can be 

rewritten as

where wis = ∫ xi(t)ψs(t)dt , wT
i = [wi1, . . . ,wiS], and 

dT = [d1, . . . , dS] is an unknown vector of coefficients 
related to the effect of the functional covariate. Substituting 
the obtained representation of xi(t) in wis = ∫ xi(t)ψs(t)dt , 
the elements of wT

i  can be explicitly approximated as

where the coefficients ĉil are given in Eq. (4). Then, by mak-
ing Jls = ∫φl(t)ψs(t)dt , the wT

i  can be computed in vector 
form as

(4)ĉi =
[

�T�
]−1

�Txi(t)

(5)

yi =

S
∑

s=1

ds ∫ xi(t)ψs(t)dt + ei =

S
∑

s=1

dswis + eij = wT
i d + ei,

(6)wis =

∫

xi(t)ψs(t)dt =

L
∑

l=1

ĉil ∫φl(t)ψs(t)dt,

Fig. 3  Scatterplot of the hypothetical phenomenon. The dots represent the 100 data points measured: a this smoothing plot was done using L = 5 
basis for three values of the B-spline with degree 1 (linear; black color), 2 (quadratic; red color) and 3 (cubic; blue color); b this smoothing plot was 
done using L = 11 basis for three values of the B-spline with degree 1, 2 and 3; c this smoothing plot was done using L = 25 basis for three values of 
the B-spline degree 1, 2 (quadratic) and 3 (cubic); d this smoothing plot was done using L = 51 basis for three values of the B-spline degree 1, 2 and 
3
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where J s = [J1s, . . . , JLs]
T , J = {Jls} is of order L× S 

and ĉ
T
i =

[

ĉi1, . . . , ĉiL
]

 . When the same basis func-
tions are used for x(t) and β(t) , and L = S, then J ≈ �T� 
(see Additional file  1: Part B-SB3). Therefore, since 
we obtained wT

i  by stacking the n rows correspond-
ing to each wT

i , and since i = 1, 2, . . . , n , we formed 
the matrix W = [wT

1 , ..,w
T
n ]

T = X�
[

�T�
]−1

J  , with 
X = [xT1 (t), .., x

T
n (t)]

T , which allows implementing the 
functional regression model given in Eq. (1) using conven-
tional Bayesian or classic modeling (see [23, 24] for more 
details and considerations). The functional regression given 
in Eq. (1) can be written in vector form as the following lin-
ear model:

where Y =
(

y1, . . . , yn
)T , the vector of response vari-

ables (grain yield), d are the beta coefficients of order S × 1 
associated with the representation of β(t) in terms of the 
truncated basis ψ1(t) , …, ψS(t) , and E = (e1, . . . , en)

T is a 
vector of errors of dimension n × 1. In the implementations 
given in the next section, we will use S = L.

Alternative models of the functional regression model 
with scalar response and functional predictor
As an approximation of the functional regression given 
in Eq. (1), we can regress the vector of response variable 
Y against the approximate design matrix of curves, X∗, 
which results in the following traditional linear model:

It is important to point out that X and X∗ are both of 
order n × m, but of column rank m and L, respectively 
(where L is the number of basis) (see Appendix A for 
details on how to derive this model). β∗ are beta coef-
ficients of order m × 1 and E is a vector of errors as 
previously defined. This approximation (Eq.  9) of the 
functional regression model given in Eq. (1) does not pro-
vide any gain in terms of implementation time compared 
with directly regressing the vector of response variable Y 
against the original design matrix X, since the beta coef-
ficient required is exactly m, as under the original design 
matrix. However, for prediction purposes, we can repara-
metrize the model given in Eq. (9) as:

(7)
wT
i =







�

L

l=1 ĉil Jl1
.
.
.

�

L

l=1 ĉil JlS







T

=







ĉi1J11 · · · ĉi1J1S

.

.

.
. . .

.

.

.

ĉiLJL1 · · · ĉiLJLS







= ĉ
T

i [J 1 . . . J S] = ĉ
T

i J = x
T
i (t)�

�

�T�
�−1

J

(8)Y = Wd + E

(9)Y = X∗β∗ + E

(10)Y = X∗∗β∗∗ + E

where X∗∗ = X� and β∗∗ =
[

�T�
]−1

�Tβ∗ . Now X** is 
of order n × L and β∗∗ of order L × 1 (for details on how 
Eq.  10 was derived, see Appendix A). The advantage of 
working with Eq.  (10) as compared to working with 
Eq. (9) is two-fold: (a) it is numerically more stable when 
estimating the parameters; and (b) it reduces the dimen-
sionality from m to L, which implies that fewer beta coef-
ficients need to be estimated assuming that L < m; now 
the design matrix X** is full column rank, and we do not 
need X when estimating the equations, which is advanta-
geous because X has many columns and is often not full 
column rank. It is important to point out that the pro-
posed alternative given in Eq. (10) is similar to the alter-
native proposed by Marx and Eilers [16], but with the 
main difference that they arrived at this alternative by 
smoothing only the beta coefficients, while we arrived 
at it by smoothing the X matrix. The parameterization 
given in Eq. (10) for fitting a functional regression model 
should be attractive when L < m because it will reduce the 
dimensionality of the regression problem considerably, 
improve implementation time and produce more stable 
parameter estimates.

Elements for modeling functional data
Good performance of the functional regression model 
strongly depends on choosing the right type of basis 
functions, the required number of basis, the degree of the 
polynomial (for B-splines), knot locations (for B-splines), 
the period (in Fourier basis), and others. Next we provide 
some practical rules that can help researchers and prac-
titioners select all the necessary tuning parameters more 
efficiently.

Basis function expansion
In FRA, we have functional objects as predictor variables 
rather than sample points. Therefore, the discrete data 
need to be converted into a smooth functional object. 
However, before we can convert raw discrete samples 
into a functional data object, we must specify a system of 
basis functions that consists of simple smooth functions 
that are linearly combined to approximate actual func-
tions with an arbitrary level of accuracy. Here we replace 
observations ( xi, i = 1, . . . ,m , data points) with x(ti), 
where x(t) is a smooth function formed by a linear com-
bination of basis functions, as shown in Eq. (3). However, 
it is important to be aware that there are many options 
for basis functions. Two of the most popular basis func-
tions are the Fourier and B-spline basis functions. Other 
popular basis functions are polynomial basis functions, 
Gaussian basis functions, radial basis functions, wavelet 
basis functions, and orthogonal basis functions. In gen-
eral, the choice of basis functions depends on the nature 
of the signal; for this reason, one may prefer a Fourier 
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series to summarize cyclic, seasonal trends in data. On 
the other hand, B-splines are not restricted to being peri-
odic and often provide flexibility for modeling deviations 
from seasonal trends. B-splines are also computation-
ally efficient as they have compact support; any B-spline 
function is only non-zero over a range of a small number 
of distinct knots [11], while wavelet basis are more suita-
ble for sharp local features like heart rate. For this reason, 
it is of paramount importance to experiment with differ-
ent alternative basis functions, numbers of basis, periods, 
degrees of the basis, etc.

Degrees of freedom and interval period
The degrees of freedom is a tuning parameter to be 
selected in B-spline. However, the most common choices 
are 1, 2 or 3 for computational convenience, but degree 
three is most often used because in general it does a good 
job in terms of the quality of the fit and implementation 
time [5].

Knot location and knot number selection
For B-splines, the knot location and the selection of the 
number of knots are crucial factors to guarantee good 
performance by the regression spline smoother. Two 
widely used methods for locating the knots are: (a) the 
uniform knot-spacing method, and (b) Quantiles as a 
knots method. Two methods for selecting the number 
of knots are: (a) the generalized cross-validation (GCV) 
method, and (b) the coefficient of determination (R2). 
These four methods are explained in detail in Additional 
file 1: Part B-SB1.

Data set
Seven methods (see Table 1) were implemented using a 
data set that consisted of 976 wheat lines that were evalu-
ated for grain yield (GY) in an irrigated environment and 
measured on March 17, 2015; this data set is part of the 
data set used by Montesinos-López et al. [17, 18]. In each 
plot for each wheat line, 250 wavelengths �1, . . . �250 were 
measured from 392 to 851 nm on the light spectrum. The 

kth discretized spectrometric curve of a given genotype 
is given by x1(�1), . . . , x250(�250) . We used the notation 
x(780) without subscripts to denote the response of the 
band measured at 780 wavelengths, x(670) to denote the 
response of the band measured at 670 wavelengths, and 
so on. The trait of interest GY (which we want to predict) 
and the 250 bands are best linear unbiased estimations 
(BLUEs) of the 976 genotypes obtained in a first pass 
analysis that takes into account the design effect; details 
of how they were obtained can be found in Montesinos-
López et al. [17, 18]. More details about this data set can 
be found in Montesinos-López et  al. [17, 18]. With the 
information on these 250 bands, we formed the design 
matrix X presented in Table  1; the other design matri-
ces ( W ,X∗,X∗∗) shown in Table 1 were created based on 
this information. Since our goal is to obtain predictions 
of missing phenotypes on some genotypes taking into 
account the hyperspectral image data, to assess the pre-
diction accuracy of the seven methods, we implemented 
a type of cross-validation that mimics a situation where 
the researcher wants to predict 33.33% of the lines in a 
specific environment. For this reason, to study the pre-
diction accuracy of the sample data, a threefold cross-
validation was implemented with twofold for training 
and onefold for testing. Then, for each fold, we fitted the 
models using the training data set, and with the testing 
data set, we evaluated the prediction performance using 
Pearson’s correlation. The averages of the threefolds are 
reported together with their standard error as a measure 
of prediction accuracy.

The proposed framework
In this manuscript, we provide a framework for imple-
menting Bayesian functional regression models that are 
better suited for use in a prediction context. The frame-
work given is flexible enough to construct functions 
from noisy discrete data sets, and reasonably easy and 
fast in terms of implementation since the developed R 
package that we called Genomic Functional Regression 
(GFR) (Additional file) can be used. The GFR package is 

Table 1  Methods proposed, predictors, basis type and type of model

Grain yield (Y) is the vector response of the variable (trait of interest)

Method Predictor of the model Basis type Type of model

M1 X None Conventional regression

M2 W B-splines Functional regression (Eq. 8)

M3 W Fourier Functional regression (Eq. 8)

M4 X* B-splines Alternative 1 for Functional regression (Eq. 9)

M5 X* Fourier Alternative 1 for Functional regression (Eq. 9)

M6 X** B-splines Alternative 2 for Functional regression (Eq. 10)

M7 X** Fourier Alternative 2 for Functional regression (Eq. 10)
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able to implement conventional regression models and 
functional regression models (of the scalar-on-function 
type) for normal, binary and ordinal data with various 
alternative shrinkage methods (Bayesian Ridge regres-
sion (BRR), Bayes A (BayesA), Bayes B (BayesB), Bayes 
C and Bayesian Lasso (BL)) under a Bayesian framework 
in the context of genomic selection when tens or hun-
dreds of thousands of data are available. It is important 
to point out that the developed GFR package was built 
based on the BGLR package [4]. For illustrative purposes, 
we propose implementing seven methods (Table 1). The 
assumptions of the prior distributions used for imple-
menting the seven proposed models given in Table 1 are 
provided in Additional file 1: Part B-SB2.

R code for implementing the proposed functional regression 
models
The R code for implementing the seven proposed meth-
ods with the GFR package is given in Appendix B; for 
specific details on how to install the GFR package, see 
Additional file  1: Part A. The reader can modify this 
code slightly and use it with his/her own data. Also, if 
the researcher wants to include more elements in the 
linear predictor (such as main effects of lines, environ-
ment, genotype by environment interaction, bands and 
the bands by environments interaction term), we suggest 
reading the article by Montesinos-López et  al. [17, 18], 
which describes many different ways of specifying the 
linear predictor including genomic and pedigree infor-
mation, as well as consulting Additional file  1: Part A, 
where we provide other examples for using the developed 
package.

Results
Application example
To illustrate the modeling process and compare the pre-
diction accuracy of the seven proposed methods using 
functional regression in the context of high-throughput 
phenotyping data, we used the data set described above 
(irrigated data). First, under a BRR model, we compared 
the prediction accuracy (with Pearson’s correlation 
between predicted and observed values) of the meth-
ods proposed under different numbers of basis func-
tions. These seven proposed methods resulted from the 
implementation of the three models provided for func-
tional regression analysis under different priors for the 
beta coefficients. Also, under the BRR model, we com-
pared the implementation time (in minutes) of the seven 
proposed methods for different numbers of basis. Next, 
we compared methods M3, M5 and M7 under different 
period values (T) to examine the impact on prediction 
accuracy of selecting different values of T. Finally, we 
compared the prediction accuracy of the seven proposed 

methods under three types of regularization methods 
using three numbers of basis (5, 29 and 51).

Prediction accuracy under different numbers of basis 
functions
First we compared the prediction accuracy of the seven 
proposed methods for each number of basis and did not 
find significant differences between methods for each 
number of basis with an analysis of variance (ANOVA) 
and the Tukey test. This means that, statistically, the 
seven methods have the same performance in terms of 
prediction accuracy for each number of basis (Table  2). 
We also compared the prediction accuracies for each 
method between the number of basis and according to 
the ANOVA and Tukey test at a 5% level of significance; 
we also did not find statistical differences in terms of pre-
diction accuracy between the number of basis for each 
method under study (Table 2). On the other hand, Fig. 4 
shows that when the number of basis (L) is less than 13, 
the predictions are lower. For this data set, the best pre-
dictions were observed between 13 and 200 number of 
basis and Fig. 4 shows that after 200 basis, the prediction 
accuracy starts to decrease. No problems of overfitting 
were observed in the range of number of basis examined 
in this study, even with 200 to 250 basis. 

Implementation time of the proposed models
Table  2 also shows the performance of the proposed 
methods in terms of their implementation time (in sec-
onds) under a BRR approach. We found significant dif-
ferences between the 7 proposed methods in terms of 
their implementation times according to the ANOVA 
and Tukey test at the 5% level of significance. Under 
L = 5, 11, 17, 23 and 51, we found that the best methods 
were M2, M3, M6 and M7, while the worst was method 
M1. Under L = 29, 35, 41and 45, the best methods were 
also M2, M3, M6 and M7, while the worst were the 
remaining methods: M1, M4 and M5. Finally, for the 
average across basis we found that the best methods were 
M2, M3, M6 and M7, while the worst was method M1. It 
is interesting to point out that among the best methods 
in terms of implementation time were the two alternative 
methods (M6 and M7) that used the X** design matrix 
and had L columns.

In general, methods M2, M3, M6 and M7 (all of them 
used a design matrix with reduced dimensionality) 
were the best in implementation time. The reduction in 
time with methods M1, M4 and M5 (that did not use a 
design matrix with reduced dimensionality) was around 
3.4 times, that is, methods M2, M3, M6 and M7 were 
around 3.4 times faster than methods M1, M4 and M5. 
Table 2 also shows that there were significant differences 
in implementation time between the number of basis 
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for all methods, except method M1 because it does not 
use basis. For example, in methods M2 and M6, the best 
implementation times were observed with L = 51 num-
ber of basis, while the worst times were observed with 
L = 35 and 41 basis in M2 and L = 41 and 45 in M6. In 
methods M3 and M7, the best implementation times 
were also observed with L = 51 number of basis, but the 
worst time was observed with L = 35 basis in M3 and 
L = 41 basis in M7. In methods M4 and M5, the best 
implementation times were observed with L = 51 number 
of basis, and the worst times were observed with the rest 
of the number of basis. It is important to point out that 

we were expecting that the lower the number of basis, the 
lower the implementation time required for most of the 
proposed methods; however, there was not a large dif-
ference in time reduction when using L = 5 and L = 51. 
Of course, it is to be expected that if L grows close to m 
(original dimension of the data), the implementation time 
will increase considerably.

Prediction accuracy under different numbers of periods 
for the Fourier basis
Table  3 compares the prediction accuracy of methods 
M3, M5 and M7 (methods with the Fourier basis) using 

Fig. 4  Optimal number of basis (L) for method 7 with three regularization methods

Table 3  Prediction accuracy of grain yield with Pearson’s correlation for the 7 proposed methods with BRR prior distribu-
tion for different numbers of periods for the Fourier basis

Mean is the average Pearson’s correlation and SE is the standard error. Different letters by the columns indicate statistical differences between periods with the Tukey 
test at 5% level of significance

Period M3 M5 M7

Mean SE Mean SE Mean SE

51 0.4609 a 0.0224 0.4607 a 0.0219 0.4616 a 0.0218

57.38 0.4658 a 0.0211 0.4655 a 0.0213 0.4658 a 0.0214

65.57 0.4639 a 0.0201 0.4623 a 0.0206 0.4636 a 0.02

76.5 0.4706 a 0.0219 0.4666 a 0.0214 0.4705 a 0.0217

91.8 0.4757 a 0.019 0.4755 a 0.0192 0.4755 a 0.0191

114.75 0.4636 a 0.0204 0.4631 a 0.0202 0.4638 a 0.0201

153 0.4854 a 0.0276 0.4851 a 0.0275 0.4853 a 0.0276

229.5 0.4726 a 0.0214 0.4732 a 0.0213 0.4727 a 0.0214

459 0.4935 a 0.0238 0.4936 a 0.0239 0.4931 a 0.0239
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L = 23 (number of basis) and 9 different period values 
(T). We did not find significant differences in terms of 
prediction accuracy (with Pearson’s correlation) between 
the 9 periods for each of the three methods (M3, M5 and 
M7) according to the ANOVA at a 5% level of signifi-
cance. The minimum prediction observed in the results 
of Table 3 was 0.4607, while the largest was 0.4936. Since 
significant differences were not observed in terms of pre-
diction accuracies between the 9 period values under 
study for each method, we can say that for this dataset, 
using functional regression with the Fourier basis is quite 
robust for choosing the value of the period, since the dif-
ferences between the different values of the test period 
were not significant. However, it is important to point out 
that choosing the value of the period depends strongly 
on the type of data at hand (recall the example given in 
Fig. 2). For this reason, before implementing a functional 
regression model, it is very important to experiment with 
different period values, numbers of basis, types of basis, 
degrees, etc., to increase the probability of success in the 
modeling process and subsequent analysis.

Prediction accuracy under different regularization methods
Table  4 compares the prediction accuracy of the seven 
proposed methods using three regularization methods. 
For each method and number of basis, we compared 
three regularization methods –Bayes A, Bayes B and 
Bayes Lasso—using the ANOVA and Tukey procedures 
at the 5% level of significance. For each method and for 
each number of basis used, we did not find statistical dif-
ferences between the three regularization methods in 
terms of prediction accuracy with Pearson’s correlation. 
This means that the three regularization methods are 
equally efficient in terms of predicting sample data in this 
particular data set. Table  4 also shows that comparing 
the three regularization methods in terms of implemen-
tation time for each method and number of basis, there 
were significant differences between the three regulari-
zation methods, where in general the most efficient was 
Bayes A and the most inefficient was Bayes Lasso; this 
was expected based on the nature of each regularization 
method.

Discussion
Advances in computer power and in the technology for 
collecting and storing data considerably increased the 
presence of functional data whose graphical represen-
tations are curves, images or shapes. New types of data 
require new analytical tools, and functional data analysis 
is an area of statistics that extends conventional statisti-
cal methodologies and theories to the context of func-
tional analysis. Generalized linear models, multivariate 
data analysis, nonparametric statistics and many other 

techniques are being expanded for the FRA framework. 
A key assumption in FRA and functional data analysis is 
that it is possible to approximate any curve onto a smaller 
space [23], with a series of basis functions by taking a 
weighted sum or linear combination of a sufficiently large 
number, L, of basis functions, as pointed out in Eq. (3).

One important assumption in functional data analysis 
is that it needs data that come from a smooth and con-
tinuous underlying process, understanding by smooth 
that the curve is differentiable to a certain degree; this 
implies that a number of derivatives can be obtained, 
although the observed data are subject to measurement 
error and other types of local disturbances that may 
mask this smoothness. Also, for truly functional data, 
there will be many more “covariables measured in time 
or any other continuum” than observations. However, 
virtually all data collection that we know comes from 
non-continuous observations, since samples are taken 
at discrete points in time or any other continuum. When 
we refer to discrete observations, the assumption is that 
there are enough observations to model the underlying 
process. It is important to recall that a typical functional 
data analysis begins by converting the raw data into func-
tional objects. This is usually done using nonparametric 
smoothing techniques to represent each observation as 
a functional object. Then the original data are set aside, 
and the estimated curves themselves are used as input in 
subsequent analyses. This means that a two-stage pro-
cess is used to analyze functional data and usually in the 
second stage it is possible to use conventional statistical 
methods. (However, this type of two-stage analysis is dif-
ferent from those implemented and proposed by other 
authors for analyzing multi-environment traits).

For the above reasons, FRA and functional data analy-
sis application continues to increase in many areas of sci-
ence because it offers a more complete framework for 
modeling the massive amounts of data that are collected 
and stored nowadays. Therefore, we view FRA as an 
important tool for building empirical models and for ana-
lyzing high-throughput phenotyping data in agriculture. 
Our application with real data highlights the value of 
background knowledge to be able to select the best FRA 
model and increase prediction accuracy. This means that 
successful FRA application depends strongly on many 
parameters that the practitioner needs to define as, for 
example, the type of basis functions (Fourier, B-splines, 
etc.), the required number of basis functions (L), the 
degree of the polynomial (q), the period (T), and the type 
of regularization method (BRR, BayesA, BayesB, Bayes 
Lasso), among others.

It is also very important to point out that one of the 
models proposed as an alternative for conventional 
regression analysis (given in Eq.  (10), where only the 
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design matrix, X, was smooth) is very competitive with 
conventional functional regression (where both the 
design matrix and the beta coefficients are smooth) 
because it produces similar predictions, with the main 
advantage that it is more efficient computationally in 
implementation time and in parameter estimates (it pro-
duces more stable parameter estimates) because it has 
a lower dimension. Although not done here, in the lin-
ear predictor, the main effects of environments, geno-
types, genotype × environment interaction terms and 
band × environment interaction terms can be taken into 
account; this usually helps to increase prediction accu-
racy, as reported by Montesinos-López et al. [17, 18]. It 
is also possible to incorporate genomic and/or pedigree 
information when available. Therefore, to those inter-
ested in understanding how to incorporate main effects, 
interaction terms and genomic and/or pedigree informa-
tion, we suggest reading Montesinos-López et al. [17, 18] 
and the Additional file of this paper.

Based on our FRA application on a real data set and 
on our previous applications [17, 18], at least L = 23 was 
enough, but of course the particular data at hand should 
always be explored to determine the best choice of L to 
use. With regard to the degree of the polynomial in the 
context of B-splines, degree three is usually enough to 
approximate most of the curves quite well. The period is 
sometimes not easy to choose in the context of the Fou-
rier basis, but in many applications the period is chosen 
as the difference between the maximum and minimum 
values of the time points measured, with satisfactory 
results in some cases.

With regard to the type of basis to use, the Fourier 
basis is frequently recommended for period curves and 
B-splines for non-periodic curves. However, when the 
number of basis is considerably large, both can be used 
for periodic or non-periodic curves. We feel that it is not 
a simple task to choose between the functional regression 
models implemented and proposed here. However, when 
the goal is prediction, two of the alternatives given here 
do a reasonable job (Alternative 2). The first one is the 
conventional regression model given in Eq.  (8); the sec-
ond one is the alternative 2 functional regression model 
given in Eq. (10), since its derivation is very intuitive and 
its corresponding predictor matrix of low dimension 
is more stable for estimating the required parameters. 
It also can reduce the computational time needed to 
implement it, when the value of L used is lower than the 
number of observations, n, to guarantee a well-defined 
regression problem.

In general, although traditional multiple regression 
methods can be used for analyzing functional data where 
an observation is a curve, they ignore the fact that the 
object underlying the measurements of a subject is a 

curve or a surface or any continuum. Zhang [31] pointed 
out that sometimes directly applying classic statistical 
methods is not straightforward for some of the follow-
ing reasons: (a) the sampling time points of the observed 
functional data are not the same across various subjects; 
(b) the sampling time points are not equally spaced; and 
(c) the number of sampling time points is larger than the 
number of subjects in a sample of functional data. In the 
first scenario, direct classic statistical analysis may not 
be possible or reasonable; in the second scenario, classic 
statistical analysis inferences may be applied directly to 
the data, but whether the observed data really represent 
the underlying curves or surfaces may be questionable; 
in the third scenario, standard classic statistical analysis 
fails because the associated sample covariance matrix is 
degenerated so that most of the inference tools in classic 
statistical analysis will not be well defined. Many times 
dimension reduction techniques are applied first to solve 
these issues and often work well. However, in many situa-
tions, dimension reduction techniques may fail to reduce 
the dimension of the data sufficiently without losing too 
much information.

Therefore, in these situations, FRA is more natural 
and tends to have a higher signal-to-noise ratio in each 
observed value, because it allows extracting additional 
information contained in the functions and their deriva-
tives, which is not normally possible using traditional 
methods. However, the modeling process is more com-
plex than traditional statistical analysis, and in general 
the best tool for fitting FRA successfully to our data is 
an art combining knowledge of the data-generating pro-
cess and the spirit of experimentation for testing various 
options.

Conclusions
In this paper, we promote the use of functional regression 
modeling as an alternative for analyzing high-throughput 
phenotypic data and also provide the advantages and dis-
advantages of its implementation. In addition, many key 
elements that are needed to understand and implement 
this statistical technique appropriately are provided using 
a real data set. Of the two alternative models proposed in 
this paper, the second alternative given in Eq. (10), where 
only the design matrix (X) is smooth, is very attractive 
because: (a) it provides stable parameter estimates; (b) it 
considerably reduces implementation time; (c) its deri-
vation is very intuitive; and (d) the prediction accuracy 
it provides is similar to that of the conventional model. 
Additionally, we provide a framework for implementing 
Bayesian functional regression using the GFR package 
developed based on the BGLR package, which nowadays 
is frequently used in the context of genomic selection. 
The advantage of using GFR for functional regression 
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is that it is a powerful tool in the context of large p and 
small n problems that are mostly the rule in genomic 
data, since it allows using various regularization meth-
ods such as Bayesian Ridge regression, Bayes A, Bayes B, 
Bayes Lasso and Bayes C. For these reasons, we believe 
that this paper is a good guide for breeders and scientists 
who are interested in using functional regression models 
as tools for implementing prediction models when their 
data are curves.
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Appendix A: Deriving the two alternative proposed 
models
We can approximate each curve, xi(t) , by replacing ci 
with ĉi =

[

�T�
]−1

�Txi(t) in Eq.  (3). Therefore, each 
row of the matrix design X was approximated by

By stacking the n rows with Eq.  (11) for i = 1, . . . , n , 
we end up with an approximate design matrix, X*, that is 
equal to

It is important to point out that X and X* are both of 
order n × m, but of column rank m and L, respectively 
(where L is the number of basis). Then, as an approxi-
mation of the functional regression given in Eq.  (1), we 
can regress the vector of response variable Y against the 
approximate design matrix of curves, X*, resulting in the 
following traditional linear model:

with X* as given in Eq. (12); β∗ are beta coefficients of order 
m × 1 and E is a vector of errors as previously defined. Using 
the model given in Eq. (13), the corresponding least square 
estimate is given by β̂∗ =

(

X∗TX∗
)−

X∗TY  , and the pre-
dicted values are equal to: Ŷ = X

∗β̂∗ = X�
[

�T�
]−1

�T

[

�
[

�T�
]−1

�T
X
T
X�

[

�T�
]−1

�T

]−1

�
[

�T�
]−1

�T
X
T
Y

 . 

Also, for prediction purposes, we can reparametrize the 
model given in Eq. (13) as:

where X∗∗ = X� and β∗∗ =
[

�T�
]−1

�Tβ∗ . Now X** is 
of order n × L and β∗∗ of order L × 1.

(11)x̂Ti (t) = xTi (t)�
[

�T�
]−1

�T

(12)

X∗ =









xT1 (t)�
�

�T�
�−1

�T

...

xTn (t)�
�

�T�
�−1

�T









= X�
�

�T�
�−1

�T

(13)Y = X∗β∗ + E

(14)

Y = X∗β∗ + E = X�
[

�T�
]−1

�Tβ∗ = X∗∗β∗∗ + E

https://1drv.ms/u/s!Api6vPbBKxJYmw2rH35iq-t4gqRm
https://1drv.ms/u/s!Api6vPbBKxJYmw2rH35iq-t4gqRm
https://doi.org/10.1186/s13007-018-0314-7
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