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Abstract 

Background:  Quantitative real-time reverse transcription-polymerase chain reaction has been widely used in gene 
expression analysis, however, to have reliable and accurate results, reference genes are necessary to normalize gene 
expression under different experimental conditions. Several reliable reference genes have been reported in plants of 
Traditional Chinese Medicine, but none have been identified for Euscaphis konishii Hayata.

Results:  In this study, 12 candidate reference genes, including 3 common housekeeping genes and 9 novel genes 
based on E. konishii Hayata transcriptome data were selected and analyzed in different tissues (root, branch, leaf, 
capsule and seed), capsule and seed development stages. Expression stability was calculated using geNorm and 
NormFinder, the minimal number of reference genes required for accurate normalization was calculated by Vn/Vn + 1 
using geNorm. EkEEF-5A-1 and EkADF2 were the two most stable reference genes for all samples, while EkGSTU1 and 
EkGAPDH were the most stable reference genes for tissue samples. For seed development stages, EkGAPDH and EkEEF-
5A-1 were the most stable genes, whereas EkGSTU1 and EkGAPDH were identified as the two most stable genes in the 
capsule development stages. Two reference genes were sufficient to normalize gene expression across all sample sets.

Conclusion:  Results of this study revealed that suitable reference genes should be selected for different experimen‑
tal samples, and not all the common reference genes are suitable for different tissue samples and/or experimental 
conditions. In this study, we present the first data of reference genes selection for E. konishii Hayata based on tran‑
scriptome data, our data will facilitate further studies in molecular biology and gene function on E. konishii Hayata and 
other closely related species.
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Background
Quantitative real-time reverse transcription-polymerase 
chain reaction (qRT-PCR) has become one of the most 
powerful tools to study gene expression due to its high 
sensitivity, accuracy and specificity [1]. However, to get 
accurate and reliable results, a reference gene is necessary 
to normalize gene expression and avoid errors caused 
by different experimental procedure, such as sample 

amounts, quality and quantity of RNA, efficiency of enzy-
matic reaction and PCR efficiency [2, 3].

Most of the commonly used reference genes are house-
keeping genes, such as actin (ACT​), tubulin (TUB), 
polyubiquitin (BUQ), elongation factor 1-α (EF1-α), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
and ribosomal RNAs (18S rRNA or 28S rRNA). How-
ever, some data showed that expression levels of these 
housekeeping genes can vary considerably under dif-
ferent experimental conditions [4, 5], and also, in non-
model plant species, usually the used reference genes 
are identified by the orthologous sequence of common 
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housekeeping genes reported in model plant species due 
to the lack of genetic and sequence genome information 
[6]. Consequently, the unsuitable use of traditional house-
keeping genes as reference gene in non-model plants can 
cause bias. Therefore, it is important to select proper ref-
erence genes according to experimental conditions [7]. 
Moreover, statistical software, including geNorm, Best-
Keeper, NormFinder and RefFinder, have been widely 
used as efficient tools to evaluate gene expression stabil-
ity for qRT-PCR normalization [8–10]. Reference gene 
validation has been done in many plant species, such 
as banana [11], peach [12], soybean [13], amorphophal-
lus [14], Jatropha curcas [15], Isatis indigotica Fort. [16], 
Achyranthes bidentata Blume [17], Kentucky bluegrass 
[18], Salix matsudana [19], Rhododendron molle G. Don 
[20], Sapium sebiferum [21], Petroselinum crispum [22], 
Lilium spp. [23], Hibiscus cannabinus L. [24] and Dend-
robium officinale [25].

Euscaphis is a member of the family Staphyleaceae, 
which has two species in China: E. japonica Dippel and 
E. konishii Hayata. Euscaphis has been widely used in tra-
ditional Chinese medicine. Several chemical compounds 
have been isolated from Euscaphis, such as triterpene 
compounds [26–29], phenolic acid compounds [30, 31], 
flavonoid compounds [27, 31] and others [31–33], how-
ever, no molecular and gene expression data has been 
reported in Euscaphis.

Twelve genes (EkUBC, EkF-ACP, EkARP7, EkEF2, 
EkACT​, EkGAPDH, EkEEF-5A-1, EkADF2, EkTUB, 
EkPLAC8, EkLPP, EkGSTU1) were selected as candi-
date genes according to transcriptome data from our lab 
(Liang et al., College of Forestry, Fujian Agriculture and 
Forestry University) (unpublished data), and their expres-
sion stability was evaluated by qRT-PCR across differ-
ent experimental conditions: including five tissues (root, 
branch, seed, leaf and capsule), six different developmen-
tal stages of seed and six different development stages of 
capsule. Their expression stability was calculated using 
geNorm and NormFinder. Additionally, in order to vali-
date our results, the expression levels of EkCAD1 in 
different tissues were normalized by the most and least 
stable genes.

Methods
Plant material
Euscaphis konishii Hayata tissues were collected from 
Fujian Agriculture and Forestry University, Fujian Prov-
ince, China. Tissues (leaf, capsule, seed, root and branch) 
were collected on November 15th 2016, and six devel-
opmental stages of capsule and seed were collected 
once every 15  days after formation. All samples were 
harvested, washed and surface dried and then frozen in 
liquid nitrogen and immediately stored at − 80  °C until 

required for further analyzes. Three biological replicates 
for each sample were used for RNA extraction.

RNA isolation and cDNA synthesis
Total RNA was extracted from each sample using the 
RNAprepPure Plant Kit DP441 (Tiangen Biothch CO., 
LTD, Beijing, China), according to the manufacturer’s 
instructions. RNA was treated with DNase I (Tiangen, 
Beijing, China) to eliminate DNA contamination. RNA 
quality was determined by 1.2% agarose gel electropho-
resis. The concentration and purity of total RNA was 
determined using a NanoDrop 2000c Spectrophotom-
eter (Thermo Scientific, US). The A260/A280 ratio of total 
RNA between 1.90 and 2.10 was considered to meet the 
required quality for further experiments. First-strand of 
cDNA was synthesized using the First Strand cDNA Syn-
thesis Kit (Roche, Switzerland) using 1.0 μg of total RNA 
in a 20 μL reaction volume according to the manufactur-
er’s protocols.

Selection of candidate reference genes and primer design
Based on transcriptome sequencing data from our labo-
ratory, 12 reference genes were selected to normalize and 
validate qRT-PCR experiments by screening for genes 
with relatively stable expression (based on their RPKM 
and fold change values), including nine novel genes and 
three common housekeeping genes. Their sequence/
alignment/phylogenetic data are shown in Additional 
files 1 and 2. Forward and reverse primers of all candi-
date reference genes were designed using Primer Premier 
5.0 with the following parameters: Tm values ranging 
from 50 to 70 °C, GC percent of 45–50%, primer lengths 
of 18–25 bp and product length of 90–200 bp. All prim-
ers were synthesized by Sangon Biotech Co., Ltd (Shang-
hai, China). Primer details are shown in Table 1.

qRT-PCR analysis for each candidate reference gene 
was performed on a 7500 Fast ABI Real-time PCR system 
(Applied Biosystems, US) using FastStart Universal SYBR 
Green Master (Roche, Switzerland). A 20  μL reaction 
mixture contained: 10 μL 2 × SYBR Green Master, 0.4 μL 
forward primer (10 μM), 0.4 μL reverse primer (10 μM), 
2 μL cDNA and 7.2 μL dd H2O in a 96-well plates. The 
amplification conditions were as follows: 50 °C for 2 min, 
95  °C for 10  min, 40 cycles of 95  °C for 15  s and 60  °C 
for 30 s. Melting curve was analyzed to determine primer 
specificity.

All samples were analyzed in three biological and tech-
nical replicates. Serial tenfold dilutions of cDNA tem-
plate were used to generate slope of the standard curve 
to calculate amplification efficiency and correlation coef-
ficient of each candidate reference gene.
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Data analysis
NormFinder and geNorm were used to analyze the sta-
bility of the 12 candidate reference genes under different 
conditions. Expression levels of each reference gene were 
shown by Cq values. Before using the two softwares, the 
raw Cq values was used to calculate relative quantities by 
the equation: Q = 2−(sampleCq-mimCq). The values of stability 
(M) and pairwise variation (V) between genes was gener-
ated by geNorm, the lower M value is the gene expression 
is more stable [8, 34, 35]. Furthermore, the normalization 
factor generated by computing the pairwise variation of 
the two normalization factor was used to determine the 
most suitable numbers of reference genes with a cut-off 
value of 0.15 [17]. NormFinder was used to evaluate the 

stability of candidate genes by intra- and inter- group 
variations. The more stable reference gene will have 
lower stability value and inter- and intra-group variation.

Validation of the candidate reference genes
In order to verify the results of our experiments, the 
most stable and unstable reference genes were selected 
to validate the expression of the E. konishii Cinnamyl 
alcohol dehydrogenase 1 (EkCAD1) gene in different tis-
sue samples (root, branch, capsule, seed and leaf ). CAD1 
belongs to CAD family, which catalyzes the reduction of 
p-coumaricaldehyde, coniferyl aldehyde and sinapyl alde-
hyde to their alcohol derivatives which are then polymer-
ized into lignin [36], CAD is one of the most used genes 

Table 1  Primers used for qRT-PCR normalization

Gene abbreviation Gene name Primer sequence (5′–3′) Amplicon 
length 
(bp)

Primers Tm (°C) E (%) R2

EkUBC E. konishii Ubiquitin-conjugating 
enzyme E2-17 kDa

For: TCT​GCA​GGT​CCT​TCA​ATT​CC 100 54.8/54.8 97.89 0.9998

Rev: CGC​AAA​CCC​TAG​AGA​GAG​TAAG​

EkF-ACP E. konishii F-actin capping protein alpha 
subunit

For: CCA​GTA​ACT​CGC​ACC​CTA​TTT​ 96 54.44/54.56 99.59 0.9994

Rev: TCA​CTG​TCA​CTT​TCC​GAT​TCC​

EkARP7 E. konishii Actin-related protein 7 For: CCT​TCA​TTA​CCC​ATC​TCC​CATC​ 100 55.03/53.41 99.35 0.9878

Rev: CTA​ATG​AAT​CCT​CGT​ATG​ACT​GGA​T

EkEF2 E. konishii Elongation factor 2 For: GAG​AGC​GAC​AAG​GGA​ATG​AG 108 55.7/54.8 100.09 0.9997

Rev: TAT​TAC​TGA​TGG​TGC​GCT​GG

EkACT​ E. konishii Actin For: CAT​TGT​GAG​CAA​CTG​GGA​TG 125 54.01/54.21 103.21 0.9998

Rev: GAT​TAG​CCT​TCG​GGT​TGA​GA

EkGAPDH E. konishii Glyceraldehyde-3-phosphate 
dehydrogenase

For: TGG​CTT​TCC​GTG​TTC​CTA​CT 113 56.14/57.12 101.1 0.9795

Rev: TCC​CTC​TGA​CTC​CTC​CTT​GA

EkEEF-5A-1 E. konishii Eukaryotic elongation factor 
5A-1

For: TCC​GAC​ATA​GCT​CCG​ATT​CA 101 55.42/55.4 98.46 0.9991

Rev: GAA​GAG​ACG​GAG​AGG​AGA​GATT​

EkADF2 E. konishii Actin-depolymerizing factor 2 For: CCG​AAG​AGA​ATG​TCC​AGA​AGAG​ 98 54.97/54.48 99.89 0.9998

Rev: GTC​CTT​TGA​GCT​CGC​ATA​GAT​

EkTUB E. konishii β-Tubulin For: AAA​GAT​GAG​CAC​CAA​GGA​GGT​ 108 56.18/55.60 98.69 0.9879

Rev: TCA​CAC​ACG​CTG​GAT​TTC​AC

EkPLAC8 E. konishii PLAC8 family protein isoform 
2

For: GGG​AAT​CGG​AGG​TAA​AGA​TCAA​ 102 54/54 99.00 0.9822

Rev: TGG​ATC​TGA​AGA​AAT​GGG​AGAC​

EkLPP E. konishii Lonprotease-2-like protein For: TTG​GCC​TCA​TCT​ATT​GCT​ACTG​ 98 54.3/55.4 101.00 0.9931

Rev: GTT​CTC​CTG​TGC​CCT​CTA​ATG​

EkGSTU1 E. konishii Glutathione-S-transferase 
tau 1

For: GCC​CTC​ATC​CCA​AAC​ATA​CT 113 54.6/54 98.99 0.9999

Rev: GAG​ATT​GTT​TGC​AGC​GAA​TAGG​

EkCAD1 E. konishii Cinnamyl alcohol dehydro‑
genase 1

For: GTG​GGC​TTT​CCG​TCA​GTG​TA 123 59.97/59.97 99.23 0.9969

Rev: GGT​CGG​AGT​TGG​AGC​TAT​CG
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to manipulate to obtain plants with low lignin content 
[37]. qRT-PCR experimental method was the same as 
described above, and the relative expression level was 
calculated by 2−ΔΔct method [12]. Data from three bio-
logical replicates were analyzed using analysis of variance 
(ANOVA) followed by Student’s t test (P < 0.05).

Results
Primer specificity and PCR amplification efficiency
A total of 12 candidate reference genes, including three 
common housekeeping genes and nine novel genes 
from transcriptome sequencing data of E. konishii were 
selected for qRT-PCR normalization. The details of gene 
names, abbreviation, accession number, primer sequence, 
primers Tm, product length, amplification efficiency and 
correlation coefficient are shown in Table 1. The specific-
ity for each primer set was validated by melting curve. 
For all primer sets the melting curve showed a single 
amplification peak (Additional file 3). qRT-PCR efficiency 
for all 12 candidate reference genes ranged from 97.89% 
for EkUBC to 103.21% for EkACT​, and correlation coef-
ficients varied from 0.9795 to 0.9999 (Table 1).

Cq values of candidate reference genes
Cq values for all 12 reference genes are shown in Fig. 1. 
The Cq values varied from 15.812 (EkF-ACP) to 30.121 
(EkACT​) across all samples, and mean Cq ranged from 
18.0575 (EkF-ACP) to 25.6685 (EkACT​). Moreover, 
EkACT​ expression levels were the most variable with 
8.905 Cq, while EkGAPDH showed the least variable 
levels with 2.609 Cq. Since gene expression levels are 
negatively correlated to Cq values, EkF-ACP had high 
expression and EkACT​ with low expression.

Expression stability of candidate reference genes
Expression stability of the 12 reference genes was ana-
lyzed by geNorm and NormFinder. Samples were divided 
into three different experimental groups: (1) five tissues 
(root, leaf, branch, seed and capsule), (2) six seed devel-
opmental stages and (3) six capsule developmental stages.

geNorm analysis
Gene expression stability was determined by M-value in 
geNorm analysis, the lower the M value is, the more gene 
expression stability. For the tissue group the two most sta-
ble genes were EkGSTU1 and EkGAPDH with the lowest 
M value, and EkTUB was the most unstable gene. In the 
seed group EkEEF-5A-1 and EkGAPDH were the two most 
stable genes through all the different developmental stages, 
and EkLPP was the most unstable gene. Finally, in the cap-
sule group EkGAPDH was the most stable gene, followed 
by EkGSTU1, and EkF-ACP and EkUBC were the least 
stable genes (Table 2; Fig. 2). For all sample sets EkADF2 
and EkEEF-5A-1 were the most stable genes, and EkF-ACP 
and EkUBC were the least stable. The minimum number of 
genes required for normalization in all the different groups 
was calculated by geNorm. The V2/3 values for all differ-
ent experimental groups were below the cut-off value of 
0.15 (0.143 of all samples, 0.11 for tissues samples, 0.101 
for seed development stages and 0.135 for capsule devel-
opment stages), which indicate that two reference genes 
are enough to normalize gene expression data (Fig. 3).  

NormFinder analysis
Expression stability values analyzed by NormFinder 
are shown in Table  3. For tissue group, EkGSTU1 and 
EkGAPDH were the most stable reference genes, and 

Fig. 1  Cq values of the twelve candidate reference genes. The 
lines across the box indicate median values, boxes depict 25/75 
percentiles. Whisker caps indicate the minimum and maximum 
values

Table 2  Gene expression stability across  sample sets 
calculated by geNorm

Gene name Different 
tissues

Seed 
development 
stages

Capsule 
development 
stages

Total

EkUBC 0.412 (5) 0.369 (3) 1.023 (12) 0.491 (7)

EkF-ACP 0.568 (8) 1.201 (10) 0.911 (11) 0.428 (6)

EkARP7 0.390 (4) 1.065 (9) 0.398 (3) 0.251 (3)

EkEF2 0.599 (9) 0.890 (8) 0.753 (8) 0.655 (8)

EkACT​ 0.498 (7) 0.729 (7) 0.646 (7) 1.698 (12)

EkGAPDH 0.315 (2) 0.283 (2) 0.254 (1) 0.858 (10)

EkEEF-5A-1 0.752 (11) 0.231 (1) 0.568 (5) 0.159 (2)

EkADF2 0.629 (10) 0.649 (6) 0.792 (9) 0.134 (1)

EkTUB 1.198 (12) 1.216 (11) 0.599 (6) 1.421 (11)

EkPLAC8 0.469 (6) 0.534 (5) 0.412 (4) 0.699 (9)

EkLPP 0.348 (3) 1.368 (12) 0.855 (10) 0.284 (4)

EkGSTU1 0.269 (1) 0.412 (4) 0.289 (2) 0.344 (5)
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Fig. 2  Average expression stability (M-value) of 12 candidate genes calculated by geNorm and ranking of the candidate reference genes in 
different experimental group. Tissues: five tissues sample sets; DSS: seed development stages; DSC: capsule development stages. Total: all samples

Fig. 3  Optimal number of reference genes in different experimental groups using the geNorm. Pairwise variation (Vn/Vn + 1) analysis between 
normalization factors (NFn and NFn + 1) to calculate the number of reference genes in each experimental group. Tissues: five tissues sample sets; 
DSS: seed development stages; DSC: capsule development stages. Total: all samples
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EkTUB was the least stable gene, same as shown by 
geNorm analysis. In the seed group EkEEF-5A-1 and 
EkGAPDH were the most stable reference genes, while 
EkARP7 was the least stable gene. In the capsule group, 
EkGAPDH and EkGSTU1 got the top rank, while 
EkUBC and EkF-ACP were ranked at the lowest. In gen-
eral, the ranking was same as geNorm analysis (Table 3).

EkCAD1 expression and validation of EkGSTU1 
and EkGAPDH
In order to verify the reliability of the selected refer-
ence genes, expression profiles of EkCAD1 gene was 
determined in different tissues. Relative expression 
levels were normalized using the two most stable ref-
erence genes (EkGSTU1 and EkGAPDH) and the least 
stable reference gene (EkTUB).

EkCAD1 showed similar expression levels when sin-
gle or a combination of reference genes (EkGSTU1 and 
EkGAPDH) were used to normalize the expression. 
EkCAD1 expression was up regulated in all the tissues 
except in seed. However, when EkTUB was used for 
normalization (unstable gene), relative expression pro-
file of EkCAD1 was different when compared when the 
normalization expression was done using the two most 
stable reference genes identified in our study (EkG-
STU1 and EkGAPDH) (Fig. 4). Our results suggest that 
the expression patterns of target genes are differed 
when normalized by different reference genes.

Discussion
qRT-PCR is one of the most commonly used technique 
to determine gene expression in plants. To ensure the 
accuracy and reliability of the results, a suitable reference 

gene is necessary for data normalization. Conventionally, 
some housekeeping genes such as ACT​, GAPDH, TUB, 
have been used as reference genes, however, no single 
gene can be used for all plant species, experimental con-
ditions and/or tissues. Therefore, it is required to select 
proper reference gene(s) for certain species under dif-
ferent conditions rather than using common reference 
genes.

The development of high-throughput sequencing tech-
nology provides a more efficient approach to study plant 
molecular biology, and it has been widely used in plant 
genomes [38–43], plant transcriptome [44–47], plant 
ncRNA [48–50], moreover, the generation of large-scale 
gene segments and gene expression data by sequencing 
provides a new resource for the identification of refer-
ence genes, especially in non-model species [51–53]. 
Therefore, transcriptome data on E. konishii Hayata, 
available in our laboratory can be used as a tool to iden-
tify candidate reference genes. Asystematic study of 12 
candidate reference genes in three conditions was carried 
in this paper, and their expression stability was calculated 
using geNorm and NormFinder.

ACT​ and TUB, the most widely used reference genes, 
did not show a good expression stability in E. konishii 
Hayata across all sample sets (Tables 2, 3). The phenom-
enon that expression levels of common reference genes 
varied in a large range has been reported in several papers 
[54, 55]. GAPDH, a common housekeeping gene also, has 
been widely used as reference gene in different species 
and experimental conditions [51, 56–60], in our experi-
ments this gene was one of the two most stable genes in 
tissue sample set and capsule development stages, but it 
did not perform well in across all the sample and seed 
sets. The different performance of EkGAPDH in different 
experimental conditions in this study demonstrated that 

Table 3  Gene expression stability across  sample sets 
calculated by NormFinder

Gene name Different 
tissues

Seed 
development 
stages

Capsule 
development 
stages

Total

EkUBC 0.268 (6) 0.239 (3) 0.391 (11) 0.274 (8)

EkF-ACP 0.331 (7) 0.392 (10) 0.414 (12) 0.201 (6)

EkARP7 0.256 (3) 0.601 (12) 0.178 (3) 0.103 (4)

EkEF2 0.367 (9) 0.521 (11) 0.369 (8) 0.348 (9)

EkACT​ 0.546 (11) 0.379 (9) 0.365 (7) 1.495 (12)

EkGAPDH 0.240 (2) 0.171 (2) 0.102 (1) 0.493 (10)

EkEEF-5A-1 0.338 (8) 0.153 (1) 0.295 (6) 0.090 (2)

EkADF2 0.458 (10) 0.358 (8) 0.384 (10) 0.035 (1)

EkTUB 0.806 (12) 0.349 (7) 0.286 (5) 1.131 (11)

EkPLAC8 0.261 (5) 0.273 (4) 0.251 (4) 0.259 (7)

EkLPP 0.256 (3) 0.302 (6) 0.371 (9) 0.102 (3)

EkGSTU1 0.165 (1) 0.285 (5) 0.116 (2) 0.159 (5)

Fig. 4  Relative expression of EkCAD1 in different tissues. EkGSTU1, 
EkGAPDH and EkGSTU1 + EkGAPDH were used as one or two most 
stable reference genes, EkTUB was used as the least stable reference 
gene. Data are represented as mean ± SD, different words indicate 
significant difference of the expression of the target gene based on 
three biological replications (P < 0.05, t test; n  =  3)
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there is no single reference gene that can be used for all 
species or different experimental conditions [61–65].

In this study, EkGSTU1 (glutathione-S-transferase tau 
1), which belongs to tau class of glutathione transferases 
(GSTs) [66], was the one of two most stable genes in tis-
sues sample and capsule development stages. EkADF2 
and EkEEF-5A-1 were the two most stable genes in total 
sample set, ADF (actin-depolymerizing factor) play 
important roles in several cellular processes that require 
cytoskeletal rearrangements, such as cell migration, 
chromosome introgression, cleavage plane orientation 
and furrow formation [67–69]. VvADF has been identi-
fied as candidate reference gene for grapevine during 
anthesis [6], rubber tree duration of latex flow [70] and 
TrADF3 was selected as reference gene in staminate and 
perfect flowers of T. rupestris [71].

It has been widely accepted that using combination of 
multiple reference genes to normalize gene expression can 
give more accurate and reliable expression patterns than 
using a single gene in qRT-PCR analysis [57]. Based on val-
idation results of target gene expression, when EkGAPDH 
and EkGSTU1 were selected as reference genes for nor-
malization either single or combination, the target gene 
EkCAD1 showed the similar expression pattern among dif-
ferent tissues, which indicated that the expression pattern 
of EkCAD1 was nearly identical when normalized with a 
single reference gene or two. Interestingly, in the tissue 
group, the combination of traditional housekeeping gene 
(EkGAPDH) and a novel identified reference gene (EkG-
STU1) were identified as the most stable reference genes, 
suggesting that combination of traditional housekeeping 
genes and newly identified reference genes based on tran-
scriptome data can be used as a good strategy for expres-
sion normalization of E. konishii Hayata genes.

Conclusion
In this study, we evaluated the expression stability of 
twelve candidate reference genes, including three tradi-
tional housekeeping genes and nine novel genes based 
on transcriptome data of E. konishii Hayata. Additionally, 
the expression pattern of target gene EkCAD1 was deter-
mined in different tissues to further verify the reliability 
of the identified stable reference genes. This study shows 
the first data for reference genes validation on E. konishii 
Hayata. Our study will contribute in future studies of 
gene expression in E. konishii Hayata and related species.
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