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METHODOLOGY

Land‑based crop phenotyping by image 
analysis: consistent canopy characterization 
from inconsistent field illumination
Joshua Chopin*, Pankaj Kumar and Stanley J. Miklavcic

Abstract 

Background:  One of the main challenges associated with image-based field phenotyping is the variability of 
illumination. During a single day’s imaging session, or between different sessions on different days, the sun moves in 
and out of cloud cover and has varying intensity. How is one to know from consecutive images alone if a plant has 
become darker over time, or if the weather conditions have simply changed from clear to overcast? This is a signifi-
cant problem to address as colour is an important phenotypic trait that can be measured automatically from images.

Results:  In this work we use an industry standard colour checker to balance the colour in images within and across 
every day of a field trial conducted over four months in 2016. By ensuring that the colour checker is present in every 
image we are afforded a ‘ground truth’ to correct for varying illumination conditions across images. We employ a least 
squares approach to fit a quadratic model for correcting RGB values of an image in such a way that the observed 
values of the colour checker tiles align with their true values after the transformation.

Conclusions:  The proposed method is successful in reducing the error between observed and reference colour 
chart values in all images. Furthermore, the standard deviation of mean canopy colour across multiple days is reduced 
significantly after colour correction is applied. Finally, we use a number of examples to demonstrate the usefulness of 
accurate colour measurements in recording phenotypic traits and analysing variation among varieties and treatments.
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Background
The century-old  [1] endeavour to understand complex 
genotype × environment (G × E) interactions and their 
effect on plant phenotype has triggered a series of break-
throughs in the field of plant phenotyping. Manual meth-
ods for recording phenotypic traits gradually evolved [2] 
to semi-manual and automatic methods, through the 
use of electronic hand-held devices and imaging equip-
ment. Automated phenotyping through image capture 
and analysis was first achieved with state of the art robot-
ics and imaging sensors in controlled environments  [3–
7]. More recently, in order to further understand G × E 
interactions, the ‘environment’ side of the equation has 

increased in accuracy thanks to phenotypic analysis in 
the field [8–11].

The range of phenotyping that can occur in the field 
is vast. Hardware solutions that have been proposed 
range from aerial imaging [12, 13], large and expensive 
purpose-built systems  [14, 15], small and expensive 
purpose built systems  [16–18] to small and inexpen-
sive systems  [19, 20]. While each approach possesses 
distinct advantages and disadvantages, the increase in 
throughput and volume of high resolution RGB (Red, 
Green and Blue channel) data offered by imaging of 
field trials comes at a cost: new methodologies are 
required to overcome new challenges. In this article the 
challenge of accurately recording plant colour under 
varying illumination conditions in the field is con-
sidered. In essence, the critical question is how is one 
to know from consecutive images alone if a plant has 

Open Access

Plant Methods

*Correspondence:  joshua.chopin@unisa.edu.au 
Phenomics and Bioinformatics Research Centre, University of South 
Australia, Mawson Lakes 5095, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-018-0308-5&domain=pdf


Page 2 of 15Chopin et al. Plant Methods  (2018) 14:39 

become darker over time, or if the weather conditions 
have simply changed from clear to overcast? Despite 
colour being reported as an important plant pheno-
typic trait [2, 21, 22] indicative of plant health, an early 
indicator of a state of stress or disease, and related to 
plant chlorophyll  [23, 24] and nitrogen content  [25], 
it has been largely neglected in the literature until 
recently [14, 15, 26].

Existing approaches to compensate for variations 
in illumination can be classified as hardware or soft-
ware solutions. Utilising the camera’s hardware, a com-
mon approach is to simply use the ‘automatic-exposure’ 
mode on digital cameras  [14, 15, 27], which makes use 
of the camera’s in-built metering system to automati-
cally decide on an appropriate shutter speed and aper-
ture. This approach comes with a number of drawbacks 
such as spherical aberration  [28] and a lack of consist-
ency in recording colour. From a theoretical standpoint 
the computer vision community has proposed many 
post-processing techniques to determine the illuminant 
in an image, which they call the colour constancy prob-
lem. For example, Finlayson et  al.  [29] used histogram 
equalization to provide illumination invariance across 
devices and before that calculated individual likelihoods 
that each possible scene illuminant was illuminating the 
test image [30]. Forsyth [31] estimated the illuminant in 
images using surface reflection functions and D’Zmura 
et al. [32] showed that in an arbitrary scene the chromac-
ity of reflected light from at least four surfaces is required 
to estimate illumination.

In the case of field-based phenotyping, most image 
analysis approaches taken to the illumination chal-
lenge focus on accurately determining canopy cover-
age or other traits, rather than correcting the canopy 
colour itself. For example, in  [33] the authors propose a 
method for image segmentation that is invariant to illu-
mination. However, the segmented plant still contains 
the illuminated pixels. In [34] the authors train two sepa-
rate support vector machines, for high and low lumi-
nance, then propose an approach to classify every image 
as one of those two, before applying the respective SVM 
for segmentation. Both of these examples are useful for 
approximating coverage, yet provide misleading colour 
information. In a study closely related to the present 
work, Grieder et al. [35] made use of a colour checker for 
standardizing colour images over a day but only used a 
linear transformation to correct the colour values. We 
will show that for images in the field a quadratic model is 
more accurate. Furthermore, as that study was focussed 
on assessing canopy coverage of plots, an investigation 
into the accuracy of colour measurements over time and 
how robust they are to varying illumination conditions 
was not within the scope of their article.

In this paper we propose the use of an X-rite Colour 
Checker chart [36] and a quadratic model for correcting 
the colour of plant images taken in the field. Two stand-
ard digital cameras and a colour chart are mounted on 
an inexpensive, land-based vehicle in order to capture a 
time series of high resolution images of individual plots 
of a wheat field over a period of four months. The details 
of this field trial and the construction of the vehicle are 
explained in the Methods section. An image processing 
pipeline for analysing the images, comprised of pre-pro-
cessing and segmentation stages, is also provided in this 
section. A quadratic model is then used to ascertain the 
relationship between observed and reference colour chart 
values for every image and the appropriate transforma-
tion is applied to each of them. In the Results section we 
demonstrate the effectiveness of the quadratic model and 
produce evidence of its robustness over multiple days. 
Finally, we provide examples illustrating the application 
of accurate colour measurement by studying variations 
across varieties and treatments, as well as predicting the 
normalized difference vegetation index of plants using 
mean canopy colour.

Methods
The field trial was conducted at Mallala (−  34.457062, 
138.481487), South Australia, in a randomized complete 
block design with a total of 60 plots consisting of ten 
spring wheat (Triticum aestivum L.) varieties and six rep-
licates for each. To mitigate the effects of border rows, an 
additional plot (not included in the analysis) was planted 
at the beginning and end of each row of plots. Plots were 
1.2 m wide and 4 m long with a gap of approximately 1 m 
between columns and rows. Half of the replicates were 
treated with nitrogen at a standard rate of 80 kg nitrogen, 
40 kg phosphorus and 40 kg potassium per hectare and 
the other half received no treatment. The macronutrients 
nitrogen, phosphorus and potassium were first applied 
on 12 August 2016 and imaging of the plots took place 
between August 23 and November 18 of the same year. A 
detailed report on the outcome of this field experiment is 
the subject of a separate communication.

The ground-based vehicle used for image capture is 
shown in Fig.  1a. This ‘wagon’ is comprised of a steel 
frame and four wheels with a central overhead rail for 
mounting imaging sensors. While capable of housing a 
third camera from an oblique view, only the central ste-
reo pair of cameras, shown in Fig. 1b, was used for this 
experiment. An X-rite colour checker was attached to 
the left side of the wagon, shown in Fig.  1c, which was 
always visible from the viewpoint of the camera on the 
corresponding side. The specifications of the chart and 
motivation for using it are outlined in the Colour Correc-
tion section.
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Images were acquired using a stereo pair of Canon EOS 
60D digital cameras, placed approximately 20  cm apart 
and 2 m above ground level. Manual focus was used dur-
ing all imaging sessions with cameras focused at 2 and 
1.5 m during early and late plant growth stages, respec-
tively. Camera settings were as follows; focal length 
18  mm, aperture f/9.0, ISO—automatic and exposure 
time 1/500 s. Cameras were temporally synchronized to 
capture images within 1 ms of each other.

Image processing
All image processing and analysis steps were conducted 
in MATLAB 2017a. A flowchart outlining each step 
of the image analysis pipeline is shown in Fig.  2. While 
this section provides an overview of each image process-
ing task associated with analysing images from the field, 
a more detailed explanation can be found in Additional 
file 1.

Before applying the colour correction technique to 
images from the field two important pre-processing 
steps were taken. Both of these steps are necessary due 
to challenges arising from field conditions. The two 
pre-processing steps are detecting the region of inter-
est (ROI), the image region containing plant pixels, and 
extracting the colour checker. To provide consistency in 
the analysis of images of all plant varieties and through-
out the season, with the added benefit of avoiding spuri-
ous contributions from weeds present in the images but 
lying outside the ROI, the ROI was chosen to be all pixels 
inside the parallel rails of the phenotyping vehicle. From 
an image processing perspective this involves detecting 
the two rails, using a Hough transform [37], and creating 
a mask the same size as the original image which, after 
the application of a Hadamard product [38], removes the 
background regions outside of the ROI perimeter (Addi-
tional file 1: Fig. S1). The colour chart is extracted using 
a template matching algorithm which iteratively searches 
the image for regions which resemble a pre-saved generic 
image of a colour checker.

After image pre-processing the next step is segmenta-
tion. Plant pixels in all images were segmented from the 
background using support vector machines (SVM)  [39] 
which were trained on the output of k-means cluster-
ing  [40]. SVM is a supervised machine learning tech-
nique which, for a set of data with two classes, attempts 
to find the best hyperplane that separates the two data 
classes. Using k-means clustering, each training image is 
segmented into 20 clusters with minimal intra-class vari-
ance, then each cluster is given a label as green plant or 
background. The centre of each cluster, or mean colour, 
is then used as an individual training data point for the 
SVM (Additional file  1: Fig. S2). As this process takes 

Fig. 1  Imaging wagon. a The ground based vehicle for imaging in the field. b Two stereo cameras are placed in the centre of the top section, with 
a third camera at an oblique view not used in this experiment. c An x-rite colour checker is also placed on the side of the vehicle, visible by the 
camera on the same side

Fig. 2  Image analysis pipeline. The images are pre-processed to 
extract the region of interest and the values of colour checker tiles 
before plant pixels are segmented from the background. A least 
squares approach is then used to fit a quadratic to the colour data 
and correct the plant pixels. Finally, the corrected mean canopy 
colour can be extracted from the segmented image and used for 
analysis
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far less time than manually segmenting entire images, it 
allows more total images to be used for training, captur-
ing more variation across plots and over time.

Colour correction
The goal of colour correction is to transform the pixel 
values in an image in such a way that the observed val-
ues of the colour checker tiles will match their true val-
ues after the transformation. This requires constructing a 
model using the observed values from the colour checker 
in an image, which can take as input a new colour triplet 
and output its corrected values. In this article we have 
chosen to conduct the colour correction stage in the 
CIEL*a*b* 1976 colour space, abbreviated as L*a*b* here-
inafter. The L*a*b* space was chosen as it was designed 
to be a device-independent space. In addition, through 
experimentation and following a review of the literature, 
the L*a*b* space was found to perform better generally 
than the RGB space for colour correction [41]. While the 
L*a*b* space was determined to be the most useful for 
performing colour correction, all results have been con-
verted back to RGB values for illustrative purposes, since 
the RGB space mimics human vision and each channel 
contains values in the same range of [0, 255]. Conversion 
between RGB and L*a*b* values is carried out using the 
standard formulae [42].

Figure  3a shows the relationship between true and 
observed RGB values of the 24 colour checker tiles for a 
typical image. As the relationship does not appear to be 
linear, a quadratic model was chosen to fit the data. As 
an aside, this model was used to fit all 24 tiles as well as a 
number of subsets of tiles, in order to determine whether 
the range of colours provided by the colour checker was 
appropriate. We found that using all tiles provided the 
best results and most versatile model. The quadratic 
model makes use of all three channels and their squares 
when predicting colour values. For example, the formula-
tion for the L∗ channel is as follows,

where Li , ai and bi refer to the observed L∗ , a∗ and b∗ 
values of the i-th colour checker tile, α refers to the fit-
ting coefficients and L̂i refer to the L∗ reference values of 
the i-th tile. The same methodology is used with β and γ 

(1)

coefficient values for the a∗ and b∗ channels, respectively. 
Finally, the least squares method is used to determine the 
values of α , β and γ . Applying the model to the observed 
colour checker values shown in Fig. 3a, after correction 
yields the results shown in Fig. 3b.

Results and discussion
An example of a colour corrected image of a field plot is 
shown in Fig.  4. The magnified image regions illustrate 
the increased contrast between healthy and senesced 
plant regions in later stages of plant life. We demon-
strate the usefulness of colour correction by first illustrat-
ing the increase in accuracy and consistency it provides 
when measuring mean canopy colour in the field. Fixing 

Fig. 3  Colour correction. a Reference colour checker values vs 
observed colour checker values before colour correction takes place. 
b The same graph after the colour correction process has taken place
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camera settings and applying colour correction, rather 
than relying on camera automatic-exposure settings, 
is preferential for a number of practical reasons which 
will be explained in this section. However, to prove this 
point in a quantitative manner, the reproduction error 
of colours for each approach is calculated. Once it is 
established that colour corrected images are more useful 
than uncorrected images we show how they can be used 
in typical phenotypic analyses. This includes outlining 
key differences in time series data of mean canopy col-
our for wheat plots of different varieties under different 
treatment conditions. Furthermore, we show that col-
our corrected images can be used to find relationships 
between the RGB values of plot canopies and their manu-
ally measured normalized difference vegetation index 
(NDVI) values.

Quantifying the importance of colour correction
While most literature concerning image-based pheno-
typing in the field do not perform colour correction at all, 
the few that do use a simple linear scaling of pixel val-
ues  [35]. However, the observed pixel values in images 
compared to their true values, as shown in Fig. 3, appear 
to follow a quadratic rather than linear relationship. To 
compare how well the data is fit by linear and quadratic 
models, we compare the approach outlined by Grieder 
et  al. with the method presented here. The dashed and 
solid lines in Fig. 5a, b show the R2 values of linear and 
quadratic fits of the observed colour values, respectively. 
The values on the horizontal axis represent the 60 plots of 
wheat used in the field trial, ordered in order of increas-
ing illumination. That is, the first data point represents 
the plot with the largest difference between observed and 
reference colour checker values. The mean square error 
(MSE) can be seen on the left side horizontal axis and is 
illustrated by the dashed black line.

Figure  5a, b represent two different days during the 
experiment, therefore changes in illumination with time 
will also be different and as such the order of plots is not 
maintained between figures. The purpose of this choice 
for visualization is two-fold. First, one can see that on 
these 2 days the quadratic model always provided a more 
accurate fit of the data. Furthermore, while the improve-
ment between a linear and quadratic fit is insignificant in 
the red and blue channels, it is substantial in the green 
channel. As the defining characteristic of plant pixels is 
their green intensity, this is the most important channel 
to correct. Table 1 shows the mean R2 values for fitting 
a quadratic or linear model to the red, green and blue 
channels over the 17 imaging sessions. While the average 
difference in R2 value between a linear and quadratic fit 
in the red and blue channels is 0.05 and 0.02 respectively, 
it is a substantially higher 0.12 in the green channel.

The second reason for ordering the data in order of 
illumination is to highlight how the illumination con-
ditions affect the goodness of fit for these models, and 
subsequently the accuracy of the final colour correction. 
The two examples in Fig. 5a, b show that there is a clear 
inverse relationship between the degree of illumination 
and how well the two methods were able to fit the colour 
data in the red and blue channels. The green channel has 
not only been fit with larger R2 values overall, but appears 
to also be less affected by illumination conditions when 
fit with a quadratic model.

Figure  6 shows the mean and standard deviation of 
error between observed and reference colour checker val-
ues, over all 16 imaging sessions, before and after the col-
our correction process, using the quadratic model. The 
error, E, which is the average Euclidean distance between 
the two colour triplets or mean square error (MSE), is 
calculated according to Eq. 2, where R, G and B denote 
the red, green and blue colour channels respectively, 
i = 1:24 denotes the 24 colour checker tiles and R̂i and 

Fig. 4  Sample image before and after colour correction. a Sample wheat plot image before colour correction. b The same wheat plot after colour 
correction. c Magnified sections of each image showing the increased contrast between green and senesced leaves in the corrected image
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Ri denote the reference and observed red values of the ith 
tile, respectively, and similarly for G, green, and B, blue. 
The amount of error after colour correction is approxi-
mately four times lower than before it was applied. Fur-
thermore, there is more variation across imaging sessions 
when colour correction is not applied, as error rates 

increase and decrease over time with no predictable pat-
tern. This is due to the different illumination conditions 
and the effect they have on colour correction. Therefore, 
another meaningful analysis is to investigate how well the 
colour correction process is able to maintain a consistent 
measure of colour for each plot across multiple days.

Fig. 5  Quadratic fits over a day with a constant change in illumination and b step-changes in illumination. Graphs displaying the R2 value of a linear 
fit, (dashed lines) and quadratic fit (solid lines) for the red, green and blue channels of the colour checker tiles. The 60 wheat plots in the experiment 
are ordered by illumination i.e. the difference between observed and reference colour checker values, shown on the left-hand side y-axis and 
represented by the black dashed line
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Table 1  R2 values for linear (L.) and quadratic (Q.) fits of the red (R), green (G) and blue (B) data for 17 imaging sessions 
(rows), averaged over the 60 plots each time (columns)

R G B

L. Q. L. Q. L. Q.

1 0.70 0.71 0.79 0.91 0.83 0.86

2 0.75 0.75 0.84 0.96 0.85 0.88

3 0.71 0.72 0.80 0.96 0.81 0.84

4 0.71 0.72 0.80 0.96 0.74 0.76

5 0.65 0.67 0.74 0.94 0.67 0.69

6 0.76 0.76 0.83 0.95 0.76 0.78

7 0.73 0.74 0.82 0.96 0.75 0.77

8 0.73 0.74 0.83 0.97 0.76 0.78

9 0.68 0.69 0.78 0.96 0.64 0.67

10 0.74 0.75 0.84 0.96 0.72 0.73

11 0.72 0.72 0.87 0.97 0.89 0.89

12 0.73 0.74 0.83 0.96 0.76 0.79

13 0.83 0.83 0.89 0.96 0.88 0.89

14 0.82 0.82 0.89 0.96 0.88 0.89

15 0.81 0.81 0.88 0.96 0.89 0.91

16 0.82 0.82 0.88 0.96 0.90 0.92

17 0.84 0.84 0.90 0.96 0.92 0.94
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Fig. 6  Error of observed colour chart tiles. Error between observed and reference colour chart tile values over 16 imaging sessions for colour 
corrected images (blue) and original images (red)
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Figure 7 shows mean canopy colour in the red, green and 
blue channels for a sample wheat plot over all 16 imaging 
sessions. The purpose of this plot is not to demonstrate 
the mean intensities themselves but rather to depict the 
consistency of colour measurements over multiple days 
with varying levels of illumination. The jagged nature 
of the dashed lines, colours before correction, implies 
changes in colour too severe and irregular to be associ-
ated with a biological phenomena. Instead, the mean 
intensities are changing over time primarily due to imag-
ing sessions being conducted on bright or overcast days. 
On the other hand, the solid lines, representing colour 
values after correction, appear much more stable over a 
long period of time. It is also of note that the steady rise 
in pixel intensities in the colour corrected data toward 
the end of the experiment is to be expected, as plants are 
beginning to senesce and turn yellow, which has higher 
red intensities than green. Table  2 shows the standard 
deviation of mean canopy colour over the 16 days for all 
60 plots in the trial. In no case did the standard devia-
tion of corrected values exceed the standard deviation of 
uncorrected ones, which were 63% higher, on average.

(2)

E =
1

24

24
∑

i=1

√

(R̂i − Ri)2 + (Ĝi − Gi)2 + (B̂i − Bi)2
Automatic exposure settings versus colour correction
The automatic exposure mode of standard digital cam-
eras uses the camera’s in-built metering systems to 
automatically choose values for the aperture and shut-
ter speed parameters. However, allowing the maximum 
amount of light to hit the camera’s sensor by choosing 
the minimum safe shutter speed which will avoid motion 
blurring is preferable to letting the camera choose the 
shutter speed parameter on a per-image basis. Further-
more, in repeated experiments with a fixed schematic 
the depth of field, related to the aperture, should remain 
consistent.

Besides the artifacts affecting image quality, perform-
ing colour correction after imaging with a fixed exposure 
outperforms the use of auto-exposure features in terms 
of colour consistency. Figure 8 presents results of a short 
experiment comparing the two approaches. Sample 
images of the colour checker in well-lit field conditions 
taken with automatic and with manual exposure settings 
are shown in Fig.  8a, b, respectively. The same object 
is imaged in simulated overcast conditions, shown in 
Fig. 8c, d, using automatic and manual exposure settings, 
respectively. Figure  8e, f are plots showing the differ-
ence in colour values after illumination conditions have 
changed, when using automatic and manual exposure 
settings, without and with colour correction, respectively. 
It is clear that using automatic exposure settings has 
not completely corrected for the change in illumination, 
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Fig. 7  Mean canopy colour over time. Mean canopy colour values in red, green and blue, before (dashed lines) and after (solid lines) colour 
correction, for a single wheat plot. The x-axis represents the 16 samples taken over four months of the experiment
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with all colour values having increased. In fact, the mean 
square error in colour values between the two illumina-
tion conditions is more than twice as large when using 
automatic exposure, 4.26, compared to manual exposure 
settings, 1.57.

Colour corrected images for analysing variation in plant 
varieties and treatments
In this section we will use a number of colour corrected 
images to show the variations in canopy colour between 
different varieties, different treatments and different 
time periods that can be analysed. Note that Fig. 7 shows 

Table 2  Standard deviation of green intensity values over 16 imaging sessions for the 60 plots before (B) and after (A) 
the application of colour correction

B A B A B A B A

1 19 10 16 13 9 31 15 14 46 13 10

2 16 10 17 14 8 32 15 9 47 19 7

3 13 8 18 12 9 33 15 8 48 16 11

4 13 12 19 15 8 34 17 10 49 20 17

5 14 10 20 14 7 35 14 10 50 15 11

6 12 9 21 11 11 36 14 10 51 16 11

7 14 11 22 11 9 37 14 12 52 11 8

8 12 10 23 13 6 38 18 10 53 15 8

9 16 7 24 16 9 39 18 10 54 17 7

10 16 10 25 17 7 40 17 10 55 14 10

11 14 9 26 14 9 41 15 9 56 14 9

12 15 11 27 13 9 42 15 9 57 21 16

13 16 11 28 14 9 43 17 9 58 19 10

14 15 11 29 15 5 44 15 11 59 14 10

15 17 8 30 18 7 45 13 8 60 14 9

Fig. 8  Manual versus automatic exposure settings. a, b Show images of the colour checker in the field under bright illumination, imaged with 
automatic and manual exposure settings, respectively. c, d Show images of the colour checker in the field during overcast conditions, imaged 
with automatic and manual exposure settings, respectively. e, f Show the difference in colour values after the illumination has varied when using 
automatic and manual exposure settings, without and with colour correction, respectively
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consistently small values in the blue channel, regard-
less of inconsistencies in illumination. This is due to 
plants reflecting larger amounts of red and green light 
than blue light in general. Due to this fact, hereinafter 
results will only be presented for the red and green chan-
nel, as they capture a large proportion of the variation in 

plot colour. Furthermore, a main part of this study will 
revolve around the two treatments applied to the plots, as 
a result they will hereinafter be abbreviated as fertilized 
(F) and non-fertilized (NF).

The first result of this study, shown in Fig. 9, supports the 
hypothesis formed in the previous section, based on the 
contents of Fig. 7, that even under inconsistent field con-
ditions colour corrected images are consistently able to 
exhibit the senescence stage of plants. Figure 9a shows that 
in the early, healthier, stages of plant life the green values 
of mean canopy colour are found almost exclusively above 
the red values, by a substantial margin, in fertilized plots. 
However toward the end of the time series the relationship 
is inverted and the intensity of red values is much higher. 
The same phenomenon can be seen in Fig. 9b, except here 
the separation between red and green values is not as dis-
tinct. Note that this is due to red values increasing in the 
NF plots, rather than green values decreasing, perhaps 
implying an early onset of decreased plant health.

A range of post-harvest manual measurements were also 
obtained for the wheat plots grown in this study. The data 
from these measurements supports the hypothesis that 
mean plant canopy colour can be useful as a phenotypic 
trait that is related to other important traits such as yield. 
For example when averaging over the three replicates of 
each, the difference in total post-harvest biomass weight 
between F and NF plots of the same variety is 21.1 g. In the 
case of Gregory plots, the average difference in biomass 
between F and NF plots is 122 g. Similarly, the difference 
in straw weight between all F and NF plots is, on average, 
26.5 g. However, for Gregory plots the difference is 82.7 g. 
Furthermore, Gregory appears to move through devel-
opmental stages at a slower rate than the other varieties, 
remaining on average more than 10 cm shorter than other 
varieties for most of the experiment.

We can support this manual data using the mean canopy 
colour information obtained from our colour corrected 
images. Figure 10 shows the red and green values for mean 
canopy colour over the length of the experiment for the 
Gregory, Excalibur, Magenta and Spitfire varieties. Each 
row shows the red and green values of Gregory plotted 
against the red and green values of a different variety and 
the two columns present the data of F and NF plots side by 
side. The first thing to note is that in all cases, including F 
and NF, the red values of Gregory are lower than the vari-
ety chosen for comparison. This implies that either Greg-
ory is senescing significantly less than all other varieties, 

Fig. 9  Mean intensities of all varieties, fertilized and non-fertilized. 
Plot showing the red and green values of ten wheat varieties both 
a fertilized and b non-fertilized for 16 imaging sessions. Different 
colours refer to different varieties, while dashed and solid lines refer to 
green and red values, respectively

Fig. 10  Corrected colour values for Gregory versus other varieties. Plots showing red and green mean intensities of images of plots of Gregory and 
Excalibur (a and b), Magenta (c and d) and Spitfire (e and f). Each row represents a different variety comparison with Gregory, while the left and 
right columns depict results for fertilised and non-fertilised plots, respectively

(See figure on next page.)
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or, more plausibly, that it is taking longer to reach the stage 
of senescence, as the post-harvest data would also suggest. 
Furthermore, Gregory displayed the largest variation in 
green and red values between N and NF plots during early 
stages of growth. This can be seen from imaging sessions 
one to seven especially, where the red and green values in F 
plots are almost identical yet vary significantly in NF plots. 
This particular phenotypic trait could share a relationship 
with the biomass or straw weight which exhibited similar 
patterns.

Two more examples of variation between varieties 
and treatments, not involving the Gregory variety, are 
provided in Fig. 11. Figure 11a, b show that the varieties 

Kukri and Spitfire maintain very similar red and green 
values throughout all time points and both treatments, 
except for approximately the last third of time points 
in F plots where Spitfire exhibited much larger red and 
green values. Which could imply a significantly differ-
ent reaction to nitrogen among two varieties which 
are otherwise very similar. In Fig. 11c, d we can see the 
converse, where the Mace and Scout varieties differ 
from each other in a similar pattern for both F and NF 
plots.

One can also notice that the green values of the non-
fertilized Mace variety on day 4 in Fig.  11d show an 
abnormally high standard deviation. In this case one 

Fig. 11  Colour values for plots containing different varieties. a, b Show plots of Kukri and Spitfire red and green values in fertilized and 
non-fertilized plots, respectively. c, d Show plots of Mace and Scout red and green values in fertilized and non-fertilized plots, respectively
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of the three images of such plots contained a colour 
checker that was partially occluded and the algorithm 
designed for detecting occlusion failed. This particular 
plot is shown in Fig.  12, where one can see that part 
of the colour checker is occluded by shadow. Here the 
colour values of the tiles have been distorted enough 
to substantially alter the appearance of the image, but 
not enough to be detected by the threshold used for 
automatic occlusion detection. While this scenario only 
occurred a total of five times in more than 1000 test 
images, it serves as a reminder that clear and consist-
ent imaging of the colour checker is paramount to final 
accuracy.

Finally, we provide an example of how to predict the 
NDVI of plants based on average canopy colour, in order 
to further demonstrate the importance and applicabil-
ity of colour correcting a time series of plant images. A 
Trimble GreenSeeker [43] crop sensing system was used 
to manually measure the plant NDVI for all 60 plots on 
five select, approximately uniformly spaced, days of the 
experiment. NDVI has been used to estimate crop yield 
and is also directly related to other phenotypic traits such 
as photosynthetic activity and biomass. Equation 3 pro-
vides the formula for calculating plant NDVI, where NIR 
and R denote the near-infrared and red values recorded 
by the GreenSeeker system, respectively.

This comparison is especially useful as NDVI values are 
independent of illumination conditions, since the sum 

(3)NDVI =
NIR− R

NIR+ R
,

in the denominator of Eq.  3 ensures that plant patches 
that are more illuminated are scaled down in magnitude. 
The first 4 days are used as training data, where the aver-
age canopy colour and NDVI of each plot are known. 
Using the mean canopy colour of both corrected and 
uncorrected images, two quadratic models are fitted to 
the NDVI data using the same approach outlined in the 
Methods section. The statistical method is then used to 
predict the NDVI values from plant images taken on the 
fifth day. This is essentially the scheme proposed by Khan 
et al. [44].

Figure 13 shows the reference NDVI values in the hori-
zontal axis and the predicted NDVI values in the verti-
cal axis, for cases with two different colour spaces used 
as training data. Figure  13a used values from the HSV 
colour space to predict NDVI values, while Fig. 13b used 
data from the RGB, HSV, Lab and Luv colour spaces. In 
both cases it is clear that the training data consisting of 
colour corrected images, blue circles, has more accurately 
predicted NDVI values than the uncorrected images, red 
and orange circles. To quantify the accuracy of prediction 
we again utilise the MSE to determine error, which in this 
case is calculated as

where N is the number of samples (60 in this case) and 
N̂DVIi and NDVIi are the reference and observed NDVI 
values for the ith plot, respectively. Table  3 shows the 
results of using different colour channels as training 
data. The table shows that in all cases the corrected mean 
canopy colour was more accurate than the uncorrected 
data in predicting the true NDVI values, sometimes by 
as much as an order of magnitude. It is worth noting 
that Fig.  13a, b appear to further suggest a relationship 
between a plot’s mean canopy colour and fertilization 
of the plot. A further study could be employed to deter-
mine the accuracy in predicting whether or not a plot has 
been fertilized, based on its mean canopy colour. Prelimi-
nary results show that this type of study can also provide 
insight into the behaviour of different varieties. As pre-
viously stated, the variety Gregory showed the slowest 
development of all varieties and a significant difference in 
mean canopy colour between fertilised and non-fertilised 
plots. In the NDVI study, predicted and reference NDVI 
values both showed that Gregory plots contained the 
greatest difference in mean NDVI values between ferti-
lised and non-fertilised plots.

(4)E =
1

N

N
∑

i=1

(

N̂DVIi − NDVIi

)2

,

Fig. 12  Sample image after inaccurate colour correction. In this 
image the colour checker is partially occluded by shadow. In rare 
cases the algorithm designed for detecting occlusions may fail, due 
to the manually defined threshold used for all images, resulting in an 
inaccurate measure of colour
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Conclusions
The scope of plant phenotyping has expanded to include 
image-based analysis of the field. While increased capa-
bilities increase the potential for phenomics experi-
ments they also require more advanced methods of 
analysis. In this article we have proposed an approach 
for ascertaining the important trait of plant canopy col-
our in a correct, accurate and robust manner. We have 
shown that using an industry standard colour checker 
and a quadratic model for colour correction we are able 
to establish a consistent assessment of colour condition 
irresepctive of fluctuating illumination. We have dem-
onstrated that by performing accurate colour correction 
we provide an accurate and robust measure of mean 
canopy colour, a useful phenotypic trait which may 
be directly related to plant NDVI, but also provides a 
method for consistently measuring colour over time and 
over varying levels of illumination. In future work we 
shall consider the role that colour correction plays on 
detecting and quantifying plant sensecence in the field.
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Additional file 1. Image processing. Figure S1. Extracting the region of 
interest. First the rails of the wagon from the original image are detected 
using a combination of grayscale thresholding, Hough transforms and a 
number of morphological operations. The image is then ‘clipped’ to con-
tain only the region of interest, hence removing the possibility of weeds 
or the colour checker being detected as foreground. Figure S2. Support 
Vector Machine. The images are segmented using the pictured support 
vector machine classifier which was trained on the output of the k-means 
clustering algorithm. The x and y axes are u and v values, respectively, 
from the Luv colour space. The gray and purple regions represent the 
green plant class and background class, respectively. The green and black 
circles represent training data of green plant pixel values and background 
pixel values, respectively.

Fig. 13  Predicting GreenSeeker values using mean canopy 
colour. A quadratic model has been used to predict GreenSeeker 
values recorded from all 60 plots. The black line represents perfect 
prediction, where reference values would match predicted values 
exactly. Light and dark blue circles represent where colour corrected 
images were used as training data for the prediction model, orange 
and red circles refer to the uncorrected images. a Using mean canopy 
colour in the HSV colour space for prediction. b Using mean canopy 
colour in RGB, Lab, HSV and Luv colour spaces for prediction

Table 3  Mean square error (MSE) values for  predicting 
plant NDVI values using the  mean canopy colour 
of  different colour spaces, before  and  after colour 
correction (CC)

RGB HSV Lab Luv All

Before CC 0.487 0.066 0.177 0.032 1.901

After CC 0.012 0.014 0.006 0.008 0.019
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